Nervous System

  • T. B. Bolton
Part of the Springer Advanced Texts in Life Sciences book series (SATLIFE)


The nervous system consists of the nerve cells proper, the neurons, and of supportive and nutritive cells, the neuroglia. Each neuron consists of a cell body, the perikaryon, containing the nucleus; a single axon that carries excitation away from the perikaryon; and one or more branching dendrites that carry excitation to the perikaryon and axon. The perikarya of neurons lie in the brain, spinal cord, dorsal root ganglia, and ganglia of cranial nerves or in the ganglia of the autonomic nervous system.


Spinal Cord Cranial Nerve Optic Tectum Paradoxical Sleep Domestic Fowl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamo, N. J., and R. L. King. (1967). Evoked responses in the chicken telencephalon to auditory, visual and tactile stimuli. Exp. Neurol., 17, 498.PubMedCrossRefGoogle Scholar
  2. Åkerman, B. (1966). Behavioural effects of electrical stimulation in the forebrain of the pigeon. II: Protective behaviour. Behaviour, 26, 339.PubMedCrossRefGoogle Scholar
  3. Akester, A. R., and S. P. Mann. (1969). Ultrastructure and innervation of the tertiary-bronchial unit in the lung of Gallus domesticus. J. Anal, 105, 202.Google Scholar
  4. Akester, A. R., B. Akester, and S. P. Mann. (1969). Catecholamines in the avian heart. J. Anal., 104, 591.Google Scholar
  5. Aprison, M. H., and R. Takahashi. (1965). Biochemistry of the avian central nervous system: II. 5-hydroxytryptamine, acetylcholine, 3,4, di-hydroxyphenylethylamine and norepinephrine in several discrete areas of the pigeon brain. J. Neurochem., 12, 221.PubMedCrossRefGoogle Scholar
  6. Aprison, M. H., R. Takahashi, and T. L. Folkerth. (1964). Biochemistry of the avian central nervous system: I. 5-Hydroxytryp-tophan decarboxylase, monoamine oxidase and choline acetylase-acetylcholinesterase systems in several discrete areas of the pigeon brain. J. Neurochem., 11, 341.PubMedCrossRefGoogle Scholar
  7. Ariëns-Kappers, C. U., G. C. Huber, and E. C. Crosby. (1936). “The Comparative Anatomy of the Nervous System of Vertebrates Including Man,” Vols. 1 and 2. New York: Macmillan.Google Scholar
  8. Azzena, G. B., and G. Palmieri. (1967). Trigeminal monosynaptic reflex arc. Exp. Neurol., 18, 184.PubMedCrossRefGoogle Scholar
  9. Bang, B. G. (1960). Anatomical evidence for olfactory function in some species of birds. Nature, 188, 547.PubMedCrossRefGoogle Scholar
  10. Bang, B. G. (1971). Functional anatomy of the olfactory system in 23 orders of birds. Acta Anal, 79 (Suppl. 58), 1.CrossRefGoogle Scholar
  11. Banks, P., and D. Mayor. (1972). Intra-axonal transport in noradrenergic neurons in the sympathetic nervous system. In “Neurotransmitters and Metabolic Regulation,” Vol. 36 (R. M. S. Smellie, Ed.). Biochemical Society Symposium, p. 133.Google Scholar
  12. Barnikol, A. (1954). Zur morphologie des Nervus Trigeminus der Vogel unter besonderer Berucksightigung der Accipitres, Cathartidae, Striges, and Passerformes. Z. Wiss. Zool., 157, 285.Google Scholar
  13. Belekhova, M. G. (1968). Subcortical-cortical relationships in birds. Neurosci. Trans., 2, 195.Google Scholar
  14. Benjamins, C. E., and E. Huizinga. (1927). Untersuchungen über die funktion des vestibularapparates der Taube. Arch. Ges. Physiol. (Pflügers), 217, 105.CrossRefGoogle Scholar
  15. Bennett, T. (1969). Nerve-mediated excitation and inhibition of the smooth muscle cells of the avian gizzard, J. Physiol. (London), 204, 669.Google Scholar
  16. Bennett, T. (1971). The adrenergic innervation of the pulmonary vasculature, the lung and the thoracic aorta and on the presence of aortic bodies in the domestic fowl (Callus gal-lus domesticus L.). Z. Zellforsh., 114, 117.CrossRefGoogle Scholar
  17. Bennett, T. (1974). The peripheral and autonomic nervous systems. In “Avian Biology,” Vol. 4 (D. S. Famer and J. R. King, Eds.). New York: Academic Press, p. 1.Google Scholar
  18. Bennett, T., G. Burnstock, J. L. S. Cobb, and T. Malmfors. (1970). An ultrastructural and histochemical study of the short-term effects of 6-hydroxydopamine on adrenergic nerves in the domestic fowl. Brit. J. Pharmacol., 38, 802.Google Scholar
  19. Bennett, T., and T. Malmfors. (1970). The adrenergic nervous system of the domestic fowl (Callus domesticus L). Z. Zell-forsch., 106, 22.CrossRefGoogle Scholar
  20. Bennett, T., T. Malmfors, and J. L S. Cobb. (1973a). A fluorescent histochemical study of the degeneration and regeneration of noradrenergic nerves in the chick following treatment with 6-hydroxydopamine. Z. Zeilforsch., 142, 103.CrossRefGoogle Scholar
  21. Bennett, T., J. L. S. Cobb, and T. Malmfors. (1973b). Fluorescent histochemical and ultrastructural observations on the effects of intravenous injections of vinblastin on noradrenergic nerves. Z. Zeilforsch., 141, 517.CrossRefGoogle Scholar
  22. Bolton, T. B. (1967). Intramural nerves in the ventricular myocardium of the domestic fowl and other animals. Brit. J. Pharmacol., 31, 253. PubMedGoogle Scholar
  23. Bolton, T. B. (1971a). The structure of the nervous system. In “Physiology and Biochemistry of the Domestic Fowl” (D. J. Bell and B. M. Freeman, Eds.). New York: Academic Press, p. 641.Google Scholar
