Corrosion of Homogeneous Alloys

  • Helmut Kaesche
Part of the Engineering Materials and Processes book series (EMP)

Abstract

Concerning ambient-temperature corrosion of solid alloys, a preliminary note in Chap. 3 on thermodynamics was that bulk/surface equilibria of alloy components cannot normally be expected, because solid-state diffusion usually is too slow to counteract selective dissolution rates of components. The situation is different for liquid amalgams, as they can be mechanically stirred. Also, liquid amalgam surfaces are uniform down to atomic distances. For solid alloys, slow bulk-to-surface diffusion usually will instead leave the surface depleted with respect to ‘fast’ components, and enriched with respect to ‘slow’ components, and the result is an overall decrease in corrosion rate. The crystallografic structure of solid surfaces suggests that the main effect is blocking of kink sites active in metal dissolution, and this supposition will further below be seen to account for what may be described as fine-tuning of concepts, which we do not, however, immediately need to approach.

Keywords

Zinc Carbide Chromium Ferrite Austenite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerischer, H.: in: Korrosion 14. Ber. Diskussionstaging Korrosionsschutz durch Legieren. Frankfurt 1961. Verl. Chemie, Weinheim, 1962Google Scholar
  2. 2.
    Pickering, H.W.: Corr. Sci. 23 (1983) 1107CrossRefGoogle Scholar
  3. 3a).
    Kaiser, H.: Alloy Dissolution. In: Corrosion Mechanisms (Mansfeld, F., ed.). Marcel Decker Inc., New York and Basel, 1986, p. 85Google Scholar
  4. 3b).
    Kaiser, H.: Corr. Sci. 34 (1993) 683CrossRefGoogle Scholar
  5. Kaiser, H. and Eckstein, G.A.: Dealloying. In: Bard, J. and Stratmann, M., eds.: Encyclopedia of Electrochemistry (in preparation)Google Scholar
  6. 4.
    Seo, M. and Sato, N.: Langmuir 1987 3 (1987) 917CrossRefGoogle Scholar
  7. 5.
    Heusler, K.E.: Corr. Sci. 39 (1997) 1177CrossRefGoogle Scholar
  8. 6.
    Kolotyrkin, Y.M.; Electrochim. acta 25 (1980) 89CrossRefGoogle Scholar
  9. 7a).
    Zolotarev, E.I., Pchelnikov, A.P., Skuratnik, Ya.B., Khoklov, N.L, and Losev, V.V.: Elektrokhimia 25 (1989) 208, quoted from [5]Google Scholar
  10. 7b).
    Zartsyn, I. D., Vvedenskii, A. V., and Marshakov, I. K.: Russian J. Electrochem. (translated from Elektrokhimiya) 30 (1994) 492Google Scholar
  11. 8.
    Tammann, G.: Z. Anorg. Chemie 112 (1920) 233, 114 (1920) 281, 118 (1921) 48CrossRefGoogle Scholar
  12. Dehlinger, U. and Glocker, R.: Ann. Physik 16 (1933) 156Google Scholar
  13. 9a).
    Gerischer, H.: loc. cit. [1]Google Scholar
  14. 9b).
    Tischer, R.P. and Gerischer, H.: Z. Elektrochemie 62 (1958) 50Google Scholar
  15. 9c).
    Gerischer, H. and Rickert, H.: Z. Metallkunde 46 (1955) 681Google Scholar
  16. 9d).
    Bergmann, M., quoted in loc. cit. [1], see also [9b]Google Scholar
  17. 10a).
    Rambert, S. and Landolt, D.: Electrochim. acta 31 (1986) 1421, 1433Google Scholar
  18. 10b).
    Laurent, J. and Landolt, D.: ibid. 36 (1991) 49Google Scholar
  19. 11a).
    Pickering, H.W. and Wagner, C.: J. Electrochem. Soc. 114 (1967) 698CrossRefGoogle Scholar
  20. 11b).
    Pickering, H.W. and Byrne, P. J.: ibid. 118 (1971) 209Google Scholar
  21. 11c).
    Pickering, H.W.: Corr. Sci. 23 (1983) 1107CrossRefGoogle Scholar
  22. 11d).
    Ateya, B.C. and Pickering, H.W.: ibid. 38 (1996) 1245Google Scholar
  23. 11e).
    Ateya, B.G., Fritz, J.D., and Pickering, H.W.: J. Electrochem. Soc. 144 (1997) 2606CrossRefGoogle Scholar
  24. 12a).
    Kabius, B., Kaiser, H., and Kaesche, H.: in: Proc. Int. Symp. Honoring N. Hackerman, San Diego 1986. (McCafferty, E. and Brodd, R. J., eds.). Electrochem. Soc. Vol. 86–7, Pennington, 1986Google Scholar
  25. 12b).
    Kabius, B.: Doctoral thesis. Erlangen 1987Google Scholar
  26. 12c).
    Kaesche, H.: in: Proc. Int. Conf. Localized Corrosion, Orlando 1987. NACE, Houston, 1990Google Scholar
  27. 13.
    Gnieweck, J., Pezy, J., Baker, B.G., and Bockris, J. O’m.: J. Electrochem. Soc. 125 (1978) 17CrossRefGoogle Scholar
  28. 14a).
