Salsolinol — An endogenous neurotoxin in the biology of alcoholism

  • Frank Musshoff
Conference paper

Abstract

Similarities between alcoholism and morphinism concerning the development of an addiction and symptoms of withdrawal led to the hypothesis that opiate-active compounds might be formed endogenously during the establishment of alcohol addiction. This theory was supported by the proof of the in vivo formation of simple tetrahydroisoquinoline alkaloids like salsolinol via Pictet-Spengler reaction from dopamine and the ethanol oxidation product acetaldehyde in the human body. Salsolinol was demonstrated to have a variety of neuropharmacological and cytotoxic effects and shows an affinity to the dopamine receptors. Definite evidence for a salsolinol formation in elevated concentrations after alcohol abuse is still lacking. In systematic regional studies using human brains we found significant amounts of salsolinol in the dopaminergic system, which is responsible for addiction processes. The possibility that biosynthesis of salsolinol occurs through a stereospecific enzymatic reaction was considered and both salsolinol enantiomers were found in human brain samples with no correlations between levels of salsolinol and dopamine. These findings do not support the hypothesis that only an enantio-selective synthesis of (R)-salsolinol by a putative salsolinol synthase is responsible for the in vivo formation.

Keywords

Lipase Morphine Cyclodextrin Catechol Parkin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brossi A. (1982) Mammalian TIQ’s: products of condensation with aldehydes or pyruvic acids? Prog. Clin. Biol. Res., 90, 125–133.PubMedGoogle Scholar
  2. Burns R.S., Chiueh C.C., Markey S.P., Ebert M.H., Jacobowitz D.M. and Kopin I.J. (1983) A primate model of parkinsonism:selective destruction of dopaminergic neurons in the pars compacta of substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci.USA, 80, 4546–4550.PubMedCrossRefGoogle Scholar
  3. Chiba K., Trevor A.J. and Castagnoli N. (1984) Metabolism of the neurotoxic amine, MPTP, by brain monoamine oxidase. Biochem. Biphys. Res. Commun., 120, 574–578.CrossRefGoogle Scholar
  4. Chiueh C.C., Miyake H. and Peng M.-T. (1993) Role of dopamine autooxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. Adv. Neurol., 60, 251–258.PubMedGoogle Scholar
  5. Clow A., Topham A., Saunders J.B., Murray R. and Sandler M. (1985) The role of salsolinol in alcohol intake and withdrawal. Prog. Clin. Biol. Res., 183, 101–113.PubMedGoogle Scholar
  6. Cohen G. and Collins M. (1970) Alkaloids from catecholamines in adrenal tissue: Possible role in alcoholism. Science, 167, 1749–1751.PubMedCrossRefGoogle Scholar
  7. Collins A.C., Cashaw J.L. and Davis V.E. (1973) Dopamine-derived tetrahydroisoquinoline alkaloids — inhibitors of neuroamine metabolism. Biochem. Pharmacol., 22, 2337–2348.PubMedCrossRefGoogle Scholar
  8. Collins M.A., Nijm W.P., Borge G.F., Teas G. and Goldfarb C. (1979) Dopamine-related tetrahydroi-soquinolines: significant urinary excretion by alcoholics after alcohol consumption. Science, 206, 1184–1186.PubMedCrossRefGoogle Scholar