  24. Bolton, T. B. (1971b) The physiology of the nervous system. In “Physiology and Biochemistry of the Domestic Fowl” (D. J. Bell and B. M. Freeman, Eds.). New York: Academic Press, p. 675.Google Scholar
  25. Bolton, T. B., and W. C. Bowman. (1969). Adrenoreceptors in the cardiovascular system of the domestic fowl. Eur. J. Pharmacol., 5, 121.PubMedCrossRefGoogle Scholar
  26. Bolton, T. B., and C. Raper. (1966). Innervation of domestic fowl and guinea pig ventricles. J. Pharm. Pharmacol., 18, 192.PubMedCrossRefGoogle Scholar
  27. Boord, R. L. (1961). The efferent cochlear bundle in the caiman and pigeon. Exp. Neurol., 3, 225.CrossRefGoogle Scholar
  28. Boord, R. L. (1965). Efferent projections of cochlear nuclei in the pigeon. Amer. Zool., 5, 669.Google Scholar
  29. Boord, R. L. (1968). Ascending projections of the primary cochlear nuclei and nucleus laminaris in the pigeon. J. Comp. Neurol., 133, 523.PubMedCrossRefGoogle Scholar
  30. Boord, R. L. (1969). The anatomy of the avian auditory system. Ann. N.Y. Acad. Sci., 167, 186.CrossRefGoogle Scholar
  31. Boord, R. L., and G. L. Rasmussen. (1963). Projection of the cochlear and lagenar nerves on the cochlear nuclei of the pigeon. J. Comp. Neurol., 120, 463.PubMedCrossRefGoogle Scholar
  32. Bowman, W. C. (1959). The effects of isoprenaline on the blood flow through individual skeletal muscles of the cat. J. Pharm. Pharmacol., 11, 143.PubMedCrossRefGoogle Scholar
  33. Bowman, W. C., and S. D. Everett. (1964). An isolated parasym-pathetically-innervated oesophagus preparation from the chick. J. Pharm. Pharmacol., 16 (Suppl.) 72T.PubMedCrossRefGoogle Scholar
  34. Bowman, W. C., and I. G. Marshall. (1971). Muscle. In “Physiology and Biochemistry of the Domestic Fowl” (D. J. Bell and B. M. Freeman, Eds.). New York: Adademic Press, p. 707.Google Scholar
  35. Bremer, F., R. S. Dow, and G. Moruzzi. (1939). Physiological analysis of the general cortex in reptiles and birds. J. Neuro-physiol, 2, 473.Google Scholar
  36. Brodai A., K. Kristiansen, and J. Jansen. (1950). Experimental demonstration of a pontine homologue in birds. J. Comp. Neurol., 92, 23.CrossRefGoogle Scholar
  37. Brown, G. L. (1937). Transmission at nerve endings by acetylcholine. Physiol. Rev., 17, 485.Google Scholar
  38. Brown, J. L. (1969). The control of avain vocalisation by the central nervous system. In “Bird Vocalisations” (R. A. Hinde, Ed.). Cambridge: Cambridge University Press, p. 79.Google Scholar
  39. Brown, J. L. (1971). An exploration study of vocalisation areas in the brain of the redwinged blackbird (Angelaius phoeniceus). Behaviour, 39, 91.PubMedCrossRefGoogle Scholar
  40. Brown, C. M., V. Molony, A. S. King, and R. D. Cook. (1972). Fibre size and conduction velocity in the vagus of the domestic fowl (Callus domesticus) Acta. Anal, 83, 451.CrossRefGoogle Scholar
  41. Bulat, M., and Z. Supek. (1968). Passage of 5-hydroxytryptamine through the blood-brain barrier, its metabolism in the brain and elimination of 5-hydroxyindolacetic acid from the brain tissue. J. Neurochem., 15, 383.PubMedCrossRefGoogle Scholar
  42. Burack, W. R., and A. Badger. (1964). Sequential appearance of dopa decarboxylase, dopamine β-oxidase and norepinephrine N-methyltransferase activities in the embryonic chick. Fed. Proc., 23, 561.Google Scholar
  43. Burger, R. E., and M. R. Fedde. (1964). Physiological and pharmacological factors which influence the incidence of acute pulmonary alterations following vagotomy in the domestic cock. Poultry Sci., 43, 384.Google Scholar
  44. Burnstock, G. (1969). Evolution of the autonomic innervation of visceral and cardiovascular systems. Pharmacol. Rev., 21, 247.PubMedGoogle Scholar
  45. Callingham, B. A., and D. F. Sharman (1970). The concentration of catecholamines in the brain of the domestic fowl (Callus domesticus). Brit. J. Pharmacol., 40, 1.Google Scholar
  46. Calvin, A. (1960). Olfactory discrimination. Science, 131, 1265.CrossRefGoogle Scholar
  47. Carpenter, F. G., and R. M. Bergland. (1957). Excitation and conduction in immature nerve fibres of the developing chick. Am. J. Physiol., 190, 371.PubMedGoogle Scholar
  48. Clearwaters, K. (1954). Regeneration of the spinal cord of the chick. J. Comp. Neurol., 101, 317.PubMedCrossRefGoogle Scholar
  49. Cobb, S. (1960a). A note on the size of the avian olfactory bulb. Epilepsia, 1, 394.PubMedCrossRefGoogle Scholar
  50. Cobb, S. (1960b). Observations on the comparative anatomy of the avian brain. Perspect. Biol. Med., 3, 383.PubMedGoogle Scholar
  51. Cohen, D. H. (1967a). Visual intensity discriminiation in pigeons following unilateral and bilateral tectal lesions. J. Comp. Physiol. Psychol., 63, 172.PubMedCrossRefGoogle Scholar
  52. Cohen, D. H. (1967b). The hyperstriatal region of the avian fore-brain. A lesion study of possible functions including its role in cardiac and respiratory conditioning. J. Comp. Neurol., 131, 559.PubMedCrossRefGoogle Scholar
  53. Cook, R. D., and A. S. King. (1970). Observations on the ultrastructure of the smooth muscle and its innervation in the avian lung. J. Anal, 106, 273.Google Scholar
  54. Cords, E. (1904). Beiträge zur Lehre vom Kopfnervensystem der Vögel. Anat. Hefte., 26, 49.CrossRefGoogle Scholar
