Advertisement

Secretion of Gastric and Pancreatic Juice, pH of Tract, Digestion in Alimentary Canal, Liver and Bile, and Absorption

  • P. D. Sturkie
Part of the Springer Advanced Texts in Life Sciences book series (SATLIFE)

Abstract

Gastric juice free from food may be obtained by starving the bird. Little is secreted under such conditions, unless some other stimulus is employed. Even under starvation conditions the juice, although free from food, may contain intestinal juice unless the proventricuius or the gizzard is cannulated. In order to study the stimulating effects of food ingestion on the rate of secretion and the composition of pure gastric juice, one of two methods may be used: (1) preparation of a fistula or opening of the esophagus, so that when food is ingested it does not pass to the stomach but drops out of the opening (sham feeding); or (2) preparation of a pouch of the stomach, with an intact nerve and blood supply, that opens to the outside through the body wall (Pavlov or Heidenhain pouch). Food entering the main stomach, but not the pouch, stimulates both stomachs, and pure juice is collected from the pouch.

Keywords

Gall Bladder Pancreatic Juice Main Pancreatic Duct Gastric Secretion Vagal Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, T. H., and A. W. Norman. (1970). Studies on the mechanism of action of calciferol. I. Basic parameters of vitamin D-mediated calcium transport. J. Biol. Chem., 245, 4421.PubMedGoogle Scholar
  2. Ashcraft, D. W. (1930). Correlative activities of the alimentary canal of fowl. 93, 105.Google Scholar
  3. Beattie, J., and D. H. Shrimpton. (1958). Surgical and clinical techniques for in vitro studies of intestinal microflora of domestic fowls. Quart. J Exp. Physiol., 43, 399.PubMedGoogle Scholar
  4. Bhattacharya, S., and K. C. Ghose. (1971). Influence of food on amylase system in birds. Comp. Biochem. Physiol., 40B, 317.Google Scholar
  5. Bird, F. H. (1971). Distribution of trypsin and amylase activities in the duodenum of the domestic fowl. Brit Poultry Sci., 12, 373.Google Scholar
  6. Bolton, W. (1965). Digestion in crop. Brit. Poultry Sci., 6, 97.Google Scholar
  7. Brown, K. M. (1971). Sucrose activity in the intestine of the chick; Normal development and influence of hydrocortisone, acti-nomycin D, cycloheximide and puromycin. J. Exp. Biol, 177, 493.Google Scholar
  8. Burhol, P. G., and B. I. Hirschowitz. (1970). Single subcutaneous doses of histamine and pentagastrin in gastric fistula chickens. Am. J. Physiol., 218, 1671.PubMedGoogle Scholar
  9. Burhol, P. G., and B. I. Hirschowitz. (1971a). Gastric stimulation by subcutaneous infusion of urecholine in fistula chickens. A comparison to histamine and pentagastrin. Scand. J. Gastroenterol., 6, (Suppl. 11), 25.Google Scholar
  10. Burhol, P. G., and B. I. Hirschowitz. (1971b). Gastric stimulation by subcutaneous infusion of cholecystokinin —pancreozymin in fistula chickens. Scand. J. Gastroenterol., 6(Sup. 11), 41.Google Scholar
  11. Burhol, P. G., and B. I. Hirschowitz. (1971c). Gastric inhibition by subcutaneous infusion of secretin in fistula chickens. Scand. J. Gastroenterol. 6 (Suppl. 11), 49.Google Scholar
  12. Burhol, P. G., and B. I. Hirschowitz. (1972). Dose responses with subcutaneous infusion of histamine in gastric fistula of chickens. Am. J. Physiol., 222, 308.PubMedGoogle Scholar
  13. Campbell, J. G. (1957). Studies on the influence of sex hormones on avian liver. I. Sexual differences in avian liver clearance curves. J. Endocrinol. 15, 339.PubMedGoogle Scholar
  14. Capaul, E. G., and J. D. Garbini. (1965). Secretion and filtration pressure of bile in fowls. [Abstract] Vet. Bull., 36 (10), 674.Google Scholar