  9. Dave J.R., Lee E.E., Karanian J.W. and Eskay R.L. (1986) Ethanol exposure decreases pituitary corti-cotrophin-releasing factor binding, adenylate cyclase activity, proopiomelanocortin biosynthesis and plasma β-endorphin. Endocrinology, 118, 280–286.PubMedCrossRefGoogle Scholar
  10. Davis V.E. and Walsh M.J. (1970) Alcohol, amines, and alkaloids: A possible biochemical basis for alcohol addiction. Science, 167, 1005–1007.PubMedCrossRefGoogle Scholar
  11. Deng Y., Maruyama W., Dostert P., Takahashi T., Kawai M. and Naoi M. (1995) Determination of the (R)- and (S)-enantiomers of salsolinol and N-methylsalsolinol by use of a chiral high-performance liquid chromatographic column. J. Chromatogr. B, 670, 47–54.CrossRefGoogle Scholar
  12. Deng Y., Maruyama W., Kawai M., Dostert P., Yamamura H., Takahashi T. and Naoi M. (1997) Assay for the (R)- and (S)-enantiomers of salsolinols in biological samples and foods with ion-pair high-performance liquid chromatography using beta-cyclodextrin as a chiral mobile phase additive. J. Chromatogr. B, 689, 313–320.CrossRefGoogle Scholar
  13. Deng Y., Maruyama W., Yamamura H., Kawai M., Dostert P. and Naoi M. (1996) Mechanism of enantioseparation of salsolinols, endogenous neurotoxins in human brain, with ion-pair chromatography using beta-cyclodextrin as a mobile phase additive. Anal. Chem., 68, 2826–2831.PubMedCrossRefGoogle Scholar
  14. Dostert P., Strolin Benedetti M. and Dedieu M. (1987) Ratio of enantiomers of salsolinol in human urine. Pharmacol. Toxicol., 60 [Suppl. 1], 13.Google Scholar
  15. Dostert P., Strolin Benedetti M. and Dordain G. (1988) Dopamine-derived alkaloids in alcoholism and in Parkinson’s and Huntington’s diseases. J. Neural Transm., 74, 61–74.PubMedCrossRefGoogle Scholar
  16. Dostert P., Strolin Benedetti M., Dordain G. and Vernay D. (1991) Urinary elimination of salsolinol enantiomers in alcoholics. J. Neural Transm., 85, 51–59.CrossRefGoogle Scholar
  17. Duncan M.W. and Smythe G.A. (1982) Salsolinol and dopamine in alcoholic beverages [letter]. Lancet, 1, 904–905.PubMedCrossRefGoogle Scholar
  18. Faraj B.A., Camp V.M., Davis D.C., Lenton J.D. and Kutner M. (1989) Elevation of plasma salsolinol sulfate in chronic alcoholics as compared to nonalcoholics. Alcohol Clin. Exp. Res., 13, 155–163.PubMedCrossRefGoogle Scholar
  19. Feest U., Kemper A., Nickel B., Rabe H. and Koalick F. (1992) Comparison of salsolinol excretion in alcoholics and nonalcoholic controls. Alcohol, 9, 49–52.PubMedCrossRefGoogle Scholar
  20. Genazzani A.R., Nappi G., Facchinetti G.L., Mazella G.L., Petraglia F. and Savoldi F. (1982) Central deficiency of beta-endorphine in alcohol addicts. Clin. Endocrinol. Metab., 55, 583–586.CrossRefGoogle Scholar
  21. Haber H. and Melzig M. (1992) [Tetrahydroisoquinolines — endogenous products from chronic alcohol abuse]. Pharmazie, 47, 3–7.PubMedGoogle Scholar
  22. Haber H., Henklein P., Georgi M. and Melzig M.F. (1995a) Resolution of catecholic tetrahydroisoquinoline enantiomers and the determination of R- and S-salsolinol in biological samples by gas chromatography-mass spectrometry. J. Chromatogr. B, 672, 179–187.CrossRefGoogle Scholar
  23. Haber H., Putscher I., Georgi M. and Melzig M.F. (1995b) Influence of ethanol on the salsolinol excretion in healthy subjects. Alcohol, 12, 299–303.PubMedCrossRefGoogle Scholar