  55. Corner, M. A., W. L. Bakhuis, and C. van Wingerden. (1972). Sleep and wakefulness during early life in the domestic chicken and their relationship to hatching and embryonic mortality. In “Prenatal Ontogeny of the Central Nervous System and Behaviour” (Gottlieb G., Ed.). Chicago: University of Chicago Press.Google Scholar
  56. Corner, M. A., J. P. Schadé, J. Sedláček, R. Stoeckart, and A. P. C. Bot. (1967). Developmental patterns in the central nervous system of birds. I. Electrical activity in the cerebral hemisphere, optic lobe & cerebellum. Prog. Brain Res., 26, 145.PubMedCrossRefGoogle Scholar
  57. Cowan, W. M., L. Adamson, and T. P. S. Powell, (1961). An experimental study of the avian visual system. J. Anal, 95, 545.Google Scholar
  58. Dale, H. H. (1937). The transmission of nervous effects by acetylcholine. The Harvey Lectures, 32, 229.Google Scholar
  59. de Anda, G. and M. A. Rebollo. (1967). The neuromuscular spindles in the adult chicken. 1. Morphology. Acta Anal, 67, 437.CrossRefGoogle Scholar
  60. DeSantis, V. P., W. Längsfeld, R. Lindmar, and K. Löffelholz. (1975). Evidence for noradrenaline and adrenaline as sympathetic transmitters in the chicken Brit. J. Pharmacol., 55, 345.Google Scholar
  61. Desmedt, J. E., and P. J. Delwaide. (1963) Neuronal inhibition in a bird. Effect of strychnine and Picrotoxin. Nature, 200, 585.CrossRefGoogle Scholar
  62. Dewhurst, W. G., and E. Marley. (1965a). Methods for quantifying behaviour and cerebral electrical activity and the effect of drugs under controlled conditions. Brit. J. Pharmacol., 25, 671.PubMedGoogle Scholar
  63. Dewhurst, W. G., and E. Marley. (1965b). The effects of α-methyl derivatives of noradrenaline, phenylethylamine and tryp-tamine on the central nervous system of the chicken. Brit. J. Pharmacol., 25, 682.PubMedGoogle Scholar
  64. Dorward, P. K. (1970a). Response patterns of cutaneous mechano-receptors in the domestic duck. Comp. Biochem. Physiol., 35, 729.CrossRefGoogle Scholar
  65. Dorward, P. K. (1970b). Response characteristics of muscle afferents in the domestic duck. J. Physiol. (London), 211, 1.Google Scholar
  66. Dorward, P. K., and A. K. Mclntyre. (1971). Responses of vibration-sensitive receptors in the interosseous region of the duck’s hind limb. J. Physiol. (London), 219, 77.Google Scholar
  67. Enemar, A., Falck, and R. Håkanson. (1965). Observations on the appearance of norepinephrine in the sympathetic nervous system of the chick embryo. Devel. Biol., 11, 268.CrossRefGoogle Scholar
  68. Erulkar, S. D. (1955). Tactile and auditory areas in the brain of the pigeon. J. Comp. Neurol., 103, 421.PubMedCrossRefGoogle Scholar
  69. Evans, H. E. (1969). Anatomy of the budgerigar. In “Diseases of Cage and Aviary Birds” (M. L. Petrack, Ed.). Philadelphia: Lea and Febiger, p. 45.Google Scholar
  70. Everett, S. D. (1966). Pharmacological responses of the isolated oesophagus and crop of the chick. In “Physiology of the Domestic Fowl” (C. Horton-Smith and E. C. Amoroso, Eds.). Edinburgh: Oliver and Boyd, p. 261.Google Scholar
  71. Everett, S. D. (1968). Pharmacological responses of the isolated innervated intestine and rectal caecum of the chick. Brit. J. Pharmacol., 33, 342.PubMedGoogle Scholar
  72. Everett, S. D., and S. P. Mann. (1967). Catecholamine release by histamine from the isolated intestine of the chick. Eur. J. Pharmacol., 1, 310.CrossRefGoogle Scholar
  73. Freusberg, A. (1874). Reflex bewegungen beim Hunde. Arch. Ges. Physiol. (Pflügers), 9, 358.CrossRefGoogle Scholar
  74. Frontali, (1964). Brain glutamic acid decarboxylase and synthesis of γ-aminobutyric acid in vertebrate and invertebrate species. In “Comparative Neurochemistry” (D. Richter, Ed.), Proc. 5th Intl. Neurochem. Symp. Oxford: Pergamon Press, p. 185.Google Scholar
  75. Gal, E. M., and F. D. Marshal. (1964). The hydroxylation of tryptophan by pigeon brain in vitro. Prog. Brain Res., 8, 56.CrossRefGoogle Scholar
  76. Garcia-Austt, E. (1954). Development of electrical activity in cerebral hemispheres of the chick embryo. Proc. Soc. Exp. Biol. Med., 86, 348.PubMedGoogle Scholar
  77. Gentle, M. J. (1974). Using arousal changes in electroencephalogram to measure taste sensitivity in the chicken. J. Physiol. (London), 244, 9P.Google Scholar
  78. Gilman, T. T., F. L. Marcuse, and A. U. Moore. (1950). Animal hypnosis: A study in the induction of tonic immobility in chickens. J. Comp. Physiol. Psychol., 43, 99.PubMedCrossRefGoogle Scholar
  79. Goltz, F., and J. R. Evald. (1896). Der Hund mit verkurzten Ruckenmark. Arch. Ges. Physiol. (Pflugers), 63, 362.CrossRefGoogle Scholar
  80. Gossrau, R. (1968). Über das Reizleitungssystem der Vögel. Histo-chemie, 13, 111.Google Scholar
  81. Graf, W. (1956). Caliber spectra of nerve fibers in the pigeon (Columba domestica). J. Comp. Neurol., 105, 355.PubMedCrossRefGoogle Scholar
  82. Gregory, J. E. (1973). An electrophysiological investigation of the receptor apparatus of the duck’s bill. J. Physiol. (London), 229, 151.Google Scholar
  83. Groebbels, F. (1928). Die Lage und Bewegungsreflex der Vögel. Arch. Ges. Physiol. (Pflügers), 218, 198.CrossRefGoogle Scholar
  84. Groth, H. P. (1972). Licht-und fluoreszenzmikroskopische Untersu chungen zur Innervation des Luftsacksystems der Vögel. Z. Zellforsch., 127, 87.PubMedCrossRefGoogle Scholar
