Biological and genetic markers of alcoholism — a psychiatric perspective

  • Gabi Koller
  • Michael Soyka
Conference paper


With respect to alcoholism the term “marker” often is used misleading. Generally, state markers of alcoholism must be differentiated from trait markers or markers of alcohol intoxication. Trait markers are hereditary, time independent factors. Trait markers persist during the whole time. For alcoholism a number of possible neurochemical and neurophysiological trait markers including the monoaminoxidase-B-activity in platelets, activity of adenylatcyclase, endocrine markers (Cortisol, ACTH, prolactin), dopamin-beta-hydroxylase, evoked potentials (P 300) and ADH/ALDH genotypes have been proposed, but none of these markers has been firmly established. State markers are occuring during the phases of alcohol consumption. State markers such as blood alcohol concentration, CDT, GGT, ASAT, ALAT, MCV, HDL- and VDRL-cholesterol, and others are widely used for diagnosis and screening of alcoholics but both sensitivity and specifity are limited (Gjerde et al., 1988). Also except for MCV, pathologic findings are bound to a relatively fast biological turnover and return to normal values in abstinent patients. Some authors shown association markers for example HLA antigen, blood groups or transketolase.

Alcohol markers of special relevance for psychiatric diagnosis are reviewed in this paper.


Blood Alcohol Concentration Gamma Glutamyl Transferase State Marker ACTH Response Trait Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexopoulos, G. S., Lieberman, K. W., and Frances, R. J. (1983). Platelet MAO activity in alcoholic patients and their first-degree relatives. Am J Psychiatry 140, 1501–4.PubMedGoogle Scholar
  2. Allen, J. P., Litten, R. Z., Anton, R. F., and Cross, G. M. (1994). Carbohydrate-deficient transferrin as a measure of immoderate drinking: remaining issues. Alcohol Clin Exp Res 18, 799–812.PubMedCrossRefGoogle Scholar
  3. Anokhina, I. P., Kogan, B. M., and Drozdov, A. Z. (1988). Disturbances in regulation of catecholamine neuromediation in alcoholism. Alcohol Alcohol 23, 343–50.PubMedGoogle Scholar
  4. Begleiter, H., Porjesz, B., Bihari, B., and Kissin, B. (1984). Event-related brain potentials in boys at risk for alcoholism. Science 225, 1493–6.PubMedCrossRefGoogle Scholar
  5. Blum, K., Noble, E. P., Sheridan, P. J., Montgomery, A., Ritchie, T., Jagadeeswaran, P., Nogami, H., Briggs, A. H., and Cohn, J. B. (1990). Allelic association of human dopamine D2 receptor gene in alcoholism [see comments]. Jama 263, 2055–60.PubMedCrossRefGoogle Scholar
  6. Bolos, A. M., Dean, M., Lucas Derse, S., Ramsburg, M., Brown, G. L., and Goldman, D. (1990). Population and pedigree studies reveal a lack of association between the dopamine D2 receptor gene and alcoholism [see comments]. Jama 264, 3156–60.PubMedCrossRefGoogle Scholar
  7. Chao, Y. C., Liou, S. R., Chung, Y. Y., Tang, H. S., Hsu, C. T., Li, T. K., and Yin, S. J. (1994). Polymorphism of alcohol and aldehyde dehydrogenase genes and alcoholic cirrhosis in Chinese patients. Hepatology 19, 360–6.PubMedCrossRefGoogle Scholar
  8. Clemens MR, S. H., Waller HD, (1986). Serumlipide von Alkoholikern vor und nach Abstinenz: Bedeutung für das Koronarrisiko. L Clin Chem Clin Biochem 24, 369–374.Google Scholar
  9. Cloninger, C. R. (1987). Neurogenetic adaptive mechanisms in alcoholism. Science 236, 410–6.PubMedCrossRefGoogle Scholar
  10. Comings, D. E., Comings, B. G., Muhleman, D., Dietz, G., Shahbahrami, B., Tast, D., Knell, E., Kocsis, P., Baumgarten, R., Kovacs, B. W., and et al. (1991). The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders [see comments]. Jama 266, 1793–800.PubMedCrossRefGoogle Scholar