  24. Haber H., Winkler A., Putscher I., Henklein P., Baeger I., Georgi M. and Melzig M.F. (1996) Plasma and urine salsolinol in humans: effect of acute ethanol intake on the enantiomeric composition of salsolinol. Alcohol Clin. Exp. Res., 20, 87–92.PubMedCrossRefGoogle Scholar
  25. Heikkila R., Cohen G. and Dembiec D. (1971) Tetrahydroisoquinoline alkaloids: uptake by rat brain homogenates and inhibition of catecholamine uptake. Pharmacol. Exp. Ther., 179, 250–258.Google Scholar
  26. Kajita M., Niwa T., Maruyama W., Nakahara D., Takeda N., Yoshizumi H., Tatematsu A., Watanabe K., Naoi M. and Nagatsu T. (1994) Endogenous synthesis of N-methylnorsalsolinol in rat brain during in vivo microdialysis with epinine. J. Chromatogr. B, 654, 263–269.CrossRefGoogle Scholar
  27. Kikuchi K., Nagatsu Y., Makino Y., Mashino T., Ohta S. and Hirobe M. (1991) Metabolism and penetration through blood-brain barrier of parkinsonism-related compounds. 1,2,3,4-Tetrahydroi-soquinoline and 1-methyl-1,2,3,4-tetrahydroisoquinoline. Drug Metab. Dispos., 19, 257–262.PubMedGoogle Scholar
  28. Langsten J.W., Ballard P., Tetrud J.W. and Irwin I. (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–980.CrossRefGoogle Scholar
  29. Lasala J.M. and Coscia C.J. (1979) Accumulation of a tetrahydroisoquinoline in phenylketonuria. Science, 203, 283–284.PubMedCrossRefGoogle Scholar
  30. Maruyama W., Abr T., Toghi H., Dostert P. and Naoi M. (1996a) A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in parkinsonian CSF. Ann. Neurol., 40, 119–122.PubMedCrossRefGoogle Scholar
  31. Maruyama W., Dostert P. and Naoi M. (1995a) Dopamine-derived l-methyl-6,7-dihydroxyisoquinoli-nes as hydroxyl radical promoters and scavengers in the rat brain: in vivo and in vitro studies. J. Neurochem., 64, 2635–2643.PubMedCrossRefGoogle Scholar
  32. Maruyama W., Dostert P., Matsubara K. and Naoi, M. (1995b) N-methyl(R)salsolinol produces hydroxyl radicals: involvement to neurotoxicity. Free Radic. Biol. Med., 19, 67–75.PubMedCrossRefGoogle Scholar
  33. Maruyama W., Nakahara D., Ota M., Takahashi T., Takahashi A., Nagatsu T. and Naoi M. (1992) N-methylation of dopamine-derived 6,7-dihydroxy-1,2,3,4- tetrahydroisoquinoline, (R)-salsolinol, in rat brains: in vivo microdialysis study. J. Neurochem., 59, 395–400.PubMedCrossRefGoogle Scholar
  34. Maruyama W., Narabayashi H., Dostert P. and Naoi M. (1996b) Stereospecific occurrence of a parkin-sonism-inducing catechol isoquinoline, N-methyl(R)salsolinol, in the human intraventricular fluid. J. Neural Transm., 103, 1069–1076.PubMedCrossRefGoogle Scholar
  35. Maruyama W., Sobue G., Matsubara K., Hashizume Y., Dostert P. and Naoi M. (1997) A dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2, 3,4-tetrahydroisoquinoline, N-me-thyl(R)salsolinol, and its oxidation product, 1,2(N)-dimethyl-6,7-dihydroxyisoquinolinium ion, accumulate in the nigro-striatal system of the human brain. Neurosci. Lett., 223, 61–64.PubMedCrossRefGoogle Scholar
  36. McNaught K.S., Altomare C., Cellamare S., Carotti A., Thull U., Carrupt P.A., Testa B., Jenner P. and Marsden C.D. (1995a) Inhibition of alpha-ketoglutarate dehydrogenase by isoquinoline derivatives structurally related to 1-methyl-1,2,3,6-tetrahydropyridine (MPTP). Neuroreport, 6, 1105–1108.PubMedCrossRefGoogle Scholar
