Skip to main content

Radioaktive Stents — Problematik und Alternativen

  • Chapter
Kardiovaskuläre Strahlentherapie

Zusammenfassung

Im Jahre 1989 wurde das Konzept des radioaktiven Stents entwickelt. Es dauerte jedoch mehrere Jahre, bis die ersten Prototypen eines solchen Stents hergestellt werden konnten [10]. 1992 wurden erstmals metallische Stents im Zyklotron des Forschungszentrums Karlsruhe durch Deuteronenbeschuss in radioaktive Stents umgewandelt. Da radioaktive Stents permanente Implantate sind, reichen sehr niedrige Aktivitäten aus, um therapeutische Strahlendosen zu erzielen. Nach Verfeinerung der Techniken (Protonenbeschuss, direkte Ionenimplantation) fanden 1993–1996 die ersten experimentellen Untersuchungen zur Wirkungsweise der Stents statt [5, 10, 11, 18, 20, 30]. Seit 1996 werden weltweit mehrere klinische Studien mit radioaktiven Koronarstents durchgeführt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albiero R, Di Mario C, De Gregorio J, et al. (1998) Intravascular ultrasound (IVUS) analysis of β-particle radioactive stent implantation in human coronary arteries. Preliminary immediate and intermediate-term results of the MILAN study. Circulation 98:1–780 (Abstract)

    Google Scholar 

  2. Albiero R, Di Mario C, Van der Giessen WJ, et al. (1998) Procedural results and 30-day clinical outcome after implantation of beta-particle emitting radioactive stents in human coronary arteries. Eur Heart J 19:457 (Abstract)

    Google Scholar 

  3. Albiero R, Adamian M, Kobayashi N, Amato, Vaghett M, Di Mario C, Colombo A (2000) Short and intermediate term results of 32P radioactive beta emitting stent implantation in patients with coronary artery disease. Circulation 101:18–26

    PubMed  CAS  Google Scholar 

  4. Albiero R, Nishida T, Ademian M, Amato A, Vaghettio M, Corvaja N, Di Mario C, Colombo A (2000) Edge restenosis after implantation of high activity 32P radioactive beta emitting stents. Circulation 101:2454–2462

    PubMed  CAS  Google Scholar 

  5. Carter AJ, Laird JR, Bailey LR, et al. (1996) Effects of endovascular radiation from a beta-particle-emitting stent in a porcine coronary restenosis model. A dose-response study. Circulation 94:2364–2368

    PubMed  CAS  Google Scholar 

  6. Carter AJ, Scott D, Bailey L, et al. (1999) Dose-response effects of 32P radioactive stents in an atheroslerotic porcine coronary model. Circulation 100: 1548–1554

    PubMed  CAS  Google Scholar 

  7. Fehsenfeld P, Kleinrahm A, Schweickert H (1991) Radionuclide technique in mechanical engineering in Germany. J Radioanal Nucl Chem 160:141–151

    Google Scholar 

  8. Fehsenfeld P, Golombeck M, Kleinrahm A, et al. (1999) On the production of radioactive stents. Sem Interv Cardiol 3:157–161

    Google Scholar 

  9. Fischell TA, Hehrlein C (1998) The radioisotope stent for the prevention of restenosis. Herz 23:373–379

    Article  PubMed  CAS  Google Scholar 

  10. Fischell TA, Kharma BK, Fischell DR, et al. (1994) Low-dose, beta-particle emission from stent wire results in complete, localized inhibition of smooth muscle cell proliferation. Circulation 90:2956–2963

    PubMed  CAS  Google Scholar 

  11. Fischell TA, Carter AJ, Laird JR (1996) The beta-particle-emitting radioisotop stent (isostent): Animal studies and planned clinical trials. Am J Cardiol 78 (suppl 3A):45–50

    Article  PubMed  CAS  Google Scholar 

  12. Fischell TA, Fischell DR, Carter AJ, et al. (1999) The radioisotope stent; in Serruys PW, Waksman R (eds): Handbook of Radiation Devices. In press

    Google Scholar 

  13. Hansen A, Hehrlein C, Hardt S, et al. (2001) Is the „candy-wrapper“ effect of 32P radioactive stents due to remodeling or neointimal hyperplasia? Insights from intravascular ultrasound. Cathet Cardiovasc Intervent 54:41–48

