Advertisement

Respiration

  • M. R. Fedde
Part of the Springer Advanced Texts in Life Sciences book series (SATLIFE)

Abstract

The respiratory system has the primary functions of providing oxygen (O2) to the blood, removing carbon dioxide (CO2) from the blood, and eliminating heat from the body. This chapter is concerned only with its function in the exchange of gases between air and blood. The topics covered include: (1) the structure of the system; (2) the mechanisms that force gases past exchange surfaces; (3) the factors involved in exchange of O2 and CO2 between gas and blood; (4) the reaction of these gases with blood; and (5) the manner in which the system is controlled.

Keywords

Respiratory System Respiratory Muscle Carotid Body Domestic Fowl Mute Swan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, W. E. (1958). “The Comparative Morphology of the Carotid Body and Carotid Sinus.” Springfield, Ill.: Charles C. Thomas, p. 171.Google Scholar
  2. Andersen, H. T., and A. Lövö. (1964). The effect of carbon dioxide on the respiration of avian divers (ducks). Comp. Biochem. Physiol., 12, 451.PubMedGoogle Scholar
  3. Andersen, H. T., and A. Lövö. (1967). Indirect estimation of partial pressure of oxygen in arterial blood of diving ducks. Resp. Physiol., 2, 163.Google Scholar
  4. Bamford, O. S., and D. R. Jones. (1974). On the initiation of apnoea and some cardiovascular responses to submergence in ducks. Resp. Physiol., 22, 199.Google Scholar
  5. Banzett, R. B. (1974). Physiological parameters which determine PCO2 at the intrapulmonary chemoreceptor site in Gallus domesticus. Ph.D. thesis, University of California, Davis, California.Google Scholar
  6. Bartels, H., C. Christoforides, J. Hedley-Whyte, and L. Laasberg. (1971). Solubility coefficients of gases. In “Biological Handbooks: Respiration and Circulation” (P. L. Altman and D. S. Dittmer, Eds.). Bethesda, Maryland: Federation of American Societies for Experimental Biology, p. 18..Google Scholar
  7. Bartlett, G. R. (1970). Patterns of phosphate compounds in red blood cells of man and animals. In “Advances in Experimental Medicine and Biology,” Vol. 6, “Red Cell Metabolism” (G. J. Brewer, Ed.). New York: Plenum Press, p. 245.Google Scholar
  8. Bell, D. J. (1971). Metabolism of the erythrocyte. In “Physiology and Biochemistry of the Domestic Fowl,” Vol. 2 (D. J. Bell and B. M. Freeman, Eds.). New York: Academic Press, p. 863.Google Scholar
  9. Besch, E. L. (1966). Respiratory activity of avian blood cells. J. Cell Physiol., 67, 301.PubMedGoogle Scholar
  10. Bethe, A. (1925). Atmung: Allgemeines and Vergleichendes. In “Handbuch der normalen und pathologischen Physiologie.” (A. Bethe, G. V. Bergmann, G. Embden, and A. Ellinger, Eds). Berlin: Springer Verlag, Bd. 2, p. 1.Google Scholar
  11. Bouverot, P., and P. Dejours. (1971). Pathway of respired gas in the air sacs-lung apparatus of fowl and ducks. Resp. Physiol., 13, 330.Google Scholar
  12. Bouverot, P., and L.-M. Leitner. (1972). Arterial chemoreceptors in the domestic fowl. Resp. Physiol., 15, 310.Google Scholar
  13. Bouverot, P., N. Hill, and Y. Jammes. (1974b). Ventilatory responses to CO2 in intact and chronically chemodenervated Peking ducks. Resp. Physiol.22, 137.Google Scholar
  14. Bouverot, P., G. Hildwein, and D. LeGoff. (1974a). Evaporative water loss, respiratory pattern, gas exchange and acid-base balance during thermal panting in Pekin ducks exposed to moderate heat. Resp. Physiol., 21, 255.Google Scholar
  15. Brackenbury, J. H. (1971). Airflow dynamics in the avian lung as determined by direct and indirect methods. Resp. Physiol., 13, 319.Google Scholar
