Alimentary Canal: Anatomy, Prehension, Deglutition, Feeding, Drinking, Passage of Ingesta, and Motility

  • P. D. Sturkie
Part of the Springer Advanced Texts in Life Sciences book series (SATLIFE)


The organs of the digestive tract of the bird include the beak, mouth, salivary glands, tongue (but not teeth), pharynx, esophagus, crop, proventriculus, gizzard, intestines, ceca, rectum, and cloaca (see Figure 9–1). The lengths of various parts of the tract vary with size of the bird, type of food eaten, and other factors. Birds eating coarse, fibrous food tend to have especially large digestive tracts, and grain-eating birds have larger tracts than carnivores do.


Large Intestine Feed Intake Alimentary Canal Domestic Fowl Ventromedial Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, B., B. Anderson, E. Fabricius, and L. Svesson. (1960). Observations on central regulation of body temperature and of food and water intake in the pigeon (Columba livia). Acta. Physiol. Scand., 50, 328.CrossRefGoogle Scholar
  2. Akahori, F., M. Matsuura, and K. Arai. (1971a). Studies on the movement of the alimentary canal. VI. Physiological values in growing female chicks and quails. Bull. Azabu Vet. Coll., No. 22, p. 25. [English summary.]Google Scholar
  3. Akahori, F., M. Matsuura, and K. Arai. (1971b). Studies on the movement of the alimentary canal. V. Effect of starvation upon the movement of gizzard in quails. Bull. Azabu Vet. Coll., No. 22, p. 15.Google Scholar
  4. Akahori, F., M. Matsuura, and K. Arai. (1968). Studies on the movement of the alimentary canal. II. Changes in movement of the gizzard with growth of chicks. Bull. Azabu Vet. Coll., No. 18, p. 73.Google Scholar
  5. Akahori, F., M. Matsuura, and K. Arai. (1967). Studies on the movement of the ailmentary canal. I. Movement of the crop and gizzard. Bull. Azabu Vet. Coll., No. 16. p. 55.Google Scholar
  6. Akahori, F., M. Matsuura, and K. Arai. (1969). Studies on the movement of the alimentary canal. III. Movement of the gizzard of chickens under starvation. Bull. Azabu Vet. Coll., No. 20, p. 1.Google Scholar
  7. Akester, A. R. (1967). Renal portal shunts in the kidney of domestic fowlj. Anat., 101, 569.Google Scholar
  8. Akester, A. R., R. S. Anderson, K. J. Hill, and G. W. Osbaldiston. (1967). A radiographic study of urine flow in the domestic fowl. Brit. Poultry Sci., 8, 209.CrossRefGoogle Scholar
  9. Ashcraft, D. W. (1930). Correlative activites of the alimentary canal of fowl. Am. J. Physiol., 93, 105.Google Scholar
  10. Balgooyen, T. G. (1971). Pellet regurgitation of captive sparrow hawks. Condor, 73, 382.CrossRefGoogle Scholar
  11. Bartholmew, G. A., and T. J. Cade. (1963). The water economy of land birds. Auk, 80, 504.Google Scholar
  12. Bartlett, A. L., and T. Hassan. (1968). Some actions of histamine and 5HT on isolated chicken esophagus. Brit. J. Pharmacol. Chemother., 32, 156.Google Scholar
  13. Bennett, T. (1969a). The effects of hyoscine and anticholinesterases on cholinergic transmission to the smooth muscle cells of the avian gizzard. Brit. J. Pharmacol., 37, 585.Google Scholar
  14. Bennett, T. (1969b). Studies on avian gizzard. Histochemical analysis of extrinsic and intrinsic innervation. Z. Zeilforsch., 98, 188.CrossRefGoogle Scholar
  15. Bennett T. (1969c). Nerve mediated excitation and inhibition of the smooth muscle cells of avian gizzard. J. Physiol. (London), 204, 669.Google Scholar