    Article  CAS  Google Scholar 

  14. Hehrlein C (1998) Radioisotope Stents-What did we learn from pre-clinical studies? Int J Cardiovasc Interventions 1:77–80

    Google Scholar 

  15. Hehrlein C (1999) Radioactive stents: European experience. Iin Waksman R (ed) Vascular Brachytherapy. Armonck, New York, Futura, pp 333–342

    Google Scholar 

  16. Hehrlein C, Kübler W (1997) Advantages and limitations of radioactive stents. Sem Interv Cardiol 2:109–113

    CAS  Google Scholar 

  17. Hehrlein C, Fischell TA (1999) History of the radioisotope stent. Vasc Radiotherapy Mon 66–69

    Google Scholar 

  18. Hehrlein C, Zimmermann M, Metz J, et al. (1993) Radioactive coronary stent implantation inhibits neointimal proliferation in nonatherosclerotic rabbits. Circulation 88:651 (Abstract)

    Google Scholar 

  19. Hehrlein C, Riessen R, Gollan T, et al. (1994) Arterial wall cell distribution after implantation of radioactive stents. Circulation 90:I–597(Abstract)

    Google Scholar 

  20. Hehrlein C, Gollan C, Dönges K, et al. (1995) Low-dose radioactive endovascular stents prevent smooth muscle cell proliferation and neointimal hyperplasia in rabbits. Circulation 92:1570–1575

    PubMed  CAS  Google Scholar 

  21. Hehrlein C, Stintz M, Kinscherf R, et al. (1996) Pure beta-particle-emitting stents inhibit neointima formation in rabbits. Circulation 93:641–645

    PubMed  CAS  Google Scholar 

  22. Hehrlein C, Brachmann J, Bode C, et al. (1998) Catheter-based interventions to reduce restenosis after coronary angioplasty: a closer look at radiation therapy. Z Kardiol 87:166–170

    Article  PubMed  Google Scholar 

  23. Hehrlein C, Hardt S, Brachmann J, et al. (1998) P32 stents for the prevention of restenosis. Results from the Heidelberg safety trial using the Palmaz-Schatz stent design at moderate activity levels in patients with restenosis after PTCA. Circulation 98:I:780 (Abstract)

    Google Scholar 

  24. Hehrlein C, Hardt S, Hansen A, et al. (1999) Langzeitergebnisse der Heidelberger Pilotstudie mit radioaktiven Stents zur Verhinderung der Restenose bei Patienten nach PTCA. Z Kardiol 87:784 (Abstract)

    Google Scholar 

  25. Hehrlein C, Kollum M, Arab A, et al. (1999) Increased apoptotic cell death in the neointima after stent-based vascular irradiation. Role of radiation-induced apoptosis for restenosis reduction. J Intervent Cardiol. In press

    Google Scholar 

  26. Hehrlein C, DeVries JJ, Arab A, et al. (2001) Failure of a novel balloon-expandable gamma-emitting (103Pd) stent to prevent edge effects. Circulation 104:2358–2362

    Article  PubMed  CAS  Google Scholar 

  27. Janicki C, Duggan DM, Coffey CW, et al. (1997) Radiation dose from a phosphorus-32 impregnated wire mesh vascular stent. Med Phys 24:437–445

    Article  PubMed  CAS  Google Scholar 

  28. Kastrati A, Schomig A, Dirschinger J, et al. (2000) Increased risk of restenosis after placement of gold-coated stents: results of a randomized trial comparing gold-coated with uncoated steel stents in patients with coronary artery disease. Circulation 101:2478–2483

    PubMed  CAS  Google Scholar 

  29. Kay IP, Wardeh AJ, Kozuma K, et al. (2001) Radioactive stents delay but do not prevent in-stent neointimal hyperplasia. Circulation 103:14–20

    PubMed  CAS  Google Scholar 

  30. Laird JR, Carter AJ, Kufs WM, et al. (1996) Inhibition of neointimal proliferation with low-dose irradiation from a beta-particle emitting stent. Circulation 93:529–536

    PubMed  CAS  Google Scholar 

  31. Lauer MA, Devries JJ, Haller SD et al. (2000) Initial Results with a 32P radioactive self-expanding nitinol stent. Circulation 102:II–424 ( Abstract)