  15. Cheney, G. (1938). Gastric acidity in chicks with experimental gastric ulcers. Am. J. Digest. Dis., 5, 104.Google Scholar
  16. Clarkson, T. B., J. S. Kin, and N. H. Warnock. (1957). A comparison of the effect of gallogen and sulfarlem on the normal bile flow of the cockerel. Am. J. Vet. Res., 18, 187.PubMedGoogle Scholar
  17. Collip, J. B. (1922). The activation of the glandular stomach of the fowl. Am. J. Physiol., 59, 435.Google Scholar
  18. Crocker, A. D., and W. N. Holmes. (1971). Intestinal absorption in ducklings maintained on fresh water and hypertonic saline. Comp. Biochem. Physiol., 40A, 203.Google Scholar
  19. Dal Borgo, G., P. C. Harrison, and J. McGinnis. (1968a). A method for cannulation of pancreatic ducts in young chicks. Poultry Sci., 47, 1818.Google Scholar
  20. Dal Borgo, G. A., J. Salman, M. H. Pubols, and J. McGinnis. (1968b). Exocrine function of the chick pancreas as affected by dietary soybean meal and carbohydrate. Proc. Soc. Exp. Biol. Med., 129, 877.Google Scholar
  21. Dansky, L. M., and F. W. Hill. (1952). Application of the chromic oxide indicator method to balance studies with growing chickens. J. Nutr., 47, 449.PubMedGoogle Scholar
  22. De Rycke, P. (1962). Onderzoek over exopeptidasen bijhet kwik-en. Natuurwetensch. Tijdschr. (Ghent), 43, 82.Google Scholar
  23. Farner, D. S. (1942). The hydrogen ion concentration in avian digestive tracts. Poultry Sxi., 21, 445.Google Scholar
  24. Farner, D. S. (1943a). Gastric hydrogen ion concentration and acidity in the domestic fowl. Poultry Sxi., 22, 799.Google Scholar
  25. Farner, D. S. (1943b). The effect of certain dietary factors on gastric hydrogen ion concentration and acidity in the domestic fowl. Poultry Sci., 22, 295.Google Scholar
  26. Farner, D. S. (1943c). Biliary amylase in the domestic fowl. Biol. Bull., 84, 240.Google Scholar
  27. Farner, D. S. (1960). Digestion and digestive system. In “Biology and Comparative Physiology of Birds” (A. J. Marshall, Ed.). New York: Academic Press, Chapter 11.Google Scholar
  28. Fedorovskii, N. P., and V. I. Konopleva. (1959). Physiology of gastric digestion in the goose. Plicevodstuo, 10, 39.Google Scholar
  29. Fedorovskii, N. P., and V. I. Konopleva. (Abstracted in World Poultry Sci. J, 17, 61, 1961.)Google Scholar
  30. Fisher and H. S. Weiss. (1956). Feed consumption in relation to dietary bulk. The effect of surgical removal of crop. Poultry Sci., 35, 418.Google Scholar
  31. Friedman, M. H. F. (1939). Gastric secretion in birds. J. Cell. Comp. Physiol., 73, 219.Google Scholar
  32. Fritz, J. C., W. H. Burrows, and W. H. Titus. (1936). Comparison of digestibility of gizzardectomized and normal fowls. Poultry Sci., 15, 289.Google Scholar
  33. Gibson, R. G., H. W. ColvinJ., and B. I. Hirschowitz. (1974). Kinetics of gastric response in chickens to graded electrical vagal stimulation. Proc. Soc. Exp. Biol. Med., 145, 1058.PubMedGoogle Scholar
  34. Green, M. L., and J. M. Llewellin. (1973). The purification and properties of a single chicken pepsinogen fraction and pepsin derived from it. Biochem. J., 133, 105.PubMedGoogle Scholar
  35. Groebbels, F. (1932). “Der Vögel. Erster Band: Atmungswelt and Nahrungswelt.” Berlin: Verlag von Gebrüder Borntraeger.Google Scholar
  36. Hainan, E. T. (1949). The architecture of avian gut and tolerance of crude fiber. Brit. J. Nutr., 3, 245.Google Scholar
  37. Hart, W. M., and H. E. Essex. (1942). Water metabolism of the chicken with special reference to cloaca. Am. J. Physiol., 136, 657.Google Scholar
  38. Haslewood, G. A. D. (1964). The biological significance of chemical differences in the bile salts. Biol. Rev., 39, 537.PubMedGoogle Scholar
