Advertisement

Generalized Solutions and Regularity

  • David Gilbarg
  • Neil S. Trudinger
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 224)

Abstract

This chapter treats linear elliptic operators having principal part in divergence form under relatively weak smoothness assumptions on the coefficients. We consider operators L of the form
$$ Lu = D_i \left( {a^{ij} \left( x \right)D_j u + b^i \left( x \right)u} \right) + c^i \left( x \right)D_i u + d\left( x \right)u $$
(8.1)
whose coefficients a ij , b i , c i , d (i, j = l, …, n) are assumed to be measurable functions on a domain Ω ⊂ ℝ n .

Keywords

Generalize Solution Weak Solution Dirichlet Problem Harnack Inequality Strong Maximum Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • David Gilbarg
    • 1
  • Neil S. Trudinger
    • 2
  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.Department of Pure MathematicsAustralian National UniversityCanberraAustralia

Personalised recommendations