• Joseph V. Smith


The early scientific measurements of ordering, and the development of mathematical theory, were made on binary alloys. The simple crystal structures and the fairly rapid attainment of thermodynamic equilibrium permitted detailed understanding of order-disorder. The most comprehensive treatments of the phenomenon are in “The Theory of Transformations in Metals and Alloys” by Christian (1965) and “The Theory of Order-Disorder in Alloys” by Krivoglaz and Smirnov (1965).


Nuclear Quadrupole Resonance Alkali Feldspar Neutron Diffraction Study Domain Texture Diffuse Streak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson,J.R. (1973): On infinitely adaptive structures. JCS, Dalton Trans., No. 2, 1107–1115. Appleman, D. E., Clark, J. R. (1965): Crystal structure of reedmergnerite, a boron albite, and its relation to feldspar crystal chemistry. AM 50, 1827–1850.Google Scholar
  2. Bailey, S. W. (1969): Refinement of an intermediate microcline structure. AM 54, 1540–1545.Google Scholar
  3. Bailey, S. W., Taylor, W. H. (1955): The structure of a triclinic potassium felspar. AC 8, 621–632.Google Scholar
  4. Barth, T. F. W. (1934): Polymorphic phenomena and crystal structure. AJS Ser. 5, 27, 273–286.Google Scholar
  5. Barth, T. F. W. (1959): The interrelations of the structural variants of the potash feldspars. ZK 112, 263–274.CrossRefGoogle Scholar
  6. Barth, T. F. W. (1965): On the constitution of the alkali feldspars. TMPM 10 (Machatschki Vol.), 14–33.Google Scholar
  7. Barth, T. F. W. (1969): Feldspars, 261 pp. New York and London: Wiley Interscience.Google Scholar
  8. Brinkmann,D., Stähli,J.L. (1968): Magnetische Kernresonanz von 27A1 im Anorthit, CaAl2Si2O5. Helvetica Phys. Acta 41, 274–281.Google Scholar
  9. Brown,B.E. (1962): Aluminium distribution in an igneous maximum microline and the sanidine microcline series. NGT 42, No. 2, 25–36.Google Scholar
  10. Brown, B.E., Bailey, S. W. (1964): The structure of maximum microcline. AC 17, 1391–1400.Google Scholar
  11. Brown, G.E., Gibbs, G. V. (1970): Stereochemistry and ordering in the tetrahedral portion of silicates. AM 55, 1587–1607.Google Scholar
  12. Brown, G. E., Gibbs, G. V., Ribbe,P.H. (1969): The nature and variation in length of the Si-O and Al–O bonds in framework silicates. AM 54, 1044–1061.Google Scholar
  13. Brown, G. E., Hamilton, W. C., Prewitt,C.T., Sueno,S. (1973): Neutron diffraction study of Al/Si ordering in sanidine. Preprint NATO Study Institute.Google Scholar
  14. Brun, E., Hartmann, P., Staub, H. H., Hafner, S., Laves, F. (1960): Magnetische Kernresonanz zur Beobachtung des Al, Si-Ordnungs/Unordnungsgrades in einigen Feldspäten. ZK 113, 65–76.CrossRefGoogle Scholar
  15. Buerger, M. J. (1960): Crystal-structure analysis. New York: John Wiley.Google Scholar
  16. Chao, S. H., Hargreaves, A., Taylor, W. H. (1940): The structure of orthoclase. M M 25, 498–512.Google Scholar
  17. Chao,S.H., Taylor,W.H. (1940): Isomorphous replacement and superlattice structures in the plagioclase felspars. Proc. Roy. Soc. (Lond.) 176 A, 76–87.Google Scholar
  18. Christian,J. W. (1965): The theory of transformations in metals and alloys, 973 pp. Oxford: Pergamon Press.Google Scholar
  19. Cole, W. F., Sörum,H., Kennard, O. (1949): The crystal structures of orthoclase and sanidinized orthoclase. AC 2, 280–287.Google Scholar
  20. Colville,A.A., Ribbe,P.H. (1968): The crystal structure of an adularia and a refinement of the structure of orthoclase. AM 53, 25–37.Google Scholar
  21. Cowley,J.M. (1950): X-ray measurements of order in single crystals of Cu3Au. J. Appl. Phys. 21, 24–30.CrossRefGoogle Scholar
  22. Cruickshank,D.W.J. (1961): The role of 3d-orbitals in rc-bonds between (a) silicon, phosphorous, sulphur, or chlorine and (b) oxygen or nitrogen. JCS 5485–5504.Google Scholar
  23. Devore,G. W. (1955): Note on the Al and Si positions in ordered Na and K feldspars. S 121, 707–708.Google Scholar