  37. McNaught K.S., Thull U., Carrupt P.A., Altomare C., Cellamare S., Carotti A., Testa B., Jenner P. and Marsden C.D. (1995b) Inhibition of complex I by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP). Biochem. Pharmacol., 50, 1903–1911.PubMedCrossRefGoogle Scholar
  38. Melzig M.F., Putscher I., Haber H., Rottmann M. and Zipper J. (1998) Toxicity and pharmacological effects of salsolinol in different cultivated cells. In: Moser A. (ed.), Pharmacology of endogenous neurotoxins — a handbook (pp. 253–266). Boston: Birkhaeuser.CrossRefGoogle Scholar
  39. Meyerson L.R., McMurtrey K.D. and Davis V.E. (1976) Neuroamine-derived alkaloids: Substrate-preferred inhibitors of rat brain monoamine oxidase in vitro. Biochem. Pharmacol., 25, 1013–1020.PubMedCrossRefGoogle Scholar
  40. Minami M., Maruyama W., Dostert P., Nagatsu T. and Naoi M. (1993) Inhibition of type A and B monoamine oxidase by 6,7-dihydroxy-1, 2,3,4-tetrahydroisoquinolines and their N-methylated derivatives. J. Neural Transm., 92, 125–135.CrossRefGoogle Scholar
  41. Minami M., Takahashi T., Maruyama W., Takahashi A., Dostert P., Nagatsu T. and Naoi M. (1992) Inhibition of tyrosine hydroxylase by R and S enantiomers of salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline. J. Neurochem., 58, 2097–2101.PubMedCrossRefGoogle Scholar
  42. Mizuno Y., Saitoh T. and Sone N. (1987a) Inhibition of mitochondrial NADH-ubiquinone oxidore-ductase activity by 1-methyl-4-phenyIpyridinium ion. Biochem. Biophys. Res. Commun., 143, 294–299.PubMedCrossRefGoogle Scholar
  43. Mizuno Y., Suzuki K., Sone N. and Saitoh T. (1987b) Inhibition of ATP synthesis by 1-methyl-4-phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains. Neurosci. Lett., 81, 204–208.PubMedCrossRefGoogle Scholar
  44. Müller T., Przuntek H., Kuhn W., Sällström Baum S. and Rommelspacher H. (1999) No increase of synthesis of (R)salsolinol in Parkinson’s disease. Mov. Disord., 14, 514–515.PubMedCrossRefGoogle Scholar
  45. Musshoff F., Daldrup T., Bonte W., Leitner A. and Lesch O.M. (1996) Formaldehyde-derived tetrahy-droisoquinolines and tetrahydro-beta- carbolines in human urine. J. Chromatogr. B, 683, 163–176.CrossRefGoogle Scholar
  46. Musshoff F., Daldrup T., Bonte W., Leitner A. and Lesch, O.M. (1997) Salsolinol and norsalsolinol in human urine samples. Pharmacol. Biochem. Behav., 58, 545–550.PubMedCrossRefGoogle Scholar
  47. Musshoff F., Schmidt P., Dettmeyer R., Priemer F., Jachau K. and Madea B. (2000) Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography / mass spectrometry. Forensic Sci. Int., 113, 356–366.Google Scholar
  48. Musshoff F., Schmidt P., Dettmeyer R., Priemer F., Wittig H. and Madea B. (1999) A systematic study of dopamine and dopamine-derived salsolinol and norsalsolinol levels in human brain areas. Forensic Sci. Int., 105, 1–11.PubMedCrossRefGoogle Scholar
  49. Myers R.D. (1989) Isoquinolines, beta-carbolines and alcohol drinking: involvement of opioid and dopaminergic mechanisms. Experientia, 45, 436–443.PubMedCrossRefGoogle Scholar
  50. Myers R.D. and Melchior C.L. (1977) Differential actions on voluntary alcohol intake of tetrahydroi-soquinolines or a beta-carboline infused chronically in the ventricle of the rat. Pharmacol. Biochem. Behav, 7, 381–392.PubMedCrossRefGoogle Scholar