  39. Haslewood, G. A. D. (1968). Evolution and bile salts. In “Handbook of Physiology,” Sec. VI, “Alimentary Canal,” Vol. 5, Washington, D. C.: American Physiological Society, p. 2375.Google Scholar
  40. Hazelwood, R. L., S. D. Turner, J. R. Kimmel, and H. G. Pollock. (1973). Spectrum effects of a new polypeptide (third hormone?) isolated from the chicken pancreas. Cen. Comp. Endrocrinol., 21, 485.Google Scholar
  41. Heatley, N. G., F. McElheny, and L. Lepkovsky. (1965). Measurement of rate of flow of pancreatic secretion in anesthetized chicken. Comp. Biochem. Physiol., 16, 29.PubMedGoogle Scholar
  42. Henning, H. J. (1929). Landw. Versuchsstat, 108, 253. (Cited by Groebbels, 1932.)Google Scholar
  43. Heller, H., and R. G. Kulka., (1968). Amylase isoenzymes in the developing chick pancreas. Biochem. Biophys. Acta, 165, 393.Google Scholar
  44. Herpol, C. (1964). Activité proteolytique de l’appareil gastrique d’oiseaux granivores et carnivores. Ann. Biol. Anim. Biophys., 4, 239.Google Scholar
  45. Herpol, C. (1966). Influence de l’ago sur le pH dans le tube de gal-lus domesticus. Ann. Biol. Anim. Biophys., 6, 495.Google Scholar
  46. Herpol, C. (1967). Etude de l’activite proteolytique des divers organes du système digestif de quelques especes d’oiseaux en rapport avec leur regime alimentaire. Z. Vergl. Physiol., 57, 209.Google Scholar
  47. Herpol, C., and G. van Grembergen. (1967). La signification du pH dans le tube digestif de gallus domesticus. Ann. Biol. Anim. Biochem. Biophys., 7, 33.Google Scholar
  48. Hill, F. W., and D. H. Lumijarvi. Evidence for an electrolyte-conserving function of the colon in chickens. Fed. Am. Soc. Exp. Biol., 27, 421. (Abst. 1165.)Google Scholar
  49. Hokin, L. E., and M. R. Hokin. (1953). Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J. Biol. Chem., 203, 967.PubMedGoogle Scholar
  50. Hulan, H. W., and F. H. Bird. (1972). Effect of fat level in isonitro-genous diets on composition of avian pancreatic juice. J. Nutr., 102, 459.PubMedGoogle Scholar
  51. Hulan, H. W., G. Moreau, and F. H. Bird. (1972). A method for cannulating the main pancreatic duct of chickens: The continuous collection of avian pancreatic juice. Poultry Sci., 51, 531.Google Scholar
  52. Hurwitz, S., and A. Bar. (1965). Absorption of calcium and phosphorus along the gastrointestinal tract of the laying fowl as influenced by dietary calcium and egg shell formation. J. Nutr. 86, 433.PubMedGoogle Scholar
  53. Hurwitz, S., and A. Bar. (1969). Relation between the lumen blood-electrochemical potential difference of calcium, calcium absorption and calcium binding protein in the intestine of the fowl. J. Nutr., 99, 21 7.Google Scholar
  54. Hurwitz, S., and A. Bar. (1971). Relationship of duodenal Ca binding protein to calcium absorption in the laying fowl. Comp. Biochem. Physiol., 41, 735.Google Scholar
  55. Ivanov, N., and R. Gotev. (1962). Untersuchungen über die aussen-sekretorische Tätigkeit der Bauchspeicheldrüse bei Hunnen. Arch. Tierernähr., 12, 65.Google Scholar
  56. Jerrett, S. A., and W. R. Goodge. (1973). Evidence for amylase in avian salivary glands. J. Morphol., 139, 27.PubMedGoogle Scholar
  57. Jung, L., and M. Pierre. (1933). Sur le rôle der la salive chez les oiseaux granivores. Comp. Rend. Soc. Biol., 113, 115.Google Scholar
  58. Karpov, L. V. (1919). [in Russian:] Russ. Physiol. J. 2, 185.Google Scholar
  59. Karpov, L. V. [Physiol. Abs. 5, 469, 1920.]Google Scholar
  60. Kessler, C. A., B. I. Hirschowitz, P. G. Burhol, and G. Sachs. (1972). Methoxyflurance (penthrane) anesthesia effect on histamine stimulated gastric secretion in the chickens. Proc. Soc. Exp. Biol. Med., 139, 1340.PubMedGoogle Scholar