  24. Devore,G.W. (1956): Al-Si positions in ordered plagioclase feldspars. ZK 107, 247–264.CrossRefGoogle Scholar
  25. Dollase, W. A. (1970): Least-squares refinement of the structure of a plutonic nepheline. ZK 132, 27–44.CrossRefGoogle Scholar
  26. Ferguson, R.B., Traili, R. J., Taylor, W.H. (1958): The crystal structures of low-temperature and high temperature albites. AC 11, 331–348.Google Scholar
  27. Finney, J. J., Bailey, S. W. (1964): Crystal structure of an authigenic maximum microcline. ZK 119, 413–436.CrossRefGoogle Scholar
  28. Fischer, K. (1965): Röntgenographische Unterscheidung von Silizium-und Aluminium-Punktlagen durch Verfeinerung des atomaren Streuvermögens. TMPM 10 (Machatschki Vol.), 203–208.Google Scholar
  29. Fischer, K., Zehme, H. (1967): Röntgenographische Untersuchung der Si-Al-Verteilung in einem Mikroklin durch Verfeinerung des atomaren Streuvermögens. SMPM 47, 163–167.Google Scholar
  30. Fleet, S. G., Chandrasekhar, S., Megaw, H. D. (1966): The structure of bytownite (“body-centred anorthite”). AC 21, 782–801.Google Scholar
  31. Foit,F.F. (1971): The crystal structure of anorthite at 410° C. Prog. Geol. Soc. Amer. Mtg., Southeastern section, p. 311 (abstract). See AM, 58, 665–675 (1973).Google Scholar
  32. Foreman, N., Peacor,D.R. (1970): Refinement of the nepheline structure at several temperatures. ZK 132, 45–70.Google Scholar
  33. Gait, R. I., Ferguson, R. B., Coish, H. R. (1970): Electrostatic charge distributions in the structure of low albite, NaAlSi3O8. AC B 26, 68–76.Google Scholar
  34. Gasperin,M. (1971): Structure cristalline de RbAISi3O8. AC B 27, 854–855.Google Scholar
  35. Gay,P. (1962): Sub-solidus relations in the plagioclase feldspars. NGT 42, No. 2, 37–56. Goldsmith, J. R., Laves, F. (1954): Potassium feldspars structurally intermediate between microcline and sanidine. GCA 6, 100–118.Google Scholar
  36. Goldsmith, J. R., Laves, F. (1955): Cation order in anorthite (CaAI2Si2O8) as revealed by gallium and germanium substitutions. ZK 106, 213–226.Google Scholar
  37. Hafner, S., Hartmann, P. (1964): Elektrische Feldgradienten und Sauerstoff-Polarisierbarkeit in Alkali-Feldspäten (NaAISi3O8 und KAISi3O8). Helvetica Phys. Acta 37, 348–360.Google Scholar
  38. Hafner,S., Hartmann, P., Laves,F. (1962): Magnetische Kernresonanz von AI27 in Adular. Zur Deutung der Adularstruktur. SMPM 42. 277–294.Google Scholar
  39. Hafner,S., Laves, F. (1957): Ordnung/Unordnung und Ultrarotabsorption. II. Variation der Lage und Intensität einiger Absorptionen von Feldspäten. Zur Struktur von Orthoklas und Adular. ZK 109, 204–225.CrossRefGoogle Scholar
  40. Hafner, S., Laves, F. (1963): Magnetische Kernresonanz von Al27 in einigen Orthoklasen. SMPM 43, 65–69.Google Scholar
  41. Hall, K. M. et al. (1967): Personal communication.Google Scholar
  42. Harlow, G. E., Brown, G. E., Hamilton, W. C. (1973): Neutron diffraction study of Amelia low albite. Trans. Amer. Geophys. Union 54, 497 (abstr.).Google Scholar
  43. Jones,J.B. (1968): Al—O and Si-0 tetrahedral distances in aluminosilicate framework structures. AC B 24, 355–358.Google Scholar
  44. Jones, J. B., Taylor, W.H. (1961a): The structure of orthoclase. CCILM 8, 33–36.Google Scholar
  45. Jones, J. B., Taylor, W. H. (1961b): The structure of orthoclase. AC 14, 443–456.Google Scholar
  46. Kempster, C. J. E., Megaw, H. D., Radoslovich, F. W. (1962): The structure of anorthite, CaAl2Si2O8. I. Structure analysis. AC 15, 1005–1017.Google Scholar
  47. Köhler, A. (1949): Recent results of investigations on the feldspars. JG 57, 592–599.CrossRefGoogle Scholar
  48. Krivoglaz, M.A. (1969): Theory of X-ray and thermal-neutron scattering by real crystals. English translation from Russian. New York: Plenum Press.Google Scholar
  49. Krivoglaz, M. A., Smirnov, A. A. (1965): The theory of order-disorder in alloys. Translation from Russian. American Elsevier Publishing Company, Inc. British version by MacDonald and Co. Ltd. 1964.Google Scholar