  16. Brackenbury, J. H. (1972). Physical determinants of airflow pattern within the avian lung. Resp. Physiol., 15, 384.Google Scholar
  17. Brackenbury, J. H. (1973). Respiratory mechanics in the bird. Comp. Biochem. Physiol., 44A, 599.Google Scholar
  18. Brackenbury, J. H. (1974). Pressure relationships of airflow in the avian respiratory system, and their influence on haemodynamics. Ph.D. thesis, University of Cambridge, Churchill College, England.Google Scholar
  19. Bretz, W. L., and K. Schmidt-Nielsen. (1971). Bird respiration: Flow patterns in the duck lung. J. Exp. Biol., 54, 103.PubMedGoogle Scholar
  20. Bretz, W. L., and K. Schmidt-Nielsen. (1972). The movement of gas in the respiratory system of the duck. J. Exp. Biol., 56, 57.Google Scholar
  21. Burger, R. E., J. L. Osborne, and R. B. Banzett. (1974). Intrapulmonary chemoreceptors in Gallus domesticus: Adequate stimulus and functional localization. Resp. Physiol., 22, 87.Google Scholar
  22. Burton, R. R., and A. H. Smith. (1968). Blood and air volumes in the avian lung. Poultry Sci., 47, 85.Google Scholar
  23. Butler, P. J. (1967). The effect of progressive hypoxia on the respiratory and cardiovascular systems of the chicken. J. Physiol. (London), 191, 309.Google Scholar
  24. Calder, W. A. (1968). Respiratory and heart rates of birds at rest. Condor, 70, 358.Google Scholar
  25. Calder, W. A., and K. Schmidt-Nielsen. (1968). Panting and blood carbon dioxide in birds. Am. J. Physiol., 215, 477.PubMedGoogle Scholar
  26. Callanan, D., M. Dixon, J. G. Widdicombe, and J. C. M. Wise. (1974). Responses of geese to inhalation of irritant gases and injections of phenyl diguanide. Resp. Physiol., 22, 157.Google Scholar
  27. Clausen, G., R. Sanson, and A. Storesund. (1971). The HbO2 dissociation curve of the fulmar and the herring gull. Resp. Physiol., 12, 66.Google Scholar
  28. Cohen, D. H. (1967). The hyperstriatal region of the avian fore-brain: A lesion study of possible functions, including its role in cardiac and respiratory conditioning. J. Comp. Neurol., 131, 559.PubMedGoogle Scholar
  29. Cohn, J. E., and R. Shannon. (1968). Respiration in unanesthetized geese. Resp. Physiol., 5, 259.Google Scholar
  30. Danzer, L. A., and J. E. Cohn. (1967). The dissociation curve for goose blood. Resp. Physiol., 3, 302.Google Scholar
  31. deWet, P. D., M. R. Fedde, and R. L. Kitchell. (1967). Innervation of the respiratory muscles of Gallus domesticus. J. Morphol., 123, 17.PubMedGoogle Scholar
  32. Duncker, H.-R. (1971). The lung air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus. Ergebn. Anat. Entwickl.-Ges., 45(6), 1.Google Scholar
  33. Duncker, H.-R. (1972). Structure of avian lungs. Resp. Physiol., 14, 44.Google Scholar
  34. Duncker, H.-R. (1974). Structure of the avian respiratory tract. Resp. Physiol., 22, 1.Google Scholar
  35. Durkovic, R. G., and D. H. Cohen. (1969). Effect of caudal midbrain lesions on conditioning of heart- and respiratory-rate responses in the pigeon. J. Comp. Physiol. Psychol., 69, 329.PubMedGoogle Scholar
  36. Eaton, J. A. Jr., M. R. Fedde, and R. E. Burger. (1971). Sensitivity to inflation of the respiratory system in the chicken. Resp. Physiol., 11, 167.Google Scholar
  37. Fedde, M. R. (1970). Peripheral control of avian respiration. Federation Proc, 29, 1664.Google Scholar
  38. Fedde, M. R., and D. F. Peterson. (1970). Intrapulmonary receptor response to changes in airway-gas composition in Gallus domesticus. J. Physiol. (London), 209, 609.Google Scholar