  11. Connor, S. O., Hesselbrock, V., Tasman, A., and DePalma, N. (1987). P3 amplitudes in two distinct tasks are decreased in young men with a history of paternal alcoholism. Alcohol 4, 323–30.CrossRefGoogle Scholar
  12. Coursey, R. D., Buchsbaum, M. S., and Murphy, D. L. (1982). 2-year follow-up of subjects and their families defined as at risk for psychopathology on the basis of platelet MAO activities. 2-year follow-up of low platelet MAO. Neuropsychobiology 8, 51–6.PubMedCrossRefGoogle Scholar
  13. Dai WS, L. R., Horn DL et al (1985). Alcohol Consumption and High Density Lipoprotein Cholesterol Concentration Among Alcoholics. Am J of Epidemiol 122, 620–628.Google Scholar
  14. De Jong G, v. D. J., van Eijk HG, (1990). The biology of transferrin. Clin Chim Acta 190, 1–46.PubMedCrossRefGoogle Scholar
  15. Devor, E. J., Cloninger, C. R., Kwan, S. W., and Abell, C. W. (1993). A genetic familial study of monoamine oxidase B activity and concentration in alcoholics. Alcohol Clin Exp Res 17, 263–7.PubMedCrossRefGoogle Scholar
  16. Faraj, B. A., Lenton, J. D., Kutner, M., Camp, V. M., Stammers, T. W., Lee, S. R., Lolies, P. A., and Chandora, D. (1987). Prevalence of low monoamine oxidase function in alcoholism. Alcohol Clin Exp Res 11, 464–7.PubMedCrossRefGoogle Scholar
  17. Gabrielli, W. F., Jr., Mednick, S. A., Volavka, J., Pollock, V. E., Schulsinger, F., and Itil, T. M. (1982). Electroencephalograms in children of alcoholic fathers. Psychophysiology 19, 404–7.PubMedCrossRefGoogle Scholar
  18. Gejman, P. V., Ram, A., Gelernter, J., Friedman, E., Cao, Q., Pickar, D., Blum, K., Noble, E. P., Kranzler, H. R., S, O. M., and et al. (1994). No structural mutation in the dopamine D2 receptor gene in alcoholism or schizophrenia. Analysis using denaturing gradient gel electrophoresis. Jama 271, 204–8.PubMedCrossRefGoogle Scholar
  19. Ghosh, P., and Lakshman, M. R. (1997). Chronic ethanol induced impairment of hepatic glycosylation machinery in rat is independent of dietary carbohydrate. Alcohol Clin Exp Res 21, 76–81.PubMedCrossRefGoogle Scholar
  20. Giller, E., Jr., Nocks, J., Hall, H., Stewart, C., Schnitt, J., and Sherman, B. (1984). Platelet and fibro blast monoamine oxidase in alcoholism. Psychiatry Res 12, 339–47.PubMedCrossRefGoogle Scholar
  21. Gjerde, H., Johnsen, J., Bjorneboe, A., Bjorneboe, G. E., and Morland, J. (1988). A comparison ofserum carbohydrate-deficient transferrin with other biological markers of excessive drinking. Scand J Clin Lab Invest 48, 1–6.PubMedGoogle Scholar
  22. Glueck CJ, H. G., Morrison JA, Khoury P, Moore M (1981). Alcohol intake, cigarette smoking and plasma lipidsm and Lipoproteins in 12–19 year old Children. Circulation 64, 48–56.Google Scholar
  23. Gödde HW, A. D. (1989). Alcoholism: Biomedical and genetic aspects. Pergamon Press.Google Scholar
  24. Haffner HT, K. M., Zink P (1988). Veränderung der Leberenzyme im Verlauf einer 36stündigen Alkoholbelastung. Blutalkohol 25, 116–126.PubMedGoogle Scholar
  25. Heegaard, N. H., Hagerup, M., Thomsen, A. C., and Heegaard, P. M. (1989). Concanavalin A crossed affinity immunoelectrophoresis and image analysis for semiquantitative evaluation of microheterogeneity profiles of human serum transferrin from alcoholics and normal individuals. Electrophoresis 10, 836–40.PubMedCrossRefGoogle Scholar
  26. Hultberg B, I. A., Berglund M, Moberg AL, (1991). Serum beta-hexoaminidase isoenzyme: a sensitive marker for alcohol abuse. Alcohol Clin Ex Res 15, 549–5521.CrossRefGoogle Scholar