  50. Kroll, H. (1971): Feldspäte im System K [AI Si3O8]-Na[AlSi3O8]-Ca[Al2Si2O8]: Al, Si-Verteilung und Gitterparameter, Phasen-Transformationen und Chemismus. Inaug.-Disc. der Westfälischen Wilhelms-Universität in Münster.Google Scholar
  51. Laves, F. (1950): The lattice and twinning of microcline and other potash feldspars. JG 58, 548–571.CrossRefGoogle Scholar
  52. Laves, F. (1952): Phase relations of the alkali feldspars. I. Introductory remarks. II. The stable and pseudo-stable phase relations in the alkali feldspar system. JG 60, 436–450, 549–574.Google Scholar
  53. Laves, F. (1960): Al/Si-Verteilungen, Phasen-Transformationen und Namen der Alkalifeldspäte. ZK 113, 265–296.CrossRefGoogle Scholar
  54. Laves,F., Hafner,S. (1956): Ordnung/Unordnung und Ultrarotabsorption I. (Al, Si)-Verteilung in Feldspäten. ZK 108, 52–63.CrossRefGoogle Scholar
  55. Laves, F., Hafner, S. (1962): Infrared absorption effects, nuclear magnetic resonance and structure of feldspars. NGT 42, No. 2, 57–71.Google Scholar
  56. Lipson, H., Cochran, W. (1953): The crystalline state — Vol. III. The determination of crystal structures. London: Bell and Sons Ltd.Google Scholar
  57. Loewenstein,W. (1954): The distribution of aluminum in the tetrahedra of silicates and aluminates. AM 39, 92–96.Google Scholar
  58. Louisnathan,S.J. (1971): Refinement of the crystal structure of a natural gehlenite, Ca2A1(Al, Si)2O7. Canadian Mineral. 10, 822–837.Google Scholar
  59. McConnell,J.D.C. (1965): Electron optical study of effects associated with partial inversion in a silicate phase. Philos. Mag. 11, 1289–1301.CrossRefGoogle Scholar
  60. McConnell,J.D.C. (1970): Electron-optical study of phase transformations. MM 38, 1–20.Google Scholar
  61. Megaw,H.D. (1959): Order and disorder in the felspars, I. MM 32, 226–241.Google Scholar
  62. Megaw,H.D. (1960): Order and disorder. I. Theory of stacking faults and diffraction maxima. II. Theory of diffraction effects in the intermediate plagioclase felspars. III. The structure of the intermediate plagioclase felspars. Proc. Roy. Soc. (Lond.) 259 A, 59–78, 159–183, 184–202.Google Scholar
  63. Megaw,H.D. (1962): Order and disorder in felspars. NGT 42, No. 2, 104–137.Google Scholar
  64. Megaw, H. D., Kempster, C. J. E., Radoslovich, E. W. (1962): The structure of anorthite, CaAl2Si2O8. II. Description and discussion. AC 15, 1017–1035.Google Scholar
  65. Moss,S.C. (1964): X-ray measurement of short-range order in Cu3Au. J. Appl. Phys. 35, 3547–3553.CrossRefGoogle Scholar
  66. Newnham, R. E., Megaw,H.D. (1960): The crystal structure of celsian (barium felspar). AC 13, 303–313.Google Scholar
  67. Niggli,A. (1967): Die Ordnungsmöglichkeiten der Si-Al-Verteilung in Plagioklasen. SMPM 47, 279–287.Google Scholar
  68. Nissen, H.-U. (1967): Direct electron-microscopic proof of domain texture in orthoclase (KA1Si3O8). CMP 16, 354–360.Google Scholar
  69. Perrotta,A.J., Smith,J.V. (1968): The crystal structure of BaA1,O4. BSFMC 91. 85–87.Google Scholar
  70. Phillips, M. W., Colville, A.A., Ribbe, P. H. (1971): The crystal structures of two oligoclases: A comparison with low and high albite. ZK 133, Fritz-Laves-Festband, 43–65.Google Scholar
  71. Phillips, M. W., Ribbe, P. H. (1971): Personal communication reporting X-ray structure analyses of sanidine 7002 and adularia 7007.Google Scholar
  72. Phillips, M. W., Ribbe, P. H. (1973): The structures of monoclinic potassium-rich feldspars. AM 58, 263–270.Google Scholar
  73. Prewitt, C.T. (1972): Use of neutron diffraction for determining Al/Si distributions in feldspars. Abstr. 1.5 in program for Advanced Study Institute on Feldspars, July 1972, Manchester.Google Scholar
  74. Prince, E., Donnay,G., Martin, R. F. (1972): Neutron structure refinement of an ordered orthoclase. Abstr. 1.6 in program for Advanced Study Institute on Feldspars, July 1972, Manchester. In press, AM, 58, 500–507 (1973).Google Scholar