  85. Gunne, L. M. (1962). Relative adrenaline content in brain tissue. Acta Physiol. Scand., 56, 324.PubMedCrossRefGoogle Scholar
  86. Hamburger, V. (1955). Regeneration in the central nervous system of reptiles and birds. (W. F. Windle, Ed.). Springfield, III.: Charles C. Thomas, Chapter 3.Google Scholar
  87. Hamdi, J. A., and D. Whitteridge. (1954). The representation of the retina on the optic tectum of the pigeon. Quart. J. Exp. Physiol., 39, 111.PubMedGoogle Scholar
  88. Hanig, J. P., and J. Seifter. (1968). Amines in the brain of neonate chicks after parenteral injection of biogenic and other amines. Fed. Proc, 27, 651.Google Scholar
  89. Harman, A. L., and R. E. Phillips. (1967). Responses in the avian midbrain, thalamus and forebrain evoked by click stimuli. Exp. Neurol., 18, 276.PubMedCrossRefGoogle Scholar
  90. Hebb, C. O. (1955). Choline acetylase in mammalian and avian sensory systems. Quart. J. Exp. Physiol., 40, 176.Google Scholar
  91. Hebb, C. O., and D. Ratkovic. (1964). Choline acetylase in the evolution of the brain in vertebrates. In “Comparative Neurochemistry” (D. Richter, Ed.), Proc. 5th Intl. Neurochem. Symp. Oxford: Pergamon Press, p. 347.Google Scholar
  92. Hehman, K. N., A. R. Vonderahe, and J. J. Peters. (1961). Effect of serotonin on the behavior, electrical activity in the brain, seizure threshold in the newly hatched chick. Neurology, 11, 1011.PubMedGoogle Scholar
  93. Hess, A. (1970). Vertebrate slow muscle fibres. Physiol. Rev., 50, 40.PubMedGoogle Scholar
  94. Hess, A., G. Pilar, and J. N. Weakly. (1969). Correlation between transmission and structure in avian ciliary ganglion synapses. J. Physiol. (London), 202, 339.Google Scholar
  95. Hodos, W., and H. J. Karten. (1966). Brightness and pattern discrimination deficits in the pigeon after lesions of nucleus rotundus. Exp. Brain Res., 2, 151.PubMedCrossRefGoogle Scholar
  96. Hodos, W., H. J. Karten, and J. C. Bonbright. (1973). Visual intensity and pattern discrimination after lesions of the thalamo fugal visual pathway in pigeons. J. Comp. Neurol., 148, 447.PubMedCrossRefGoogle Scholar
  97. Holden, A. L. (1968a). The field potential profile during activation of the avian optic tectum. J. Physiol. (London), 194, 75.Google Scholar
  98. Holden, A. L. (1968b) Types of unitary response and correlation with the field potential profile during activation of the avian optic tectum, J. Physiol. (London), 194, 91.Google Scholar
  99. Holden, A. L., and T. P. S. Powell. (1972). The functional organisation of the isthmooptic nucleus in the pigeon. J. Physiol. (London), 223, 419.Google Scholar
  100. Horton, E. W. (1971). Prostaglandins. In “Physiology and Biochemistry of Domestic Fowl,” Vol. 1 (D. J. Bell and B. M. Freeman, Eds.). New York: Academic Press, p. 589.Google Scholar
  101. Hsieh, T. M. (1951). The sympathetic and parasympathetic nervous systems of the domestic fowl. Ph.D. thesis, University of Edinburgh, Endinburgh, Scotland.Google Scholar
  102. Huber, J. F. (1936). Nerve roots and nuclear groups in the spinal cord of the pigeon. J. Comp. Neurol., 65, 43.CrossRefGoogle Scholar
  103. Ignarro, L. J., and F. E. Shideman. (1968). Appearance and concentrations of catecholamines and their biosynthesis in the embryonic and developing chick. J. Pharmacol. Exp. Ther., 159, 38.PubMedGoogle Scholar
  104. Imhof, G. (1905). Anatomie und Entwicklungsgeschichte des Lumbalmarkes bie den Vögeln Archiv. Mikroskop. Anat. Entw. Mech., 65, 98.Google Scholar
  105. Jones, A. W., and R. Levi-Montalcini. (1958). Patterns of differentiation of the nerve centers and fiber tracts of the avian cerebral hemispheres. Arch. Ital. Biol., 96, 231.Google Scholar
  106. Jones, D. R., and K. Johansen. (1972). The blood vascular system of birds. In “Avian Biology,” Vol. 2 (D. S. Farner and J. R. King, Eds.). New York: Academic Press, p. 158.Google Scholar
  107. Jukes, M. G. M. (1971). In “Biochemistry and Physiology of the Domestic Fowl,” Vol. 1 (D. J. Bell and B. M. Freeman, Eds.) New York Academic Press, p. 171.Google Scholar
  108. Jungherr, E. (1945). Certain nuclear groups of the avian mesencephalon. J. Comp. Neurol., 82, 55.CrossRefGoogle Scholar
  109. Jungherr, E. (1969). The neuroanatomy of the domestic fowl (Callus domesticus). Avian Diseases, Special Issue, April 1969.Google Scholar
  110. Juorio, A. V., and M. Vogt. (1967). Monoamines and their metabolites in the avian brain. J. Physiol. (London), 189, 489.Google Scholar
  111. Juorio, A. V., and M. Vogt (1970). Adrenaline in bird brain. J. Physiol. (London), 209, 757.Google Scholar
  112. Karten, H. J. (1963). Ascending pathways from the spinal cord in the pigeon (Columba livia). Proc. 16th Intl. Cong. Zool., 2, 23.Google Scholar
  113. Karten, H. J. (1965). Projections of the optic tectum of the pigeon (Columba livia). Anat. Rec, 151, 369.Google Scholar
  114. Karten, H. J. (1966). Efferent projections of the nucleus mesence-phalicus lateralis, pars dorsalis (MLD) in the pigeon (Columba livia). Anat. Rec, 154, 365.Google Scholar
  115. Karten, H. J. (1967a). The organization of the ascending auditory pathway in the pigeon (Columba livia). 1. Diencephalic projections of the inferior colliculus (nucleus mesencephal-icus lateralis pars dorsalis). Brain Res., 6, 409.PubMedCrossRefGoogle Scholar