  16. Bennett, T. and J. L. S. Cobb. (1969a). Studies on avian gizzard morphology and innervation of smooth muscle. Z. Zllforsch., 96, 173.CrossRefGoogle Scholar
  17. Bennett, T., and J. L. S. Cobb. (1969b). Studies on avian gizzard: Auerbachs plexus. Z. Zellforsch., 99, 109.PubMedCrossRefGoogle Scholar
  18. Bennett T., and J. Malmfors. (1970). The adrenergic nervous system of domestic fowl. Z. Zellforsch., 106, 22.PubMedCrossRefGoogle Scholar
  19. Bolton, T. B. (1971). Physiology of nervous system. In “Physiology and Biochemistry of Fowl,” Vol. 2 (D. J. Bell, and B. M. Freeman, Eds.). London: Academic Press, Chapter 28, p. 675.Google Scholar
  20. Brobeck, J. R. (1957). Neural control of hunger, appetite, and satiety. Yale J. Biol. Med., 29, 565.PubMedGoogle Scholar
  21. Browne, T. G. (1922). Some observations on the digestive system of the fowl. J. Comp. Pathol. Ther., 35, 12.Google Scholar
  22. Burnstock, C., (1969). Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol. Rev., 21, 247.PubMedGoogle Scholar
  23. Calhoun, M. (1954). “Microscopic Anatomy of the Digestive System.” Ames, Iowa: Iowa State College Press.Google Scholar
  24. Carpenter, J. W., C. M. Stein, A. Silverstein, and A. van Tienhoven. (1969). The effect of gold thioglucose on food consumption and reproduction of the Japanese quail. Poultry Sci., 48, 574.Google Scholar
  25. Clarkson, M. J., and T. G. Richards. (1966). Liver blood flow in the turkey. In “Physiology of Domestic Fowl” (C. H. Smith, and E. C. Amoroso, Eds.). Edinburgh: Oliver and Boyd, Chapter 33.Google Scholar
  26. Dansky, L. M., and F. W. Hill. (1952). Application of the chromic oxide indicator method to balance studies with growing chickens. J. Nutr., 47, 449.PubMedGoogle Scholar
  27. Duke, G. E., and O. A. Evanson. (1972). Inhibition of gastric motility by duodenal contents of turkeys. Poultry Sci., 51, 1625.Google Scholar
  28. Duke, G. E., H. E. Dziuk, and O. A. Evanson. (1972). Gastric pressure and smooth muscle electrical potential changes in turkeys. Am. J. Physiol., 222, 167.PubMedGoogle Scholar
  29. Duke, G. E., A. A. Jegers, G. Loff and O. A. Evanson. (1975). Gastric digestion in some raptors. Comp. Biochem. Physiol., 50, 649.CrossRefGoogle Scholar
  30. Dunston, W. A. (1970). Excessive drinking (polydipsia) in a Galapagos mockingbird. Comp. Biochem. Physiol., 36, 143.CrossRefGoogle Scholar
  31. Dunston, W. A., and E. G. Buss. (1969). Abnormal water balance in a mutant strain of chickens. Science, 161, 167.CrossRefGoogle Scholar
  32. Dunston, W. A., E. G. Buss, W. H. Sawyer, and H. W. Sokol. (1972). Herditary polydipsia and polyuria in chickens. Am. J. Physiol., 222, 1167.Google Scholar
  33. Dziuk, H. E., and G. E. Duke. (1972). Cineradiographic studies of gastric motility in turkeys. Am.). Physiol., 222, 159.Google Scholar
  34. Everett, S. D., (1968). Pharmacological responses of the isolated innervated intestine of the chick. Brit J. Pahrmacol. Chemother., 33, 342.Google Scholar
  35. Everett, S. D., and S. P. Mann. (1967). Catecholamine release by histamine from the isolated intestine of the chick. Eur. J. Pharmacol., 1, 310.CrossRefGoogle Scholar
  36. Feldman, S. E., S. Larsson, M. K. Dimick, and L. Lepkovsky. (1957). Aphagia in chickens. Am. J. Physiol., 191, 259.PubMedGoogle Scholar
  37. Goodman, I. J., and J. L. Brown. (1966). Stimulation of positively and negatively reinforcing sites in the avian brain. Life Sci., 5, 693.PubMedCrossRefGoogle Scholar