  27. Karkkainen, P., and Salaspuro, M. (1991). beta-Hexosaminidase in the detection of alcoholism and heavy drinking. Alcohol Alcohol Suppl 1, 459–64.PubMedGoogle Scholar
  28. Lamelle, M., Gelernter, J., and Innis, R. B. (1998). D2 receptors binding potential is not affected by Taql polymorphism at the D2 receptor gene. Mol Psychiatry 3, 261–5.CrossRefGoogle Scholar
  29. Lee, J. F., Lu, R. B., Ko, H. C., Chang, F. M., Yin, S. J., Pakstis, A. J., and Kidd, K. K. (1999). No association between DRD2 locus and alcoholism after controlling the ADH and ALDH genotypes in Chinese Han population. Alcohol Clin Exp Res 23, 592–9.PubMedCrossRefGoogle Scholar
  30. Lesch, O. M., Walter, H., Antal, J., Heggli, D. E., Kovacz, A., Leitner, A., Neumeister, A., Stumpf, I., Sundrehagen, E., and Kasper, S. (1996). Carbohydrate-deficient transferrin as a marker of alcohol intake: a study with healthy subjects. Alcohol Alcohol 31, 265–71.PubMedGoogle Scholar
  31. Lykouras, E., Moussas, G., and Markianos, M. (1987). Platelet monoamine oxidase and plasma dopamine-beta-hydroxylase activities in non-abstinent chronic alcoholics. Relation to clinical parameters. Drug Alcohol Depend 19, 363–8.Google Scholar
  32. MA, S. (1989). Biomedical and genetic markers of alcoholism. Goedde HW, Agarwl DP, Alcoholism: biomedical and genetic aspects, 290–302.Google Scholar
  33. Murphy, D. L., Redmond, D. E., Jr., Garrick, N., and Baulu, J. (1979). Brain region differences and some characteristics of monoamine oxidase type A and B activities in the vervet monkey. Neuro-chem Res 4, 53–62.Google Scholar
  34. Nielsen, D. A., Virkkunen, M., Lappalainen, J., Eggert, M., Brown, G. L., Long, J. C., Goldman, D., and Linnoila, M. (1998). A tryptophan hydroxylase gene marker for suicidality and alcoholism. Arch Gen Psychiatry 55, 593–602.PubMedCrossRefGoogle Scholar
  35. Nilssen, O., Huseby, N. E., Hoyer, G., Brenn, T., Schirmer, H., and Forde, O. H. (1992). New alcohol markers-how useful are they in population studies: the Svalbard Study 1988–89. Alcohol Clin Exp Res 16, 82–6.PubMedCrossRefGoogle Scholar
  36. Noble, E. P., Blum, K., Ritchie, T., Montgomery, A., and Sheridan, P. J. (1991). Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry 48, 648–54.PubMedCrossRefGoogle Scholar
  37. Pandey, G. N., Fawcett, J., Gibbons, R., Clark, D. C., and Davis, J. M. (1988). Platelet monoamine oxidase in alcoholism. Biol Psychiatry 24, 15–24.PubMedCrossRefGoogle Scholar
  38. Parsian, A., Todd, R. D., Cloninger, C. R., Hoffman, P. L., Ovchinnikova, L., Ikeda, H., and Tabakoff, B. (1996). Platelet adenylyl cyclase activity in alcoholics and subtypes of alcoholics. WHO/ISBRA Study Clinical Centers. Alcohol Clin Exp Res 20, 745–51.Google Scholar
  39. Parsian, A., Todd, R. D., Devor, E. J., KL, O. M., Suarez, B. K., Reich, T., and Cloninger, C. R. (1991). Alcoholism and alleles of the human D2 dopamine receptor locus. Studies of association and linkage. Arch Gen Psychiatry 48, 655–63.PubMedCrossRefGoogle Scholar
  40. Patterson, B. W., Williams, H. L., McLean, G. A., Smith, L. T., and Schaeffer, K. W. (1987). Alcoholism and family history of alcoholism: effects on visual and auditory event-related potentials. Alcohol 4, 265–74.PubMedCrossRefGoogle Scholar
  41. Pauly, T., Dahmen, N., Szegedi, A., Wetzel, H., Bol, G. F., Ferdinand, K., and Hiemke, C. (1999). Blood ethanol levels and adenylyl cyclase activity in lymphocytes of alcoholic patients. Biol Psychiatry 45, 489–93.PubMedCrossRefGoogle Scholar