  116. Karten, H. J. (1967b). Telencephlic projections of the nucleus ovoi-dalis in the pigeon (Columba livia). Anat. Rec, 157, 268.Google Scholar
  117. Karten, H. J. (1968). The ascending auditory pathway in the pigeon. II. Telencephalic projections of the nucleus ovoidalis thala-mi. Brain Res., 11, 134.PubMedCrossRefGoogle Scholar
  118. Karten, H. J. (1969). The organization of the avian telencephalon and some speculations on the phylogeny of amniote telencephalon. Ann. N.Y. Acad. Sci., 167, 164.CrossRefGoogle Scholar
  119. Karten, H. J., and W. Hodos. (1967). “A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia).” Baltimore: Johns Hopkins Press.Google Scholar
  120. Karten, H. J., and W. J. M. Nauta. (1968). Organization of retino-thalamic projections in the pigeon and owl. Anat. Rec., 160, 373.Google Scholar
  121. Karten, H. J., and A. M. Revzin. (1966). The afferent connections of the nucleus rotundus in the pigeon. Brain Res., 2, 368.PubMedCrossRefGoogle Scholar
  122. Karten, H. J., W. Hodos, W. J. H. Nauta, and A. M. Revzin. (1973). Neural connections of the “Visual Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J. Comp. Neurol., 150, 253.PubMedCrossRefGoogle Scholar
  123. Katori, M. (1962). The development of the spontaneous electrical activity in the brain of a chick embryo and the effects of several drugs on it. Jap. J. Pharmacol., 12, 9.CrossRefGoogle Scholar
  124. Key, B. J., and E. Marley. (1962). The effect of the sympathomimetic amines on behavior and electrocortical activity of the chicken. Electroenceph. Clin. Neurophysiol., 14, 90.PubMedCrossRefGoogle Scholar
  125. King, A. S., and V. Molony. (1971). The anatomy of respiration In “Physiology and Biochemistry of the Domestic Fowl” (D. J. Bell and B. M. Freeman, Eds.). New York: Academic Press, p. 93.Google Scholar
  126. Kissling, G., K. Reutter, G. Sieber, H. Nguyen-Duong, and R. Jacob. (1972). Negative Inotropic von endogenem Acetylcholin bein Katzen-und Hühnerventrikelmyokard. Pflügers Arch., 333, 35.PubMedCrossRefGoogle Scholar
  127. Knowlton, V. Y. (1964). Abnormal differentiation of embryonic avian brain centres associated with unilateral anophthalmia. Acta Anat., 58, 222.PubMedCrossRefGoogle Scholar
  128. Kramer, S. Z., and J. Seifter. (1966). The effects of GABA and biogenic amines on behavior and brain electrical activity in chicks. Life Sci., 5, 527.CrossRefGoogle Scholar
  129. Kuriyama, K., B. Sisken, J. Ito, D. G. Simonsen, B. Haber, and E. Roberts. (1968). The y-aminobutyric acid system in the developing chick embryo cerebellum. Brain Res., 11, 412.PubMedCrossRefGoogle Scholar
  130. Lajtha, A. (1957). The development of the blood-brain barrier J. Neurochem., 1, 216.PubMedCrossRefGoogle Scholar
  131. Landmesser, L, and G. Pilar. (1970). Selective reinnervation of the cell populations in the adult pigeon ciliary ganglion. J. Physiol. (London), 211, 203.Google Scholar
  132. Landmesser, L., and G. Pilar. (1972). The onset and development of transmission in the chick ciliary ganglion. J. Physiol. (London), 222, 691.Google Scholar
  133. Larsell, O. (1948). The development and subdivision of the cerebellum of birds. J. Comp. Neurol., 89, 1 23.Google Scholar
  134. Lasjewski, R. C. (1972). Respiratory function in birds. In “Avian Biology,” Vol. 2. (D. S. Farner and J. R. King, Eds.). New York: Academic Press, p. 288.Google Scholar
  135. Lavail, J. H., and W. M. Cowan. (1971a). The development of the chick optic tectum. I Normal morphology and cytoarchitec-tronic development. Brain Res., 28, 391.PubMedCrossRefGoogle Scholar
  136. Lavail, J. H., and W. M. Cowan. (1971b). The development of the chick optic tectum. II Autoradiographic studies. Brain Res., 28, 421.PubMedCrossRefGoogle Scholar
  137. Leitner, L. -M., and M. Roumy. (1974a). Mechanosensitive units in the upper bill and in the tongue of the domestic duck. Pflügers Arch., 346, 141.PubMedCrossRefGoogle Scholar
  138. Leitner, L. -M., and M. Roumy. (1974b). Thermosensitive units in tongue and in the skin of the duck’s bill. Pflügers Arch., 346, 151.PubMedCrossRefGoogle Scholar
  139. Levi-Montalcini, R. (1949). The development of the acousticoves-tibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J. Comp. Neurol., 91, 209.PubMedCrossRefGoogle Scholar
  140. Levi-Montalcini, R. (1950). The origin and development of the visceral system in the spinal cord of the chick. J. Morphol., 86, 253.CrossRefGoogle Scholar
  141. Loewi, O. (1921) Über humorale Übertragbarkeit der Herznerven-wirkung. Arch. Ges. Physiol. (Pflügers), 189, 239.CrossRefGoogle Scholar
  142. Manni, E., G. M. Azzena, and R. Bortolani. (1965). Jaw muscle proprioception and mesencephalic trigeminal cells in birds. Exp. Neurol., 12, 320.PubMedCrossRefGoogle Scholar
  143. Marko, P., and M. Cuénod, (1973). Contribution of the nerve cell body to renewal of axonal and synaptic glycoproteins in the pigeon visual system. Brain Res., 62, 419.PubMedCrossRefGoogle Scholar
  144. Marley, E., and W. H. Morse. (1966). Operant conditioning in the newly hatched chicken. J. Exp. Anal. Behav., 9, 95.PubMedCrossRefGoogle Scholar
  145. Marley, E., and G. Nistico. (1972). Effects of catecholamines and adenosine derivatives given into the brain of fowls. Brit. J. Pharmacol., 46, 619.Google Scholar
