Advertisement

Telenin’s Method and the Method of Lines

  • Maurice Holt
Part of the Springer Series in Computational Physics book series (SCIENTCOMP)

Abstract

The Method of Integral Relations, described in Chapt. 5, is one technique for reducing the amount of finite difference computation in the numerical solution of partial differential equations. The reduction is achieved by integrating the governing equations in one or more coordinate directions and representing unknowns in integrands by polynomials or trigonometrical expansions in the respective coordinates. We then solve ordinary or partial differential equations (of lower order) for the unknown coefficients in these expansions.

Keywords

Cauchy Problem Nodal Point Cross Flow Delta Wing Circular Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chattot, J. J.: J. Fluid Mechanics, to appear (1977).Google Scholar
  2. Chattot, J. J., Holt, M.: Proc. 3rd. Int. Conf. on Numerical Methods in Fluid Mechanics. Lecture Notes in Physics No.19, p. 86–91. Berlin-Heidelberg- New York: Springer 1973.CrossRefGoogle Scholar
  3. Chushkin, P. I., Shchennikov, V. V.: Zh. Inzh. Fiz. Akad. Nauk SSSR 3, 88–94 (1962).Google Scholar
  4. Cuffel, R. F., Back, L. H., Massier, P. F.: AIAA J. 7, 1364–1366 (1969).ADSCrossRefGoogle Scholar
  5. Emmons, H. W.: NACA TN 1003, 1946.Google Scholar
  6. Fletcher, C.A. J.: Proc. Fourth Int. Conf. on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics No. 35, p. 161–166. Berlin-Heidelberg- New York: Springer 1975a.CrossRefGoogle Scholar
  7. Fletcher, C.A. J.: AIAA J. 13, No. 8 (1975b).Google Scholar
  8. Friedman, M. P.: J. Aerospace Sci. 29, 4 (1962).Google Scholar
  9. Gilinskii, S. M, Telenin, G. F., Tinyakov, G. P.: Izv. Akad. Nauk, SSSR Mekh. Mash. 4, 9–28 (1964) (Translated as NASA TT F297).Google Scholar
  10. Gilinskii, S. M., Telenin, G. F.: Izv. Akad. Nauk SSSR Mekh. Mash. 5, 148–156 (1964).Google Scholar
  11. Gilinskii, S. M., Lebedev, M. G.: Izv. Akad. Nauk SSSR Mekh. 1 (1965).Google Scholar
  12. Goldstein, S., Ward, G. N.: Aero. Quart. 2, 39–84 (1950).MathSciNetGoogle Scholar
  13. Gross, M. B., Holt, M.: Proc. Symposium Transsonicum II, Göttingen 1975. pp 369–375. Berlin-Heidelberg-New York: Springer 1976.Google Scholar
  14. Holt, M., Blackie, J.: Aero. Sci. 23, 931–956 (1956).MathSciNetGoogle Scholar
  15. Holt, M., Ndefo, D. E.: J. Comp. Phys. 5, 463–486 (1970).ADSMATHCrossRefGoogle Scholar
  16. Hopkins, D. F., Hill, D. E.: AIAA J. 4, 1337–1343 (1966).ADSCrossRefGoogle Scholar
  17. Jones, D. J.: Aero. Rep. LR-507 (NRC No. 10361), Nat. Res. Council, Canada, Ottawa 1968.Google Scholar
  18. Jones, D. J.: Tables of Inviscid Supersonic Flow About Circular Cones at Incidence γ = 1.4, AGARDograph 137 (1969).Google Scholar
  19. Jones, D. J., South, J. C., Klunker, E. B.: J. Comp. Phys. 9, 496–527 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  20. Kliegel, J. R., Levine, J. N.: AIAA J. 7, 1375–1378 (1969).ADSCrossRefGoogle Scholar
  21. Klopfer, G. H., Holt, M.: Proc. Symposium Transsonicum II, Göttingen 1975. pp 376–383. Berlin-Heidelberg-New York: Springer 1976. Klunker, E. B., South, J. C., jr., Davis, R. M.: NASA TR R-374, 1971.Google Scholar
  22. Kopal, Z.: M.I.T. Dept. Elec. Eng. Center of Analysis Tech. Report 4, 1949.Google Scholar
  23. Kutler, P., Lomax, H.: Proc. 2nd Int. Conf. on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics No. 8 (Ed. M. Holt), p. 24–29. Berlin-Heidelberg-New York: Springer 1971.CrossRefGoogle Scholar
  24. Liskovets, O.A.: The Method of Lines (Review). Differentsial’nye Uravneniya 1, 1662–1678 (1965).Google Scholar
  25. Meng, J. C S.: J. Comp. Phys. 15, 320–344 (1974).ADSMATHCrossRefGoogle Scholar
  26. Melnik, R. E.: AIAA J. 5, 631–637 (1967).ADSMATHCrossRefGoogle Scholar
  27. Ndefo, D. E.: Univ. of Calif., Berkeley, Aero. Sci. Rept. AS-68–2, 1968.Google Scholar
  28. Petrovskii, I. G.: Lectures on Partial Differential Equations. New York: Interscience 1964.Google Scholar
  29. Pirumov, U. G.: Izv. Akad. Nauk SSSR Mekh. Zh. i G. 2, 10–22 (1967).Google Scholar
  30. Powell, M. J. D.: Computer J. 7, 303–307 (1964).CrossRefGoogle Scholar
  31. Stone, A. H.: J. Math. Phys. 27, 67–81 (1948a).MATHGoogle Scholar
  32. Stone, A. H.: J. Math. Phys. 30, 200–213 (1948b).Google Scholar
  33. Tinyakov, G. P.: Izv. Akad. Nauk SSSR Mekh. No. 6, 10–19 (1965).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Maurice Holt
    • 1
  1. 1.College of Engineering, Mechanical EngineeringUniversity of CaliforniaBerkelyUSA

Personalised recommendations