  51. Nagatsu, T. (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci. Res, 29, 99–111.PubMedCrossRefGoogle Scholar
  52. Nagatsu T. and Yoshida M. (1988) An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterin in the nigrostriatal regions. Neurosci. Lett, 87, 178–182.PubMedCrossRefGoogle Scholar
  53. Naoi M., Maruyama W. and Dostert P. (1995a) Dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroi-soquinolines; oxidation and neurotoxicity. Prog. Brain Res, 106, 227–239.PubMedCrossRefGoogle Scholar
  54. Naoi M., Maruyama W., Dostert P. and Hashizume Y. (1996a) Animal model of parkinson’s disease induced by naturely-occuring 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline. Biogenic Amines, 12, 132–147.Google Scholar
  55. Naoi M., Maruyama W., Dostert P., Kohda K. and Kaiya T. (1996b) A novel enzyme enantio-selecti-vely synthesizes (R)salsolinol, a precursor of a dopaminergic neurotoxin, N-methyl(R)salsolinol. Neurosci.Lett., 212, 183–186.PubMedCrossRefGoogle Scholar
  56. Naoi M., Maruyama W., Matsubara K. and Hashizume Y. (1997) A neutral N-methyltransferase activity in the striatum determines the level of an endogenous MPP+-like neurotoxin, 1,2- dimethyl-6,7-dihydroxyisoquinolinium ion, in the substantia nigra of human brains. Neurosci.Lett, 235, 81–84.PubMedCrossRefGoogle Scholar
  57. Naoi M., Maruyama W., Zhang J.H., Takahashi T., Deng Y. and Dostert P. (1995b) Enzymatic oxidation of the dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroiso-quinoline, into 1, 2(N)-dimethyl-6,7-dihydroxyisoquinolinium ion. Life Sci, 57, 1061–1066.PubMedCrossRefGoogle Scholar
  58. Origitano T.C. and Collins M.A. (1984) Gas chromatographic analysis of endogenous catecholamines, phenolic amines and derived isoquinolines using short glass capillary columns and electron-capture detection. J. Chromatogr, 311, 17–29.PubMedCrossRefGoogle Scholar
  59. Pianezzola E., Bellotti V., Fontana E., Moro E., Gal J. and Desai D.M. (1989) Determination of the enantiomeric composition of salsolinol in biological samples by high-performance liquid chromatography with electrochemical detection. J. Chromatogr, 495, 205–214.PubMedCrossRefGoogle Scholar
  60. Riggin R.M., McCarthy M.J. and Kissinger, P.T. (1976) Identification of salsolinol as a major dopamine metabolite in the banana. J. Agric. Food Chem., 24, 189–191.PubMedCrossRefGoogle Scholar
  61. Robbins J.H. (1968) Alkaloid formation by condensation of biogenic amines with acetaldehyde. Clin. Res, 16, 350–350.Google Scholar
  62. Rommelspacher H. and Susilo R. (1985) Tetrahydroisoquinolines and beta-carbolines: putative natural substances in plants and mammals. Prog. Drug Res, 29, 415–459.PubMedCrossRefGoogle Scholar
  63. Rommelspacher H., Sälistrom Baum S., Dufeu P. and Schmidt L.G. (1995) Determination of (R)- and (S)-salsolinol sulfate and dopamine sulfate levels in plasma of nonalcoholics and alcoholics. Alcohol, 12, 309–315.PubMedCrossRefGoogle Scholar
  64. Sällström Baum S. and Rommelspacher H. (1994) Determination of total dopamine, R- and S-salsolinol in human plasma by cyclodextrin bonded-phase liquid chromatography with electrochemical detection. J. Chromatogr. B, 660, 235–241.CrossRefGoogle Scholar