  146. Marley, E., and T. J. Seller. (1972). Effects of muscarine given into the brain of fowls. Brit. J. Pharmacol., 44, 413.Google Scholar
  147. Marley, E., and T. J. Seller. (1974). Effects of cholinomimetic agents given into the brain of fowls. Brit. J. Pharmacol., 51, 347.Google Scholar
  148. Marley, E., and T. J. Seller. (1974). Effects of nicotine given into the brain of fowls. Brit. J. Pharmacol., 51, 335.Google Scholar
  149. Marley, E., and J. D. Stephenson. (1970). Effects of catecholamines infused into the brain of young chickens. Brit. J. Pharmacol., 40, 639.Google Scholar
  150. Martin, A. R., and G. Pilar. (1963a). Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. (London), 168, 443.Google Scholar
  151. Martin, A. R., and G. Pilar. (1963b). Transmission through the ciliary ganglion of the chick. J. Physiol. (London), 168, 464.Google Scholar
  152. Martin, A. R., and Pilar. (1964a). An analysis of electical coupling at synapses in the avian ciliary ganglion. J. Physiol. (London), 171, 454.Google Scholar
  153. Martin, A. R., and G.’ Pilar. (1964b). Quantal components of the synaptic potential in the ciliary ganglion of the chick. J. Physiol. (London), 175, 1.PubMedGoogle Scholar
  154. Martin, A. R., and G. Pilar. (1964c). Presynaptic and postsynaptic events during posttetanic potentiation and facilitation in the avian ciliary ganglion. J. Physiol. (London), 175, 17.Google Scholar
  155. Marwitt, R., G. Pilar, and J. N. Weakly. (1971). Characterization of two ganglion cell populations in avian ciliary ganglion. Brain Res., 25, 31 7.Google Scholar
  156. Mayr, R. (1968). Morphologische und physiologische Untersuchungen über den aktiven Bewegungsapparat der Nickhaut des Huhnes. Gegenbaurs Morphol. Jb., 112, 113.Google Scholar
  157. McGill, J. J. (1964). Organisation within the central and centrifugal fiber pathways in the avian visual system. Nature (London), 204, 395.PubMedCrossRefGoogle Scholar
  158. McGill, J. J., T. P. S. Powell, and W. M. Cowan. (1966). The retinal representation upon the optic tectum and isthmo-optic nucleus in the pigeon. J. Anat., 100, 5.PubMedGoogle Scholar
  159. McLelland, J., R. D. Cook, and A. S. King. (1972). Nerves in the exchange area of the avian lung. Acta. Anat., 83, 7.PubMedCrossRefGoogle Scholar
  160. Meier, R. E. (1973). Autoradiographic evidence for a direct retino-hypothalamic projection in the avain brain. Brain Res., 53 417.PubMedCrossRefGoogle Scholar
  161. Michaelsen, W. J. (1959). Procedure for studying olfactory discrimination in pigeons. Science, 130, 630.CrossRefGoogle Scholar
  162. Moruzzi, G. (1947). Tectal and bulbopontine eyelid reflexes and mechanism of the sleeping attitude of the acute thalamic pigeon. J. Neurophysiol., 10, 415.PubMedGoogle Scholar
  163. Naumow, N. P., and W. D. Iljitschew. (1964). Klanganalyse und Grosshirn der Vögel. Naturwissenschaften, 51, 644.CrossRefGoogle Scholar
  164. Newman, J. D. (1972). Midbrain control of vocalization in red-winged blackbirds (Agelaius phoeniceus) Brain Res., 48, 227PubMedCrossRefGoogle Scholar
  165. Ohashi, H., and A. Ohga. (1967). Transmission of excitation from parasympathetic nerve to smooth muscle. Nature (London), 216, 291.PubMedCrossRefGoogle Scholar
  166. Ookawa, T. (1972a). Polygraphic recording during adult hen hypnosis. Poultry Sci., 51, 853.Google Scholar
  167. Ookawa, T. (1972b). Avian wakefulness and sleep on the basis of recent electroencephalographic observations. Poultry Sci., 51, 1565.Google Scholar
  168. Ookawa, T. (1973a). Notes of abnormal electroencephalograms in the telencephalon of the chicken and pigeon. Poultry Sci., 52, 182.Google Scholar
  169. Ookawa, T. (1973b). Effect of strychnine on the electroencephalogram recorded from the Wulst of curarized adult chickens. Poultry Sci., 52, 1090.Google Scholar
  170. Ookawa, T. (1973c). Effect of intravenously administered strychnine on the EEG recorded from the deep structure of the adult chicken telencephalon. Poultry Sci., 52, 806.Google Scholar
  171. Ookawa, T. (1973d). Effect of some convulsant drugs on the electroencephalogram recorded from the Wulst of the adult chicken and pigeon under curarized conditions. Poultry Sci., 52, 1704.Google Scholar
  172. Ookawa, T., and J. Gotoh. (1965). Electroencephalogram of the chicken recorded from the skull under various conditions. J. Comp. Neurol., 124, 1.PubMedCrossRefGoogle Scholar
  173. Ookawa, T., and K. Takagi. (1968). Electroencephalograms of free behavioural chicks at various developmental ages. Jap. J. Physiol., 18, 87.CrossRefGoogle Scholar
  174. Ookawa, T., J. Gotoh, T. Kumazawa, and K. Takagi. (1962). Electroencephalogram of chickens. Proc. 53rd Meeting Jap. Soc. Vet. Sci., Jap. J. Vet. Sci., 24 (Suppl)., 438.Google Scholar
  175. Oscarsson, O., I. Rosen, and N. Uddenberg. (1963). Organisation of the ascedning tracts in the spinal cord of the duck. Acta Physiol. Scand., 59, 143.PubMedCrossRefGoogle Scholar
  176. Page, S. G. (1969). Structure and some contractile properties of fast and slow muscles of the chicken. J. Physiol. (London), 205, 131.PubMedGoogle Scholar
  177. Pearson, R. (1972). “The Avian Brain.” New York: Academic Press.Google Scholar