  38. Grimm, R. J., and W. M. Whitehouse. (1963). Pellet formation in a great horned owl. A roentgenographic study. Auk, 80, 310.Google Scholar
  39. Groebbels, F. (1932). “Der Vogel. Erster Band: Atmungswelt und Nahrungswelt.” Berlin: Verlag von Gebrüder Borntraeger.Google Scholar
  40. Hainan, E. T. (1949). The architecture of the avian gut and tolerance of crude fiber. Brit. J. Nutr., 3, 245.CrossRefGoogle Scholar
  41. Hanzlik, P. J., and E. M. Butt. (1928). Reactions of the crop muscles under tension, with a consideration of the antomical arrangement, innervation and other factors. Am. J. Physiol., 85, 271.Google Scholar
  42. Henry, K. M., A. J. MacDonald, and H. E. Magee. (1933). Observations on the functions of the alimentary canal in fowls. J. Exp. Biol., 10, 153.Google Scholar
  43. Hill, K. J. (1971). The physiology of digestion. In “Physiology and Biochemistry of the Domestic Fowl,” Vol. 1 (D. J. Bell and B. M. Freeman, Eds). London: Academic Press, Chapter 2. p. 25.Google Scholar
  44. Hill, F. W., and Dansky. (1954). Studies of the energy requirements of chickens. I. The effects of dietary energy level in growth and feed consumption. Poultry Sci., 33, 112.Google Scholar
  45. Hillerman, J. P., F. H. Kratzer, and W. D. Wilson. (1953). Food passage through chickens and turkeys and some regulating factors. Poultry Sci., 32, 332.Google Scholar
  46. Howard, B. R. (1968). Drinking activity of hens in relation to egg laying. Proc. 24th Intl. Cong. Physiol. Sci., 7, 202.Google Scholar
  47. Howard, B. R. (1975). Water balance of the hen during egg formation. Poultry Sci., 54, 1046.Google Scholar
  48. Ihnen, K. (1928). Beiträge zur Phusiologie des Kropfes bei Huhn and Taube I: Bewegung und Innervation des kroptes. Arch. Ces. Physiol. (Pflügers), 218, 767.CrossRefGoogle Scholar
  49. Ikegami, Y. (1938). The function of the testes and the stomach movement. Jap. J. Gastroenterol., 10, 103 (Biol. Abs., 14547, 1940).Google Scholar
  50. Imabayashi, K., M. Kametaka, and T. Hatano. (1956). Studies on digestion in the domestic fowl. Tokyo, J. Agri. Res., 2, 99.Google Scholar
  51. Jerrett, S. A., and W. R. Goodge. (1973). Evidence for amylase in avian salivary glands. J. Morphol., 139, 27. PubMedCrossRefGoogle Scholar
  52. Kostuch, T. E., and G. E. Duke (1975). Gastric motility in great horned owls. Comp. Biochem. Physiol. 51, 201.CrossRefGoogle Scholar
  53. Kuenzel, W. J. (1972). Dual hypothalamic feeding system in a migratory bird, Zonotrichia albicoliis. Am. J. Physiol., 223, 1138.PubMedGoogle Scholar
  54. Lepkovsky, S. (1973). Hypothalamic adipose tissue interrelationships. Fed. Proc, 31, 1705.Google Scholar
  55. Lepkovsky, S., and M. Yasuda. (1966). Hypothalamic lesions, growth and body composition of male chickens. Poultry Sci., 45, 582.Google Scholar
  56. Maley, M. J. (1969). Electrical stimulation of agonistric behavior in the mallard. Behavior, 34, 138.CrossRefGoogle Scholar
  57. Mangold, E. (1929). “Hanbuch der Ernährung und des Stoffwechsels der landswirtschaflichen Nutztiere.” Berlin: Zweiter Band, Verlag von Julius Springer.Google Scholar
  58. Mu, J.Y., T. H. Yin, C. L. Hamilton, and J. R. Brobeck. (1968). Variability of body fat in hyperphagic rates. Yale J. Biol. Med., 47, 133.Google Scholar
  59. Nechay, B. R., S. Boyarsky, and P. Catacutan-Labay. (1968). Rapid migration of urine into intestine of chick. Comp. Biochem. Physiol., 26, 369.PubMedCrossRefGoogle Scholar