  61. Kishida, T., and I. Liener. (1968). Further characterization of turkey trypsin: End groups and sequence of histidine containing peptides. Arch. Biochem. Biophys., 126, 111.PubMedGoogle Scholar
  62. Kokas, E., S. H. Kaufman, and J. C. Long. (1971). Effect of glucagon on gastric and duodenal secretion in chickens. Z. Vergl. Physiol., 74, 315.Google Scholar
  63. Kokas, E., L. Phillips Jr., and W. D. Brunson, J. (1967). The secretory activity of the duodenum in chickens. Comp. Biochem., Physiol., 22, 81.Google Scholar
  64. Kokue, E., and T. Haymana. (1972). Effects of starvation and feeding in the endocrine pancreas of chicken. Poultry Sxi., 51, 1366.Google Scholar
  65. Koschtojanz, I., M. Mirjeeff, P. Korjvieff, and S. Otschakowskaja. (1933). Zun Frage der Spezifitat des Sekpetins: Vergleichende Physiologische Untersuchung. Z. Vergl. Physiol., 18, 112.Google Scholar
  66. Laws, B. M., and J. H. Moore. (1963). Some observations on pancreatic amylase and intestinal maltese of the chick. Can. J. Biochem. Physiol., 41, 2107.PubMedGoogle Scholar
  67. Leasure, E. E., and V. D. Foltz. (1940). Experiments on absorption in the crop of chickens. J. Am. Vet. Med. Assoc, 96, 236.Google Scholar
  68. Leasure, E. E., and R. P. Link. (1940). Studies on missing leasures. The saliva of the hen. Poultry Sci., 19, 131.Google Scholar
  69. Lepkovsky, S., and F. Furuta. (1970). Lipase in pancreas and intestinal contents of fed, heated, and raw soybean diets. Poultry Sci., 49, 192.Google Scholar
  70. Lepkovsky, S., S. E. Feldman, and I. M. Sharon. (1967). In “Handbook of Physiology, Vol. 1, Sect. 6 (C. F. Code, Ed.). Baltimore: Williams and Wilkins, p. 117.Google Scholar
  71. Lepkovsky, S., F. Furuta, M. J. Dimeck, and I. Yamashina. (1970). Enterokinase and the chicken pancreas. Poultry Sci., 49, 421.Google Scholar
  72. Levchuk, T. P., and V. N. Orekhovich. (1963). Production and some properties of chick pepsin. Biokhimiya, 28, 1004.Google Scholar
  73. Lin, G. L., J. A. Himes, and C. E. Cornelius. (1974). Bilirubin and biliverdin excretion by the chicken. Am. J. Physiol., 226, 881.PubMedGoogle Scholar
  74. Lind, G. W., R. R. Gronwall, and C. E. Cornelius. (1967). Bile pigments in the chicken. Res. Vet. Sci., 8, 280.PubMedGoogle Scholar
  75. Lindsay, O. B., and B. E. March. (1967). Intestinal absorption of bile salts in the cockerel. Poultry Sci., 46, 164. Google Scholar
  76. Long, J. F., (1967). Gastric secretion in unanesthetized chickens. Am. J. Physiol., 212, 1303.PubMedGoogle Scholar
  77. Mangold, E. (1929). “Handbuch der Ernährung und des Stoffwechsels der Landwirt Schaftlichen Nutztiere: Zweiter band.” Berlin: Verlag von Julius Springer.Google Scholar
  78. Mangold, E. (1934). The digestion and utilization of crude fiber. Nutr.Abstr. Rev., 3, 647. Google Scholar
  79. Mangold, E., and A. Hock (1938). Die Verdaulichkeit der Futtermittel bei der Taube. Arch. F. Geflügel., 12, 334.Google Scholar
  80. Morissett, J., and P. D. Webster. (1970). Effects of atropine on pigeon pancreas. Am. J. Physiol., 219, 1286. Google Scholar
  81. Nakahiro, Y. (1966). Studies on the method of measuring the digestibility of poultry feed. Mem. Fac. Agri. Kagawa University, No. 22. [Summary in English.]Google Scholar
  82. Niess, E., C. A. Ivy, and M. C. Nesheim. (1972). Stimulation of gallbladder emptying and pancreatic secretion in chicks by soybean whey protein. Proc. Soc. Exp. Biol. Med., 140, 291.PubMedGoogle Scholar
  83. Nitsan, Z., I. Nir, Y. Dror, and I. Bruckental. (1973). The effect of forced feeding and dietary protein level on enzymes associated with digestion, protein and carbohydrate metabolism in geese. Poultry Sci., 52, 474.Google Scholar
  84. Nordstrom, J. O. (1966). Avian liver function studies. Ph.D. Thesis, University of California, Davis, Calif.Google Scholar