  75. Ribbe, P. H. (1963a): A refinement of the crystal structure of sanidinized orthoclase. AC 16, 426–427.Google Scholar
  76. Ribbe, P. H. ( 1963 b): Structural studies of plagioclase feldspars. Dissertation, University of Cambridge.Google Scholar
  77. Ribbe, P. H., Gibbs,G. V. (1967): Statistical analysis of Al/Si distribution in feldspars. Trans. Amer. Geophys. Union Mtg. X I, 229–230 (abstr.).Google Scholar
  78. Ribbe,P.H., Gibbs,G.V. (1969): Statistical analysis and discussion of mean Al/Si-0 bond distances and the aluminum content of tetrahedra in feldspars. AM 54, 85–94.Google Scholar
  79. Ribbe, P. H., Megaw, H. D., Taylor, W. H., Ferguson, R. B., Traill, R. J. (1969): The albite structures. AC 25 B, 1503–1518.Google Scholar
  80. Smith,J.V. (1954): A review of the Al—O and Si—O distances. AC 7, 479–483.Google Scholar
  81. Smith,J.V. (1970): Physical properties of order-disorder structures with especial reference to feldspar minerals. Lithos 3, 145–160.CrossRefGoogle Scholar
  82. Smith,J.V., Bailey,S.W. (1963): Second review of Al—O and Si—O tetrahedral distances. AC 16, 801–810.Google Scholar
  83. Smith,J. V., Mackenzie, W. S. (1959): The alkali feldspars. V. The nature of orthoclase and microcline perthites, and observations concerning the polymorphism of potassium feldspar. AM 44, 1169–1186.Google Scholar
  84. Smith,J.V., Mackenzie,W.S. (1961): Atomic, chemical and physical factors that control the stability of alkali feldspars. CCILM 8, 39–52.Google Scholar
  85. Smith,J.V., Ribbe, P. H. (1969): Atomic movements in plagioclase feldspars: kinetic interpretation. CMP 21, 157–202.Google Scholar
  86. Sörum,H. (1951): Studies in the structures of plagioclase felspars. Norsk Vidensk.-Akad. Oslo, Mat.-Nat. KI., Skr. No. 3, 1–160.Google Scholar
  87. Sörum,H. (1953): The structures of the plagioclase felspars II. AC 6, 413–416.Google Scholar
  88. Spencer, E. (1930): A contribution to the study of moonstone from Ceylon and other areas and of the stability-relations of the alkali-felspars. MM 22, 291–367.Google Scholar
  89. Spencer, E. (1937): The potash-soda-felspars. I. Thermal stability. MM 24, 453–494.Google Scholar
  90. Stewart, D. B., Ribbe, P. H. (1967): Al/Si ordering, lattice parameters, and composition in alkali feldspars. Trans. Amer. Geophys. Union 48, 230 (abstr.).Google Scholar
  91. Stewart, D. B., Ribbe, P. H. (1969): Structural explanation for variations in cell parameters of alkali feldspar with Al/Si ordering. AJS, Schairer Vol. 267-A, 144–462.Google Scholar
  92. Taylor, W. H. (1962): The structures of the principal felspars. NGT 42, No. 2, 1— 24.Google Scholar
  93. Taylor, W. H., Darbyshire, J. A., Strunz,H. (1934): An X-ray investigation of the felspars. ZK 87, 464–498.Google Scholar
  94. Thompson, J. B., Jr. (1969): Chemical reactions in crystals. AM 54, 341–375.Google Scholar
  95. Thompson, J. B. (1970): Chemical reactions in crystals: corrections and clarification. AM 55, 528–532.Google Scholar
  96. Wainwright,J. E. (1969): A refined structure for bytownite. Progr. Eighth Inter. Congr. Crystallography, abstr. XII - 48.Google Scholar
  97. Wainwright,J.E., Starkey,J. (1968): Crystal structure of a metamorphic low albite. Progr. Geol. Soc. America Mtg. Mexico City, p. 310.Google Scholar
  98. Wainwright,J.E., Starkey,J. (1971): A refinement of the structure of anorthite. ZK 133, Fritz-LavesFestband, 75–84.Google Scholar
  99. Weitz, G. (1972): Die Struktur des Sanidins bei verschiedenen Ordnungsgraden. ZK 136, 418–426.CrossRefGoogle Scholar
  100. Williams, P. P., Megaw,H.D. (1964): The crystal structures of high and low albites at —180° C. AC 17, 882–890.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Joseph V. Smith
    • 1
  1. 1.Department of the Geophysical SciencesThe University of ChicagoChicagoUSA

Personalised recommendations