  60. Nishida, T., Y. K. Paik, and M. Yasuda. (1969). LVIII. Blood vascular supply of the glandular stomach and the muscular stomach. Jap. J. Vet. Sci., 31, 51. (English summary.)CrossRefGoogle Scholar
  61. Pastea, E., A. Nicolau, and I. Rosea. (1968). Dynamics of the digestive tract in hens and ducks. Acta. Physiol. Hung., 33, 305.Google Scholar
  62. Paterson, T. L. (1927). Crop movements in the pigeon. J. Lab. Clin. Med., 12, 1003.Google Scholar
  63. Phillips, R. E., and O. M. Youngren. (1971). Brain stimulation and species typical behavior. Activities evoked by electrical stimulation of the brains of chickens. Anim. Behav., 19, 757.PubMedCrossRefGoogle Scholar
  64. Polin, D., and J. H. Wolford. (1973). Factors influencing food intake and caloric balance in chickens. Fed. Proc, 32, 1720.PubMedGoogle Scholar
  65. Purton, M. D. (1970). Blood flow in liver of domestic fowl. J. Anat., 106, 189.PubMedGoogle Scholar
  66. Rogers, F. T. (1915). The hunger mechanism in birds (preliminary report). Proc. Soc Exp. Biol. Med., 73, 119.Google Scholar
  67. Röseler, M. (1929). Die Bedeutung der Blinddärme des Haushuhnes fur die Resorption der Nahrung und Verdauung der Rohfaser. Z. Tierz. Zucht, 13, 281.Google Scholar
  68. Shirley, H. V., and A. V. Nalbandov. (1956). Effects of neurohypo-hysectomy in domestic chickens. Endocrinology, 58, 477.PubMedCrossRefGoogle Scholar
  69. Smith, C. J. V. (1969). Alterations in the food intake of chickens as a result of hypothalamic lesions. Poultry Sci., 48, 475.Google Scholar
  70. Sturkie, P. D. (Ed.). (1965). “Avian Physiology” (2nd ed.). Ithaca, N. Y.: Cornell University Press.Google Scholar
  71. Sturkie, P. D., and W. P. Joiner. (1959). Effects of foreign bodies in cloaca and rectum of the chicken on feed consumption. Am. J. Physiol., 197, 1337.PubMedGoogle Scholar
  72. Thorton, P. A., P. J. Schaible, and L. F. Wolterink. (1956). Intestinal transit and skeletal retention of radioactive strontium in the chick. Poultry Sci., 35, 1055.Google Scholar
  73. Tweeton, J. R., R. E. Phillips, and F. W. Peek. Feeding behavior elicited by electrical stimulation of the brain of chickens, Gallus gallus. Poultry Sci., 52, 165.Google Scholar
  74. van Tienhoven, A., and L. P. Juhasz. (1962). The chicken telencephalon, diencephalon, and mesenchephalon in sterotaxic coordinates. J. Comp. Neurol., 118, 185.CrossRefGoogle Scholar
  75. Vonk, H. H., and N. Postma. (1949). X-ray studies on the movements of the hen’s intestine. Physiol. Comp. Oecol., 7, 15.Google Scholar
  76. Webb, T. E., and J. R. Colvin. (1964). The composition, structure and mechanism of formation of the lining of the gizzard of the chicken. Can. J. Biochem., 42, 59.Google Scholar
  77. Yasukawa, M. (1959). Studies in movements of large intestine VII: Movements on large intestine of fowls. Jap. J. Vet. Sci., 21, 1. (English summary.)CrossRefGoogle Scholar
  78. Yntema, C. L. and W. S. Hammond. (1952). Experiments on the origin and development of the sacral autonomic nerves in chick embryo. J. Exp. Zool., 129, 375.CrossRefGoogle Scholar
  79. Ziswiler, V., and D. S. Farner. (1972). Digestion and digestive system. “Avian Biology,” Vol. II (D. S. Farner and James R. King, Eds). London: Academic Press, p. 343.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • P. D. Sturkie

There are no affiliations available

Personalised recommendations