  39. Fedde, M. R., and W. D. Kuhlmann. (1974). PO2 changes during analysis of chicken arterial blood. Comp. Biochem. Physiol., 50A, 633.Google Scholar
  40. Fedde, M. R., R. E. Burger, and R. L Kitchell. (1963). The effect of anesthesia and age on respiration following bilateral, cervical vagotomy in the fowl. Poultry Sci., 42, 1212.Google Scholar
  41. Fedde, M. R., R. E. Burger, and R. L. Kitchell. (1964a). Electromyographic studies of the effects of bodily position and anesthesia on the activity of the respiratory muscles of the domestic cock. Poultry Sci., 43, 839.Google Scholar
  42. Fedde, M. R., R. E. Burger, and R. L. Kitchell. (1964b). Electromyographic studies of the effects of bilateral, cervical vagotomy on the action of the respiratory muscles of the domestic cock. Poultry Sci., 43, 1119.Google Scholar
  43. Fedde, M. R., R. E. Burger, and R. L. Kitchell. (1964c). Anatomic and electromyographic studies of the costopulmonary muscles in the cock. Poultry Sci., 43, 1177.Google Scholar
  44. Fedde, M. R., R. N. Gatz, H. Slama, and P. Scheid (1974a). Intrapulmonary CO2 receptors in the duck: I. Stimulus specificity. Resp. Physiol., 22, 99.Google Scholar
  45. Fedde, M. R., P. D. deWet, and R. L. Kitchell. (1969). Motor unit recruitment pattern and tonic activity in respiratory muscles of Callus domesticus. J. Neurophysiol., 32, 995.PubMedGoogle Scholar
  46. Fedde, M. R., R. N. Gatz, H. Slama, and P. Scheid. (1974b). Intra-pulmonary CO2 receptors in the duck: II. Comparison with mechanoreceptors. Resp. Physiol., 22, 115.Google Scholar
  47. Fischer, G. (1905). Vergleichende anatomische Untersuchungen über den Bronchialbaum der Vögel. Zoologica, 19, H. 45, 1.Google Scholar
  48. Fowle, A. S. E., and S. Weinstein. (1966). Effect of cutaneous electric shock on ventilatory response of birds to carbon dioxide. Am. J. Physiol., 210, 293.PubMedGoogle Scholar
  49. Hart, J. S., and O. Z. Roy. (1966). Respiratory and cardiac responses to flight in pigeons. Physiol. Zool., 39, 291.Google Scholar
  50. Hazelhoff, E. H. (1943). Bouw en functie van de vogellong. Verslag van de gewonne vergaderingen der Afdeeling Natuurkunde van de Nederlanse Akademie van Wetenschappen (Amsterdam), 52, 391. [English translation: Structure and function of the lung of birds. Poultry Sci., 39, 3 (1951).]Google Scholar
  51. Johnson, L. F., and M. E. Tate. (1969). Structure of “phytic acids.” Can. J. Chem., 47, 63.Google Scholar
  52. Johnston, A. M., and M. G. M. Jukes. (1966). The respiratory response of the decerebrate domestic hen to inhaled carbon dioxide-air mixture. J. Physiol. (London), 184, 38P.Google Scholar
  53. Jones, D. R., and G. F. Holeton. (1972). Cardiovascular and respiratory responses of ducks to progressive hypocapnic hypoxia. J. Exp. Biol., 56, 657.PubMedGoogle Scholar
  54. Jones, D. R., and M. J. Purves. (1970). The effect of carotid body denervation upon the respiratory response to hypoxia and hypercapnia in the duck. J. Physiol. (London), 211, 295.Google Scholar
  55. Jukes, M. G. M. (1971). Control of respiration. In “Physiology and Biochemistry of the Domestic Fowl,” Vol. I (D. J. Bell and B. M. Freeman, Eds.). London: Academic Press, p. 171.Google Scholar
  56. Kadono, H., T. Okada, and K. Ono. (1963). Electromyographic studies on the respiratory muscles of the chicken. Poultry Sci., 42, 121.Google Scholar
  57. Kampe, G., and E. C. Crawford, Jr. (1973). Oscillatory mechanics of the respiratory system of pigeons. Resp. Physiol., 18, 188.Google Scholar