  178. Peters, J. J., and E. J. Hilgeford. (1971). EEG episodes of rhythmic waves and seizure patterns following hypothermic hypoxia in chick embryo. Electroenceph. Clin. Neurophysiol., 31, 631.CrossRefGoogle Scholar
  179. Peters, J. J., T. P. Bright, and A. R. Vonderahe. (1968). Electroencephalographic studies of survival following hypothermic hypoxia in developing chicks. J. Exp. Zool., 167, 179.PubMedCrossRefGoogle Scholar
  180. Peters, J. J., C. J. Cusick, and A. R. Vonderahe. (1961). Electrical studies of hypothermic effects on the eye, cerebrum and skeletal muscles of the developing chick, J. Exp. Zool., 148, 31.PubMedCrossRefGoogle Scholar
  181. Peters, J. J., A. R. Vonderahe, and E. J. Hilgeford. (1969). Electroencephalographic episodes of 1 to 7 per second rhythmic waves following hypothermic hypoxia in developing chicks. J. Exp. Zool., 170, 427.PubMedCrossRefGoogle Scholar
  182. Peters, J. J., A. R. Vonderahe, and J. J. McDonough. (1964). Electrical changes in brain and eye of the developing chick during hyperthermia. Am. J. Physiol., 207, 260.PubMedGoogle Scholar
  183. Phillips, R. D. (1966). Evoked potential study of connections of ar-chistriatum and caudal neostriatum. J. Comp. Neurol., 127, 89.PubMedCrossRefGoogle Scholar
  184. Pilar, G., and P. C. Vaughan. (1969). Electrophysiological investigations of the pigeon iris neuromuscular junctions. Comp. Biochem. Physiol., 29, 51.PubMedCrossRefGoogle Scholar
  185. Pohorecky, L. A., M. J. Zigmond, H. J. Karten, and R. J. Wurtman. (1968). Phenylethanolamine-N-methyltransferase activity (PNMT) in mammalian, avian and reptilian brain. Fed. Proc, 27, 239.Google Scholar
  186. Pomeroy, L. R., and A. J. Welch. (1967). Computer assisted electroencephalograph analysis of chick pyridoxine deficiency states. Tehcnical Report 36, The University of Texas, Austin, p. 1.Google Scholar
  187. Popa, G., and F. Popa. (1933). Certain functions of the midbrain in pigeons. Proc. Roy. Soc. (London), B, 113, 191.CrossRefGoogle Scholar
  188. Potash, L. M. (1970). Neuroanatomical regions relevant to production and analysis of vocalisation within the avian torus semi-circularis. Experientia, 26, 1104.PubMedCrossRefGoogle Scholar
  189. Powell, T. P. S., and W. M. Cowan. (1961). The thalamic projection upon the telencephalon in the pigeon (Columba livia). J. Anat., 95, 78.PubMedGoogle Scholar
  190. Putkonen, P. T. S. (1967). Electrical stimulation of the avian brain. Ann. Acad. Sci. Fenn. Ser. A.V., 130, 1.Google Scholar
  191. Revzin, A. M., and H. Karten. (1967). Rostral projections of the optic tectum and the nucleus rotundus in the pigeon. Brain Res., 3, 264.CrossRefGoogle Scholar
  192. Richards, S. A. (1971). Brain stem control of polypnoea in the chicken and pigeon. Resp. Physiol., 11, 315.CrossRefGoogle Scholar
  193. Rogers, K. T. (1957). Ocular muscle proprioceptive neurons in the developing chick. J. Comp. Neurol., 107, 427.PubMedCrossRefGoogle Scholar
  194. Rogers, L. A., and W. M. Cowan. (1973). The development of the mesencephalic nucleus of the trigeminal nerve in the chick. J. Comp. Neurol., 147, 291.PubMedCrossRefGoogle Scholar
  195. Sammartino, U. (1933). Sugli animali a midolla spinale aecrociato Arch. Farmacol. Sper., 55, 219.Google Scholar
  196. Sanders E. B. (1929). A consideration of certain bulbar, midbrain and cerebellarcenters and fiber tracts in birds. J. Comp. Neurol., 49, 155.CrossRefGoogle Scholar
  197. Sato, H., A. Ohga, and Y. Nakazato. (1970). The excitatory and inhibitory innervation of the stomachs of the domestic fowl. Jap. J. Pharmacol., 20, 382.PubMedCrossRefGoogle Scholar
  198. Scholes, N. W., and E. Roberts. (1964). Pharmacological studies of the optic system of the chick: Effect of γ-aminobutyric acid and pentobarbital. Biochem. Pharmacol., 13, 1319.PubMedCrossRefGoogle Scholar
  199. Schwartzkopff, J. (1968). In “Hearing Mechanisms in Vertebrates” (A.V.S. de Reuck and J. Knight, Eds.). CIBA Foundation Symposium. London: Churchill, p. 41.Google Scholar
  200. Schwartzkopff, J. (1974). Mechanoreception. In “Avian Biology,” Vol. 3 (D. S. Farner and J. R. King, Eds.). New York: Academic Press, p. 417.Google Scholar
  201. Senglaub, K. (1963). Das Kleinhirn der Vögel in Beziehung zu phylogenetischer Stellung, Lebensweise and Körpergrosse. Z. Wiss. Zool. Leipzig, 169, 1.Google Scholar
  202. Sheff, A. G., and L. L. Tureen. (1962). EEG studies of normal and encephalomalacia chicks. Proc. Soc. Exp. Biol. Med., 111, 407.PubMedGoogle Scholar
  203. Shima, I., E. Fifkova, and J. Bures. (1963). Limits of spreading depression in pigeon striatum. J. Comp. Neurol., 121, 485.PubMedCrossRefGoogle Scholar
  204. Sjöstrand, N. O. (1965). The adrenergic innervation of the vas deferens and the accessory male genital glands. Acta Physiol. Scand., 65(Suppl.), 257.Google Scholar
  205. Skoglund, C. R. (1960). Properties of pacinian corpuscles of ulnar and tibial location in cat and fowl. Acta Physiol. Scand., 50, 385.CrossRefGoogle Scholar
  206. Smith, D. S. (1971). On the significance of cross-bridges between microtubules and synaptic vesicles. Phil. Trans. Roy. Soc. Lond.Ser. B, 261, 395.CrossRefGoogle Scholar
  207. Spooner, C. E., and W. D. Winters. (1965). Distribution of auditory and visual evoked responses in the central nervous system of the unanaesthetized duck. Physiologist, 8, 279.Google Scholar