  42. Pfefferbaum, A., Ford, J. M., White, P. M., and Mathalon, D. (1991). Event-related potentials in alcoholic men: P3 amplitude reflects family history but not alcohol consumption. Alcohol Clin Exp Res 15, 839–50.PubMedCrossRefGoogle Scholar
  43. Polich, J., and Bloom, F. E. (1988). Event-related brain potentials in individuals at high and low risk for developing alcoholism: failure to replicate. Alcohol Clin Exp Res 12, 368–73.PubMedCrossRefGoogle Scholar
  44. Porjesz, B., and Begleiter, H. (1981). Human evoked brain potentials and alcohol. Alcohol Clin Exp Res 5, 304–17.PubMedCrossRefGoogle Scholar
  45. Preuss, U. W., Frodl Bauch, T., Benda, E., Soyka, M., Moller, H., and Hegerl, U. (1999). Late auditory evoked potentials (P300) do not discriminate between subgroups of alcohol-dependent patients defined by family history and antisocial personality traits. Eur J Med Res 4, 114–20.PubMedGoogle Scholar
  46. Propping, P. (1977). Genetic control of ethanol action on the central nervous system. An EEG study in twins. Hum Genet 35, 309–34.PubMedCrossRefGoogle Scholar
  47. Rommelspacher, H., May, T., Dufeu, P., and Schmidt, L. G. (1994). Longitudinal observations of monoamine oxidase B in alcoholics: differentiation of marker characteristics. Alcohol Clin Exp Res 18, 1322–9.PubMedCrossRefGoogle Scholar
  48. Sander, T., Harms, H., Podschus, J., Finckh, U., Nickel, B., Rolfs, A., Rommelspacher, H., and Schmidt, L. G. (1995). Dopamine D1, D2 and D3 receptor genes in alcohol dependence. Psychiatr Genet 5, 171–6.PubMedCrossRefGoogle Scholar
  49. Sander, T., Ladehoff, M., Samochowiec, J., Finckh, U., Rommelspacher, H., and Schmidt, L. G. (1999). Lack of an allelic association between polymorphisms of the dopamine D2 receptor gene and alcohol dependence in the German population. Alcohol Clin Exp Res 23, 578–81.PubMedCrossRefGoogle Scholar
  50. Schuckit, M. A. (1985). Ethanol-induced changes in body sway in men at high alcoholism risk. Arch Gen Psychiatry 42, 375–9.PubMedCrossRefGoogle Scholar
  51. Schuckit MA, I. M., Monteiro MG, (1988). Differences in intensity of Reaction to Ethanol in Children of Alcoholics and Controls. Proceedings of 4th ISBRA Congres, Kyoto, 453–457.Google Scholar
  52. Shibuya, A., and Yoshida, A. (1988). Genotypes of alcohol-metabolizing enzymes in Japanese with alcohol liver diseases: a strong association of the usual Caucasian-type aldehyde dehydrogenase gene (ALDH1(2)) with the disease [published erratum appears in Am J Hum Genet 1989 Apr;44(4):619]. Am J Hum Genet 43, 744–8.PubMedGoogle Scholar
  53. Sillanaukee P, S. K., Koivula T, (1993). Effect ofacetaldhyde on hemoglobin: HbA1c act as a potential marker of heavy drinking. Alcohol 8, 377–381.CrossRefGoogle Scholar
  54. Soyka, M. (1995). Die Alkoholkrankheit-Diagnostik und Therapie (Weinheim: Chapman&Hall).Google Scholar
  55. Soyka, M. (1999). Klinische Alkoholismusdiagnostik, Steinkopff, ed. (Darmstadt: Soyka, M).Google Scholar
  56. Soyka, M., Bondy, B., Benda, E., Preuss, U., Hegerl, U., Möller, H. J.. Platelet monoamine, oxidase activity in alcoholics with and without a histroy of alcoholism. Euv Addict Res. 6, 57–63 (2000)CrossRefGoogle Scholar
  57. Stibler, H. (1991). Carbohydrate-deficient transferrin in serum: a new marker of potentially harmful alcohol consumption reviewed. Clin Chem 37, 2029–37.PubMedGoogle Scholar
  58. Stibler, H., and Borg, S. (1991). Glycoprotein glycosyltransferase activities in serum in alcohol-abusing patients and healthy controls. Scand J Clin Lab Invest 51, 43–51.PubMedCrossRefGoogle Scholar