  58. Kawashiro, T., and P. Scheid. (1975). Arterial blood gases in undisturbed resting birds: Measurements in chicken and duck. Resp. Physiol., 23, 337.Google Scholar
  59. King, A. S. (1966a). Structural and functional aspects of the avian lungs and air sacs. In “International Review of General and Experimental Zoology,” Vol. 2 (W. J. L. Felts and R. J. Harrison, Eds.). New York: Academic Press, p. 171.Google Scholar
  60. King, A. S. (1966b). Afferent pathways in the vagus and their influence on avian breathing: A review. In “Physiology of the Domestic Fowl” (C. Horton-Smith and E. C. Amoroso, Eds.). London: Oliver and Boyd, p. 302.Google Scholar
  61. King, A. S. (1975). Aves, respiratory system. In “The Anatomy of the Domestic Animals,” 5th Ed. (R. Getty, Ed.). Philadelphia: Saunders, Chapter 64.Google Scholar
  62. King, A. S., and A. F. Cowie. (1969). The functional anatomy of the bronchial muscle of the bird. J. Anal, 105, 323.Google Scholar
  63. King, A. S. J. McLelland, R. D. Cook, D. Z. King, and C. Walsh. (1974). The ultrastructure of afferent nerve endings in the avian lung. Resp. Physiol., 22, 21.Google Scholar
  64. King, A. S., and V. Molony. (1971). The anatomy of respiration. In “Physiology and Biochemistry of the Domestic Fowl,” Vol. 1 (D. J. Bell and B. M. Freeman, Eds.). New York: Academic Press, p. 93.Google Scholar
  65. King, A. S., and D. C. Payne. (1964). Normal breathing and the effects of posture in Callus domesticus. J. Physiol. (London), 174, 340.PubMedGoogle Scholar
  66. Kotilainen, P. V., and P. T. S. Putkonen. (1972). Respiratory arrest and bradycardia during anterolateral diencephalic stimulation in the chicken. Acta Physiol. Scand., 85, 286.PubMedGoogle Scholar
  67. Kotilainen, P. V., and P. T. S. Putkonen. (1974). Respiratory and cardiovascular responses to electrical stimulation of the avian brain with emphasis on inhibitory mechanisms. Acta Physiol. Scand., 90, 358.PubMedGoogle Scholar
  68. Kunz, A. L., and D. A. Miller. (1974a). Pacing of avian respiration with CO2 oscillation. Resp. Physiol., 22, 167.Google Scholar
  69. Kunz, A. L., and D. A. Miller. (1974b). Effects of feedback delay upon the apparent damping ratio of the avian respiratory control system. Resp. Physiol., 22, 179.Google Scholar
  70. Lasiewski, R. C. (1972). Respiratory function in birds. In “Avian Biology,” Vol. II (D. S. Farner and J. R. King, Eds.). New York: Academic Press, p. 287.Google Scholar
  71. Lasiewski, R. C., and W. A. Calder, Jr. (1971). A preliminary allometric analysis of respiratory variables in resting birds. Resp. Physiol., 11, 152.Google Scholar
  72. Leitner, L.-M. (1972). Pulmonary mechanoreceptor fibres in the vagus of the domestic fowl. Resp. Physiol., 16, 232.Google Scholar
  73. Leitner, L.-M. and M. Roumy. (1974). Vagal afferent activities related to the respiratory cycle in the duck: Sensitivity to mechanical, chemical and electrical stimuli. Resp. Physiol., 22, 41.Google Scholar
  74. Lenfant, C., G. L. Kooyman, R. Eisner, and C. M. Drabek. (1969). Respiratory function of blood of the Adélie penquin Pygoscelis adeliae. Am. J. Physiol., 216, 1598.Google Scholar
  75. Linsley, J. G., and R. E. Burger. (1964). Respiratory and cardiovascular responses in the hyperthermic domestic cock. Poultry Sci., 43, 291.Google Scholar
  76. Locy, W. A., and O. Larsell. (1916a). The embryology of the bird’s lung based on observations of the domestic fowl. Part I. Am. J. Anal, 19, 447.Google Scholar
  77. Locy, W. A., and O. Larsell. (1916b). The embryology of the bird’s lung based on observations of the domestic fowl. Part II. Am. J. Anat., 20, 1.Google Scholar