  208. Spooner, C. E., and W. D. Winters. (1966a). Neuropharmacological profile of the young chick. Int. J. Neuropharmacol., 5, 217.PubMedCrossRefGoogle Scholar
  209. Spooner, C. E., and W. D. Winters. (1966b). Distribution of monoamines and regional uptake of DL-norepinephrine-7-H3 and dopamine-1-H3 in the avian brain. Pharmacologist, 8, 189.Google Scholar
  210. Spooner, C. E., and W. D. Winters. (1967a). The influence of centrally active amine induced blood pressure changes on the electroencephalogram and behaviour. Intl. J. Neuropharmacol., 6, 109.CrossRefGoogle Scholar
  211. Spooner, C. E., and W. D. Winters. (1967b). Evoked responses during spontaneous and monoamine-induced states of wakefulness. Brain Res., 4, 189.PubMedCrossRefGoogle Scholar
  212. Spooner, C. E., W. D. Winters, and A. J. Mandell. (1966). DL-Nor-epinephrine-7-H3 uptake, water content and thiocyanate space in the brain during maturation. Fed. Proc, 25, 451.Google Scholar
  213. Sugihara, K., and J. Gotoh. (1973). Depth electroencephalograms of chickens in wakefulness and sleep. jap.j. Physiol., 23, 371.CrossRefGoogle Scholar
  214. Swank, R. L., and H. H. Jasper. (1942). Electroencephalograms of thiamine-deficient pigeons. Arch. Neurol. Psychiat, 47, 821.Google Scholar
  215. Tarchanoff J. (1895). Mouvements forcés des canards décapités. Compt Rend. Soc. Biol., Paris., 47, 454.Google Scholar
  216. ten Cate, J. (1936). Uni-und-plurisegmentale Reflexen bei Tauben. Arch. Neerl. Physiol., 21, 162.Google Scholar
  217. ten Cate, J. (1960). Locomotor movements in the spinal pigeon. J. Exp. Biol., 37, 609.Google Scholar
  218. ten Cate, J., J. A. Stommel, and W. G. Walter. (1937). Pflügelreflexe bei Rückenmarkstauben. Arch Neerl. Physiol., 22, 332.Google Scholar
  219. Tokaji, E., and R. W. Gerard. (1939). Avitaminosis B1 and pigeon brain potentials. Proc. Soc. Exp. Biol. Med., 41, 653.Google Scholar
  220. Trendelenburg, W. (1910). Vergleichende Physiologie des Rückenmarks. Ergebn. Physiol., 10, 454.CrossRefGoogle Scholar
  221. Tucker, D. (1965). Electrophysiological evidence for olfactory function in birds. Nature (London), 207, 34.PubMedCrossRefGoogle Scholar
  222. Tuge, H., Y. Kanayama, and C. H. Yueh. (1960). Comparative studies on the development of the EEG. Jap. J. Physiol., 10, 211.CrossRefGoogle Scholar
  223. van Tienhoven, A., and L. P. Juhász. (1962). The chicken telencephalon, diencephalon and mesencephalon in stereotaxic coordinates. J. Comp. Neurol., 118, 185.CrossRefGoogle Scholar
  224. Walsh, C., and J. McLelland. (1974). Intraepithelial axons in the avian trachea. Z. Zellforsh., 147, 209.CrossRefGoogle Scholar
  225. Waelsch, H. (1955). In “Biochemistry of the Developing Nervous System” (H. Waelsch, Ed.). New York: Academic Press, p. 187.Google Scholar
  226. Watanabe, T. (1960). On the peripheral course of the vagus nerve in the fowl. Jap. J. Vet. Sci., 22, 145.CrossRefGoogle Scholar
  227. Watanabe, T. (1964). Peripheral courses of the hypoglossal, accessory and glossopharyngeal nerves. Jap. J. Vet. Sci., 26, 249.CrossRefGoogle Scholar
  228. Watanabe, T., and M. Yasuda. (1968). Peripheral course of the olfactory nerve in the fowl. Jap. J. Vet. Sci., 30, 275.CrossRefGoogle Scholar
  229. Watanabe, T., and M. Yasuda. (1970). Peripheral course of the trigeminal nerve (in the fowl). Jap. J. Vet. Sci., 32, 43.CrossRefGoogle Scholar
  230. Watanabe, T., G. Isomura, and M. Yasuda. (1967). Distribution of nerves in the oculomotor and ciliary muscles. Jap. J. Vet. Sci., 29, 151.CrossRefGoogle Scholar
  231. Wenzel, B. M., and M. H. Sieck. (1972). Olfactory perception and bulbar electrical activity in several avian species. Physiol. Behav., 9, 287.PubMedCrossRefGoogle Scholar
  232. Whitlock, D. G. (1952). A neurohistological and neurophysiolog-ical study of afferent fiber tracts and receptive areas of the avian cerebellum. J. Comp. Neurol., 97, 567.PubMedCrossRefGoogle Scholar
  233. Wingstrand, K. G. (1951). “The Structure and Development of the Avian Pituitary.” Lund, Sweden: C. W. K. Gleerup.Google Scholar
  234. Yasuda, M. (1960). On the nervous supply of the thoracic limb in the fowl. Jap. J. Vet. Sci., 22, 89.CrossRefGoogle Scholar
  235. Yasuda, M. (1961). On the nervous supply of the hind limb (of the fowl). Jap. J. Vet. Sci., 23, 145.CrossRefGoogle Scholar
  236. Yasuda, M. (1964). Distribution of cutaneous nerves of the fowl. jap. J. Vet. Sci., 5, 241.CrossRefGoogle Scholar
  237. Zaimis, E. (1960). In “Adrenergic Mechanisms” (J. R. Vane, G. E. W. Wolstenholme, and M. O’Connor, Eds.). CIBA Foundation Symp. London: Churchill, p. 562.Google Scholar
  238. Zeigler, H. P. (1963). Effects of endbrain lesions upon visual discrimination learning in pigeons. J. Comp. Neurol., 120, 161.PubMedCrossRefGoogle Scholar
  239. Zeigler, H. P., and H. J. Karten. (1973). Brain mechanisms and feeding behaviour in the pigeon (Columba livia). I. Quinto-frontal structures. J. Comp. Neurol., 152, 59.PubMedCrossRefGoogle Scholar
  240. Zeigler, H. P., and P. Witkovsky. (1968). The main sensory trigeminal nucleus in the pigeon: A single unit analysis. J. Comp. Neurol., 134, 225.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • T. B. Bolton

There are no affiliations available

Personalised recommendations