    Popp, W., Kaiser, H., Kaesche, H., Brämer, W., and Sperner, F.: in Proc. 8th Int. Conf. Metic Corrosion, Mainz 1981, Vol. 1. Dechema, Frankfurt 1981, p. 76Google Scholar
  29. 14b).
    Popp, W. and Kaiser, H.; Unpublished work, 1982Google Scholar
  30. 14c).
    Langer, R., Kaiser, H., and Kaesche, H.: Werkstoffe u. Korr. 29 (1978) 409CrossRefGoogle Scholar
  31. 15a).
    Kaesche, H.: in previous editions of this bookGoogle Scholar
  32. 15b).
    loc. cit. [3aGoogle Scholar
  33. 16.
    Kaiser, H.: private communication 1982Google Scholar
  34. 17a).
    Volmer, M.: Kinetik der Phasenbildung. Th. Steinkopf, Leipzig and Dresden, 1939Google Scholar
  35. 17b).
    Vetter, K.J.: loc. cit. Chap. 5 [1]Google Scholar
  36. 17c).
    Budevsky, W.B.; Electrocrystallisation. In loc. cit. [3.7]Google Scholar
  37. 17d).
    Kaiser, H. and Kaesche, H.: Jahrestagung der DGM, Erlangen 1983Google Scholar
  38. 18a).
    Marshakov, I.K., Pchelnikokov, A.P., Losev, V.V., and Kolotyrkin, Ya.M.: Elektrokhimia 17 (1981) 725Google Scholar
  39. 18b).
    Marshakov, L, Vvednenskii, K., Kondrashin, W.Ya., and Vonov, G.A.: Anodnoe Rastvorenie i Celektiivnaja Korrosia Cplabob. Voronesh, Isd-wo WGU 1988Google Scholar
  40. 18c).
    Verezhnaya, A.G. and Ekilik, V.V.: Elektrokhimia 29 (1993) 910Google Scholar
  41. 18d).
    Pchelnikov, A.P., Sitnikov, A.D., Marshakov, I.K., and Losev, V.V.: Electrochim. acta 26 (1981) 591CrossRefGoogle Scholar
  42. 18e).
    Pchelnikov, A.P., Skuratnik, Y.B., Sitnikov, A.D.: in Proc. 3rd Japan-USSR Seminar on Electrochemistry, Kyoto 1978. Electrochem. Soc. Japan, Academy of Science USSRGoogle Scholar
  43. 19a).
    Kaiser, H.: Werkstoffe u. Korrosion 40 (1989) 1CrossRefGoogle Scholar
  44. 19b).
    Kaiser, H. and Kaesche, H.: Ext. Abstracts. Vol. 88–2 Electrochem. Soc. Fall Meeting, Chicago 1988, p. 138Google Scholar
  45. 20a).
    Sieradsdzki, K., Corderman, R.R., Shukla, K., and Newman, R.C.: Philos. Mag. A 59 (1989) 713CrossRefGoogle Scholar
  46. 20b).
    Sieradszki, K.: J. Electrochem. Soc. 140 (1993) 2868CrossRefGoogle Scholar
  47. 20c).
    Wagner, K., Brankovic, S.R., Dimitrov, N., and Sieradszki, K.: ibid. 144 (1997) 3545Google Scholar
  48. 20d).
    Newmann, R.C., Corcoran, S.G., Erlebacher, J., Aziz, M.J., and Sieradski, K.: MRS Bulletin July 1999, p. 24Google Scholar
  49. 20e).
    Oppenheim, I.C., Trevor, D.J., Chidsey, C.E.D., Trevor, P.L., and Sieradzki, K.: 254 (1991) 687Google Scholar
  50. 21a).
    Eckstein, G.A.: Doctoral thesis, Erlangen 2000Google Scholar
  51. 21b).
    Eckstein, G.A., Dakkouri, A.S., and Kaiser, H.: 2000 MRS Spring Meeting, Symp. Corr. Metals and Alloys, San Francisco 2000Google Scholar
  52. 22a).
    Forty, A.J. and Durkin, P.: Phil. Mag. 42 (1980) 295CrossRefGoogle Scholar
  53. 22b).
    Forty, A.J. and Rowlands, G.: ibid. 43 (1981) 171Google Scholar
  54. 23.
    Stauffer, D.: Introduction to Percolation Theory. Taylor and Francis, London 1985CrossRefGoogle Scholar
  55. 24.
    Mullins, W.W.: in Metal Surfaces: Structure, Energetics and Kinetics. Am. Soc. Metals, Metals Park, 1963, p. 17Google Scholar
  56. 25.
    Wagner, C.: J. Electrochem. Soc. 103 (1956) 571CrossRefGoogle Scholar
  57. 26a).
    Kaiser, H. and Kaesche, H.: Werkstoffe u. Korr. 32 (1980) 347CrossRefGoogle Scholar
  58. 26b).
    Kaiser, H.: Doctoral thesis, Erlangen 1976Google Scholar
  59. 26c).
    Kaiser, H., Lenz, E., and Kaesche, H.: in Int. Conf. Mechanism of Environment Sensitive Cracking of Materials. Guildford 1977Google Scholar
  60. 26d).
    Gladen, H., Kaiser, H., and Kaesche, H.: Corr. Sci. 30 (1990) 737CrossRefGoogle Scholar
  61. 26e).
    Kaiser, H.: Materials and Corr. 47 (1996) 34CrossRefGoogle Scholar
  62. 27.
    Feller, G.H.: Corr. Sci. 8 (1968) 698Google Scholar
  63. 28.
    Hokasolo, A.: Scand. J. Metallurgy 2 (1973) 156Google Scholar
  64. Hokasolo, A.: Corr. NACE 29 (1973) 13Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Helmut Kaesche
    • 1
  1. 1.Institute for Materials SciencesUniversity Erlangen-NürnbergErlangenGermany

Personalised recommendations