    Google Scholar 

  32. Marx SO, Marks AR (2001) Bench to Bedside: The Development of Rapamy-cin and Its Application to Stent Restenosis. Circulation 104:852–855

    PubMed  CAS  Google Scholar 

  33. Mudra H, Regar E, Klauss V, et al. (1997) Serial follow-up after optimized ultrasound-guided deployment of Palmaz-Schatz stents. In-stent neointimal proliferation without significant reference segment response. Circulation 95: 363–370

    PubMed  CAS  Google Scholar 

  34. Murphy JG, Schwartz RS, Edwards WD, et al. (1992) Percutaneous polymeric stents in porcine coronary arteries. Initial experience with polyethylene ter-phalate stents. Circulation 86:1596–1604

    PubMed  CAS  Google Scholar 

  35. Murphy JG, Schwartz RS, Huber KC, et al. (1991) Polymeric stents: modern alchemy or the future? J Invas Cardiol 3:144–148

    CAS  Google Scholar 

  36. Painter JA, Mintz GS, Wong C, et al. (1995) Serial intravascular ultrasound fails to show evidence of chronic Palmaz-Schatz stent recoil. Am J Cardiol 75:398–400

    Article  PubMed  CAS  Google Scholar 

  37. Prestwich WV, Kennett TJ, Kus FW (1995) The dose distribution produced by a 32 P-coated stent. Med Phys 22:313–320

    Article  PubMed  CAS  Google Scholar 

  38. Rogers C, Groothuis A, Steijskal E, et al. (2000) Paclitaxel release from inert polymer material-coated stent curtails coronary in-stent restenosis in pigs. Circulation 102:II–566 (Abstract)

    Google Scholar 

  39. Sousa JE, Costa MA, Abizaid A, et al. (2001) Lack of neointimal proliferation after implantation of sirolimus-coated stent in human coronary arteries. A quantative coronary angiography and three-dimensional intravascular ultrasound study. Circulation 103:192–195

    PubMed  CAS  Google Scholar 

  40. Sousa JE, Costa MA, Abizaid AC, et al. (2001) Sustained suppression of neointimal proliferation by sirolimus-eluting stents: One-year angiographic and intravascular ultrasound follow-up. Circulation 104:2007–2011

    Article  PubMed  CAS  Google Scholar 

  41. Teirstein P (1999) Vascular radiation therapy: the devil is in the dose. J Am Coll Cardiol 34:567–569

    Article  PubMed  CAS  Google Scholar 

  42. Tepe G, Dinkelborg LM, Brehme U, et al. (2001) Prophylaxis of Restenosis With 186Re-Labeled Stents in a Rabbit Model. Circulation 104:480–485

    Article  PubMed  CAS  Google Scholar 

  43. van der Giessen WJ, Regar E, Harteveld MS, et al. (2001) „Edge effect“ of 32P radioactive stents Is caused by the combination of chronic stent injury and radioactive dose falloff. Circulation 104:2236–2241

    Article  Google Scholar 

  44. Wardeh AJ, Kay IP, Sabate M, et al. (1999) Beta-particle emitting radioactive stent implantation: A safety and feasibility study. Circulation 100:1684–1689

    PubMed  CAS  Google Scholar 

  45. Wardeh AJ, Knook AHM, Kay IP, Sabate M, Coen VLMA, Foley, DP, Hamburger JN, Levendaag PC, van der Giessen WJ, Serruys PW (2001) Clinical and angiographical follow-up after implantaion of a 6–12 μCi radioactive stent in patients with coronary artery disease. Eur Heart J 22: 669–675

    Article  PubMed  CAS  Google Scholar 

  46. Watanabe S, Osa A, Sekine T, et al. (1999) Production of radioactive endovas-cular stents by implantation of 133Xe ions. Appl Radiat Isot 51:197–202

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Steinkopff Verlag Darmstadt

About this chapter

Cite this chapter

Fischell, T.A., Hehrlein, C. (2002). Radioaktive Stents — Problematik und Alternativen. In: Hehrlein, C. (eds) Kardiovaskuläre Strahlentherapie. Steinkopff. https://doi.org/10.1007/978-3-642-96011-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96011-6_12

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1341-9

  • Online ISBN: 978-3-642-96011-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics