Advertisement

Synergetics pp 307-308 | Cite as

Some Historical Remarks and Outlook

  • Hermann Haken

Abstract

The reader who has followed us through our book has been most probably amazed by the profound analogies between completely different systems when they pass through an instability. This instability is caused by a change of external parameters and leads eventually to a new macroscopic spatio-temporal pattern of the system. In many cases the detailed mechanism can be described as follows: close to the instability point we may distinguish between stable and unstable collective motions (modes). The stable modes are slaved by the unstable modes and can be eliminated. In general, this leads to an enormous reduction of the degrees of freedom. The remaining unstable modes serve as order parameters determining the macroscopic behavior of the system. The resulting equations for the order parameters can be grouped into a few universality classes which describe the dynamics of the order parameters. Some of these equations are strongly reminiscent of those governing first and second order phase transitions of physical systems in thermal equilibrium. However, new kinds of classes also occur, for instance describing pulsations or oscillations. The interplay between stochastic and deterministic “forces” (“chance and necessity”) drives the systems from their old states into new configurations and determines which new configuration is realized.

Keywords

Thermal Equilibrium Order Phase Transition Unstable Mode Universality Class Stable Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. J. F. G. Auchmuchty, G. Nicolis: Bull. Math. Biol. 37,323 (1975)Google Scholar
  2. L. von Bertalanffi: Blätter für Deutsche Philosophie 18, Nr. 3 and 4 (1945); Science 111, 23 (1950); Brit. J. Phil. Sci. 1, 134 (1950); Biophysik des Fliessgleichgewichts (Vieweg, Braunschweig 1953)Google Scholar
  3. G. Czajkowski: Z. Phys. 270, 25 (1974)ADSCrossRefGoogle Scholar
  4. V. DeGiorgio, M. O. Scully: Phys. Rev. A2, 117a (1970)ADSGoogle Scholar
  5. P. Glanssdorff, I. Prigogine: Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York 1971)Google Scholar
  6. R. Graham, H. Haken: Z. Phys. 213, 420 (1968); 237,31 (1970)ADSCrossRefGoogle Scholar
  7. H. Haken: Z. Phys. 181, 96 (1964)ADSCrossRefGoogle Scholar
  8. M. Herschkowitz-Kaufman: Bull. Math. Biol. 37, 589 (1975)MathSciNetMATHCrossRefGoogle Scholar
  9. K. H. Janssen: Z. Phys. 270, 67 (1974)ADSCrossRefGoogle Scholar
  10. G. J. Klir: The Approach to General Systems Theory (Van Nostrand Reinhold Comp., New York 1969)Google Scholar
  11. G. J. Klir, ed.: Trends in General Systems Theory (Wiley, New York 1972)MATHGoogle Scholar
  12. R. Landauer: IBM J. Res. Dev. 5, 3 (1961); J. Appl. Phys. 33, 2209 (1962); Ferroelectrics 2,47 (1971)MathSciNetCrossRefGoogle Scholar
  13. E. Laszlo, ed.: The Relevance of General Systems Theory (George Braziller, New York 1972)Google Scholar
  14. I. Matheson, D. F. Walls, C. W. Gardiner: J. Stat. Phys. 12,21 (1915)ADSCrossRefGoogle Scholar
  15. A. Nitzan, P. Ortoleva, J. Deutch, J. Ross: J. Chem. Phys. 61, 1056 (1974)ADSCrossRefGoogle Scholar
  16. I. Prigogine, G. Nicolis: J. Chem. Phys. 46, 3542 (1967)ADSCrossRefGoogle Scholar
  17. I. Prigogine, R. Lefever: J. Chem. Phys. 48,1695 (1968)ADSCrossRefGoogle Scholar
  18. A. M. Turing: Phil. Trans. Roy. Soc. B 234,37 (1952)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Hermann Haken
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Germany

Personalised recommendations