  59. Stibler, H., Borg, S., and Joustra, M. (1986). Micro anion exchange chromatography of carbohydrate-deficient transferrin in serum in relation to alcohol consumption (Swedish Patent 8400587–5). Alcohol Clin Exp Res 10, 535–44.PubMedCrossRefGoogle Scholar
  60. Storey, E. L., Mack, U., Powell, L. W., and Halliday, J. W. (1985). Use of chromatofocusing to detect a transferrin variant in serum of alcoholic subjects. Clin Chem 31, 1543–5.PubMedGoogle Scholar
  61. Tabakoff, B., Hoffman, P. L., Lee, J. M., Saito, T., Willard, B., and De Leon Jones, F. (1988). Differences in platelet enzyme activity between alcoholics and nonalcoholics. N Engl J Med 318, 134–9.PubMedCrossRefGoogle Scholar
  62. Taskinen MR, V. M., Nikkilä EA et al. (1982). High density lipoprotein subfractions and postheparin plasma lipases in alcoholic men before and after alcohol withdrawal. Metaboilsm 31, 1168–1171.CrossRefGoogle Scholar
  63. Valverius, P., Hoffman, P. L., and Tabakoff, B. (1988). Effects of chronic ethanol ingestion on mouse brain beta-adrenergic receptors (BAR) and adenylate cyclase. Adv Alcohol Subst Abuse 7, 99–101.PubMedCrossRefGoogle Scholar
  64. Van Noort, W. L., de Jong, G., and van Eijk, H. G. (1994). Purification of isotransferrins by concanavalin A sepharose chromatography and preparative isoelectric focusing. Eur J Clin Chem Clin Biochem 32, 885–92.PubMedGoogle Scholar
  65. Van Noort WL, d. J. G., van Eijk HG, (1994). Purification of isotransferrins by concanavalin. A sepharose Chromatographie and preparative isoelectric focussing. Eur J of Clin Chem Clin Biochem 32, 885–892.Google Scholar
  66. Vescovi, P. P., and Coiro, V. (1997). Effects of thyrotropin-releasing hormone and metoclopramide on PRL secretion in normally cycling and amenorrheic alcoholic women. Drug Alcohol Depend 45, 115–9.PubMedCrossRefGoogle Scholar
  67. Virkkunen, M., Goldman, D., Nielsen, D. A., and Linnoila, M. (1995). Low brain serotonin turnover rate (low CSF 5-HIAA) and impulsive violence. J Psychiatry Neurosci 20, 271–5.PubMedGoogle Scholar
  68. Von Knorring, A. L., Hallman, J., von Knorring, L., and Oreland, L. (1991). Platelet monoamine oxidase activity in type 1 and type 2 alcoholism. Alcohol Alcohol 26, 409–16.Google Scholar
  69. Wall, T. L., Nemeroff, C. B., Ritchie, J. C., and Ehlers, C. L. (1994). Cortisol responses following placebo and alcohol in Asians with different ALDH2 genotypes. J Stud Alcohol 55, 207–13.PubMedGoogle Scholar
  70. Waltman, C., McCaul, M. E., and Wand, G. S. (1994). Adrenocorticotropin responses following administration of ethanol and ovine corticotropin-releasing hormone in the sons of alcoholics and control subjects. Alcohol Clin Exp Res 18, 826–30.PubMedCrossRefGoogle Scholar
  71. Wand, G. S., Mangold, D., and Ali, M. (1999). Adrenocorticotropin responses to naloxone in sons of alcohol-dependent men. J Clin Endocrinol Metab 84, 64–8.PubMedCrossRefGoogle Scholar
  72. Whipple, S. C., Berman, S. M., and Noble, E. P. (1991). Event-related potentials in alcoholic fathers and their sons. Alcohol 8, 321–7.PubMedCrossRefGoogle Scholar
  73. Wiberg, A., Wahlstroom, G., and Oreland, L. (1977). Brain monoamine oxidase activity after chronic ethanol treatment of rats. Psychopharmacology Berl 52, 111–3.PubMedCrossRefGoogle Scholar
  74. Yates, W. R., Wilcox, J., Knudson, R., Myers, C., and Kelly, M. W. (1990). The effect of gender and subtype on platelet MAO in alcoholism. J Stud Alcohol 51, 463–7.PubMedGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2001

Authors and Affiliations

  • Gabi Koller
    • 1
  • Michael Soyka
    • 1
  1. 1.Psychiatric DepartementLudwig-Maximilians Universität MünchenMunichGermany

Personalised recommendations