  65. Sandler M., Carter S.B., Hunter K.R. and Stern G.M. (1973) Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature, 241, 439–443.PubMedCrossRefGoogle Scholar
  66. Sasaoka T., Kaneda N., Niwa T., Hashizume Y. and Nagatsu T. (1988) Analysis of salsolinol in human brain using high-performance liquid chromatography with electrochemical detection. J. Chromatogr, 428, 152–155.PubMedCrossRefGoogle Scholar
  67. Seizinger B.R., Höllt V. and Herz A. (1984) Effects of chronic ethanol treatment on the in vitro biosynthesis of pro-opiomelanocortin and its posttranslational processing to beta-endorphin in the intermediate lobe of the rat pituitary. J. Neurochem., 43, 607–613.PubMedCrossRefGoogle Scholar
  68. Sjöquist B. and Magnuson E. (1980) Analysis of salsolinol and salsoline in biological samples using deuterium-labelled internal standards and gas chromatography — mass spectrometry. J. Chromatogr., 183, 17–24.PubMedCrossRefGoogle Scholar
  69. Sjöquist B., Borg S. and Kvande H. (1981a) Catecholamine derived compounds in urine and cerebrospinal fluid from alcoholics during and after long-standing intoxication. Subst.Alcohol Actions Misuse., 2, 63–72.PubMedGoogle Scholar
  70. Sjöquist B., Borg S. and Kvande H. (1981b) Salsolinol and methylated salsolinol in urine and cerebrospinal fluid from healthy volunteers. Subst. Alcohol Actions Misuse., 2, 73–77.PubMedGoogle Scholar
  71. Sjöquist B., Eriksson A. and Winblad B. (1982) Salsolinol and catecholamines in human brain and their relation to alcoholism. Prog. Clin. Biol. Res., 90, 57–67.PubMedGoogle Scholar
  72. Smythe G.A. and Duncan M.W. (1985) Precise GC/MS assays for salsolinol and tetrahydropapaveroline: the question of artifacts and dietary sources and the influence of alcohol. Prog. Clin. Biol. Res., 183, 77–84.PubMedGoogle Scholar
  73. Strolin Benedetti M., Bellotti V., Pianezzola E., Moro E., Carminati P. and Dostert P. (1989a) Ratio of the R and S enantiomers of salsolinol in food and human urine. J. Neural Transm., 77, 47–53.CrossRefGoogle Scholar
  74. Strolin Benedetti M., Dostert P. and Carminati, P. (1989b) Influence of food intake on the enantiomeric composition of urinary salsolinol in man. J. Neural Transm., 78, 43–51.CrossRefGoogle Scholar
  75. Takahashi T., Deng Y., Maruyama W., Dostert P., Kawai M. and Naoi M. (1994) Uptake of a neurotoxin-candidate, (R)-1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline into human dopaminergic neuroblastoma SH-SY5Y cells by dopamine transport system. J. Neural Transm., 98, 107–118.CrossRefGoogle Scholar
  76. Weiner C. and Collins M. (1978) Tetrahydroisoquinolines derived from catecholamines or dopa: Effects on brain tyrosine hydroxylase activity. Biochem. Pharmacol., 27, 2699–2703.PubMedCrossRefGoogle Scholar
  77. Winkler A., Roske I., Furkert J., Fickel J. and Melzig M.F. (1995) Effects of voluntary ethanol ingestion on the POMC gene expression in the rat pituitary and on the plasma β-endorphin content. Alcohol Alcoholism, 30, 231–238.Google Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2001

Authors and Affiliations

  • Frank Musshoff
    • 1
  1. 1.Institute of Legal MedicineRheinische Friedrich-Wilhelms-UniversityBonnGermany

Personalised recommendations