  78. Lutz, P. L., I. S. Longmuir, and K. Schmidt-Nielsen. (1974). Oxygen affinity of bird blood. Resp. Physiol., 20, 325.Google Scholar
  79. Lutz, P. L., I. S. Longmuir, J. V. Tuttle, and K. Schmidt-Nielsen. (1973). Dissociation curve of bird blood and effect of red cell oxygen consumption. Resp. Physiol., 17, 269.Google Scholar
  80. Magno, M. (1973). Cardiorespiratory responses to carotid body stimulation with NaCN in the chicken. Resp. Physiol., 17, 220.Google Scholar
  81. McLelland, J. (1970). The innervation of the air passages of the avian lung and observations on afferent vagal pathways concerned in the regulation of breathing. Ph.D. thesis, University of Liverpool, Liverpool, England.Google Scholar
  82. Mead, J., T. Takishima, and D. Leith. (1970). Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol., 28, 596.PubMedGoogle Scholar
  83. Molony, V. (1972). A study of vagal afferent activity in phase with breathing and its role in the control of breathing in Callus domesticus. Ph.D. thesis, University of Liverpool, Liverpool, England.Google Scholar
  84. Molony, V. (1974). Classification of vagal afferents firing in phase with breathing in Callus domesticus. Resp. Physiol., 22, 57.Google Scholar
  85. Nightingale, T. E., and M. R. Fedde. (1972). Determination of normal buffer line for chicken blood. Resp. Physiol. 14, 353.Google Scholar
  86. Nightingale, T. E., R. A. Boster, and M. R. Fedde. (1968). Use of the oxygen electrode in recording PO2 in avian blood. J. Appl. Physiol., 25, 371.Google Scholar
  87. Osborne, J. L., and R. E. Burger. (1974). Intrapulmonary chemore-ceptors in Callus domesticus. Resp. Physiol., 22, 77.Google Scholar
  88. Payne, D. C. (1960). Observations on the functional anatomy of the lungs and air sacs of Callus domesticus. Ph.D. Thesis, University of Bristol, Bristol, England.Google Scholar
  89. Peterson, D. F., and M. R. Fedde. (1968). Receptors sensitive to carbon dioxide in lungs of chicken. Science, 162, 1499.PubMedGoogle Scholar
  90. Peterson, D. F., and M. R. Fedde. (1971). Avian intrapulmonary CO2-sensitive receptors: A comparative study. Comp. Biochem. Physiol., 40A, 425.Google Scholar
  91. Piiper, J., and P. Scheid. (1973). Gas exchange in avian lungs: Models and experimental evidence. In “Comparative Physiology” (L. Bolis, K. Schmidt-Nielsen, and S. H. P. Maddrell, Eds.). Amsterdam: North-Holland Publishing Co., p. 161.Google Scholar
  92. Piiper, J., and P. Scheid. (1972). Maximum gas transfer efficacy of models for fish gills, avian lungs and mammalian lungs. Resp. Physiol. 14, 115.Google Scholar
  93. Piiper, J., P. Dejours, P. Haab, and H. Rahn. (1971). Concepts and basic quantities in gas exchange physiology. Resp. Physiol., 13, 292.Google Scholar
  94. Piiper, J., K. Pfeifer, and P. Scheid. (1969). Carbon monoxide diffusing capacity of the respiratory system in the domestic fowl. Resp. Physiol., 6, 309.Google Scholar
  95. Piiper, J., F. Drees, and P. Scheid. (1970). Gas exchange in the domestic fowl during spontaneous breathing and artificial ventilation. Resp. Physiol. 9, 234.Google Scholar
  96. Ray, P. J., and M. R. Fedde. (1969). Responses to alterations in respiratory PO2 and PCO2 in the chicken. Resp. Physiol., 6, 135.Google Scholar
  97. Richards, S. A. (1968). Vagal control of thermal panting in mammals and birds. J. Physiol. (London), 199, 89.Google Scholar
  98. Richards, S. A. (1969). Vagal function during respiration and the effects of vagotomy in the domestic fowl (Callus domesticus). Comp. Biochem. Physiol., 29, 955.PubMedGoogle Scholar