  85. Nordstrom, J. O., and A. H. Smith. (1967). BSP clearance and fatty infiltration of liver in the domestic fowl. Physiologist, 10, 264.Google Scholar
  86. Payne, W. L., R. R. Kifer, D. G. Snyder, and G. F. Combs. (1971). Investigation of apparent amino acid digestibility of fish meal protein using a cecaectomized adult male chickens. Poultry Sci., 50, 143.Google Scholar
  87. Pearce, J. (1972). Effect of diet and also physiological state on some enzymes of carbohydrate metabolism in the liver of the domestic fowl, Biochem. J., 130 (1), 21, (Proceedings.)Google Scholar
  88. Pritchard, P. J. (1972). Digestion of sugars in the crop. Comp. Biochem. Physiol., 43A, 195.Google Scholar
  89. Radeff, T. (1928). Die Verdaulichkeit der Rohfaser und die Funktion der Blinddärme beim Haushuhn. Arch. f. Geflügel., 2, 312.Google Scholar
  90. Röseler, M. (1929). Die Bedentung der Blinddärme des Haushuhnes für die Resorption der Nahrung und Verduung der Rohtaser. Z. Herz. Zucht, 13, 281.Google Scholar
  91. Rouff, H. J., and K. F. Sewing. (1970). Die Wirkung von Histamine Carbacol, Pentagastrin and Huhnergastrinextrakten auf die Magensekretion von nicht narkotisierten Hühnern mit einer Magenfistel. Naunynschmiedbergs. Arch. Pharmakol., 267, 170.Google Scholar
  92. Rutter, W. J., P. Krichevsky, H. M. Scott, and R. H. Hansen. (1953). The metabolism of lactose and galactose in the chick. Poultry Sci., 32, 706.Google Scholar
  93. Ryan, C. A. (1965). Chicken chymotrypsin and turkey trypsin. I. Purification. Arch. Biochem. Biophys., 110, 169.PubMedGoogle Scholar
  94. Ryan, C. A., and Y. Tomimatsu. (1965). A crystalline avian pancreatic protein. Arch. Biochem. Biophys., 111, 461.PubMedGoogle Scholar
  95. Ryan, C. A., J. J. Clary, and Y. Tomimatsu. (1965). Chicken chymotrypsin and turkey trypsin. II. Physical and enzyme properties. Arch. Biochem. Biophys., 110, 175.PubMedGoogle Scholar
  96. Shaw, T. P. (1913). Digestion in the chick. Am. J. Physiol., 31, 349.Google Scholar
  97. Skadhauge, E. (1967). In vivo perfusion studies of the cloacal water and electrolyte resorption in the fowl. Comp. Biochem. Physiol., 23, 483.PubMedGoogle Scholar
  98. Soedarmo, D., M. R. Kare, and R. H. Wasserman. (1961). Observations on the removal of sugar from the mouth and crop of the chicken. Poultry Sci., 40, 123.Google Scholar
  99. Sturkie, P. D. (Ed.). (1965). “Avian Physiology” (2nd ed.). Ithaca, N. Y.: Cornell University Press.Google Scholar
  100. Titus, H. W. (1955). “The Scientific Feeding of Chickens” (3rd ed.). Danville, Ill.: The Interstate Press.Google Scholar
  101. Tomimatsu, Y., J. J. Clary, and J. J. Bartulovich. (1966). Physical characterization of oviinhibitor, a trypsin and chymotrypsin inhibitor from chicken egg white. Arch. Biochem. Biophys., 115, 36.Google Scholar
  102. Walter, W. G. (1939). Bedingte Magensaftsekretion bei der Ente. Acta Brev. Neerl. Physiol., 9, 56.Google Scholar
  103. Webster, P. D. (1968). Effect of metacholine on pancreatic amylase synthesis. Gastroenterology, 55, 375.PubMedGoogle Scholar
  104. Webster, P. D. (1969). Effect of stimulation of pancreatic amylase secretion and nuclear RNA synthesis. Proc. Soc. Exp. Biol. Med., 132, 1072.PubMedGoogle Scholar
  105. Webster, P. D., and M. P. Tyor. (1966). Effect of Intravenous pancreozymin on amino acid in vitro by pancreatic tissue. Am. J. Physiol., 211, 157.PubMedGoogle Scholar
  106. Winget, C. M., G. C. Ashton, and A. J. Cawley. (1962). Changes in gastrointestinal pH associated with fasting in laying hen. Poultry Sci., 41, 1115.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • P. D. Sturkie

There are no affiliations available

Personalised recommendations