  99. Richards, S. A. (1970). A pneumotaxic centre in avian brain. J. Physiol. (London), 207, 57.Google Scholar
  100. Richards, S. A. (1971). Brain stem control of polypnoea in the chicken and pigeon. Resp. Physiol., 11, 315.Google Scholar
  101. Richards, S. A., and A. H. Sykes. (1967). The effects of hypoxia, hypercapnia and asphyxia in the domestic fowl (Callus domesticus). Comp. Biochem. Physiol., 21, 691.PubMedGoogle Scholar
  102. Salt, G. W., and E. Zeuthen. (1960). The respiratory system. In: “Biology and Comparative Physiology of Birds,” Vol. 1 (A. J. Marshall, Ed.). New York: Academic Press, p. 363.Google Scholar
  103. Scheid, P., and J. Piiper. (1969). Volume, ventilation and compliance of the respiratory system in the domestic fowl. Resp. Physiol., 6, 298.Google Scholar
  104. Scheid, P., and J. Piiper. (1970). Analysis of gas exchange in the avian lung: Theory and experiments in the domestic fowl. Resp. Physiol., 9, 246.Google Scholar
  105. Scheid, P., and J. Piiper. (1971). Direct measurement of the pathway of respired gas in duck lungs. Resp. Physiol., 11, 308.Google Scholar
  106. Scheid, P., and J. Piiper. (1972). Cross-current gas exchange in avian lungs: Effects of reversed parabronchial air flow in ducks. Resp. Physiol., 16, 304.Google Scholar
  107. Scheid, P., and T. Kawashiro. (1975). Metabolic changes in avian blood and their effects on determination of blood gases and pH. Resp. Physiol., 23, 291.Google Scholar
  108. Scheid, P., and H. Slama. (1975). Remote-controlled device for sampling arterial blood in undisturbed animals. Pflügers Arch., 356, 373.PubMedGoogle Scholar
  109. Scheid, P., H. Slama, R. N. Gatz, and M. R. Fedde. (1974a). Intrapulmonary CO2 receptors in the duck: III. Functional localization. Resp. Physiol., 22, 123.Google Scholar
  110. Scheid, P., H. Slama, and J. Piiper. (1972). Mechanisms of unidirectional flow in parabronchi of avian lungs: Measurements in duck lung preparations. Resp. Physiol., 14, 83.Google Scholar
  111. Scheid, P., H. Slama, and H. Wiilmer. (1974b). Volume and ventilation of air sacs in ducks studied by inert gas wash-out. Resp. Physiol., 21, 19.Google Scholar
  112. Scheipers, G., T. Kawashiro, and P. Scheid. (1975). Oxygen and carbon dioxide dissociation of duck blood. Resp. Physiol., 24, 1.Google Scholar
  113. Schmidt-Nielsen, K., J. Kanwisher, R. C. Lasiewski, J. E. Cohn, and W. L. Bretz. (1969). Temperature regulation and respiration in the ostrich. Condor, 71, 341.Google Scholar
  114. Sinha, M. P. (1958). Vagal control of respiration as studied in the pigeon. Helv. Physiol. Acta, 16, 58.Google Scholar
  115. Stanislaus, M. (1937). Untersuchungen an der Kolibrilunge. Z. Morphol. Okol. Tiere, 33, 261.Google Scholar
  116. Sturkie, P. D. (Ed). (1965). “Avian Physiology,” 2nd Ed. Ithaca, New York: Cornell University Press.Google Scholar
  117. von Saafeld, E. (1936). Untersuchungen über das Hachein bei Tauben. Z. Vergl. Physiol., 23, 727.Google Scholar
  118. Vos, H.J. (1934). Über den Weg der Atemluft in der Entenlunge. Z. Wiss. Biol. Vergl. Physiol., 21, 552.Google Scholar
  119. Weibel, E. R. (1963). “Morphometry of the Human Lung.” Berlin: Springer-Verlag.Google Scholar
  120. Zeuthen, E. (1942). The ventilation of the respiratory tract in birds. Kgl. Danske Videnskab. Selskab. Biol. Medd., 17, 1.Google Scholar
  121. Zimmer, K. (1935). Beiträge zur Mechanik der Atmung bei den Vögeln in Stand und Flug. Zoologica, 33, (5 Heft 88), 1.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • M. R. Fedde

There are no affiliations available

Personalised recommendations