Advertisement

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aarsland D, Larsen JP, Reinvang I, Aasland AM. Effects of cholinergic blockade on language in healthy young women. Implications for the cholinergic hypothesis in dementia of the Alzheimer type. Brain 1994, 117: 1377–1384PubMedCrossRefGoogle Scholar
  2. Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Krystal J. The role of serotonin in the pathophysiology and treatment of schizophrenia. J Neuropsychiatry Clin Neurosci 1997, 9: 1–17PubMedGoogle Scholar
  3. Adams RD, Victor M. The neurology of aging. In: Adams RD, Victor M (Hrsg) Principles of Neurology. McGraw-Hill New York 1993: 526-536Google Scholar
  4. Adler LE, Waldo MC, Tatcher A, Cawthra E, Baker N, Freedman R. Lack of relationship of auditory gating defects to negative symptoms in schizophrenia. Schizophr Res 1990, 3: 131–138PubMedCrossRefGoogle Scholar
  5. Adler LE, Hoffer LJ, Griffith J, Waldo MC, Freedman R. Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psychiatry 1992, 32: 607–616PubMedCrossRefGoogle Scholar
  6. Adler LE, Hoffer LD, Wiser A, Freedman R. Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 1993, 150: 1856–1861PubMedGoogle Scholar
  7. Akbarian S, Bunney WE, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 1993a, 50: 169–177PubMedCrossRefGoogle Scholar
  8. Akbarian S, Viñuela A, Kim JJ, Potkin SG, Bunney WE, Jones EG. Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 1993b, 50: 178–187PubMedCrossRefGoogle Scholar
  9. Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney WE, Jones EG. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex 1995a, 5: 550–560PubMedCrossRefGoogle Scholar
  10. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jones EG. Gene expression for glutamaic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995b, 52: 258–266PubMedCrossRefGoogle Scholar
  11. Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE, Jones EG. Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 1996a, 53: 425–436PubMedCrossRefGoogle Scholar
  12. Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, Potkin SG, Sandman CA, Bunney WE, Jones EG. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1996b, 16: 19–30Google Scholar
  13. Akil HA, Morano MI. Stress. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology: The fourth generation of progress. Raven Press New York 1995: 773–785Google Scholar
  14. Alberch J, Pérez-Navarro E, Arenas E, Marsal J. Involvement of nerve growth factor and ist receptor in the regulation of the cholinergic function in aged rats. J Neurochem 1991a, 57: 1483–1487PubMedCrossRefGoogle Scholar
  15. Alberch J, Carman-Krzan M, Fabrazzo M, Wise BC. Chronic treatment with scopolamine and physostigmine changes nerve growth factor (NGF) receptor density and NGF content in rat brain. Brain Res 1991b, 542: 233–240PubMedCrossRefGoogle Scholar
  16. Alberts MJ, Pericak-Vance MA, Royal V, Bebout J, Gaskell P, Thomas J. Genetic linkage analysis of nerve growth factor (beta) in familial Alzheimer’s disease. Ann Neurol 1991, 30: 216–219PubMedCrossRefGoogle Scholar
  17. Aldenhoff J. Überlegungen zur Psychobiologie der Depression. Nervenarzt 1997, 68: 379–389PubMedCrossRefGoogle Scholar
  18. Allen SJ, Dawbarn D, Spillantini MG, Goedert M, Wilcock GK, Moss TH, Semenenko FM. Distribution of β-nerve growth factor receptors in the human basal forebrain. J Comp Neurol 1989, 289: 626–640PubMedCrossRefGoogle Scholar
  19. Allen SJ, Macgowan SH, Treanor JJS, Feeney R, Wilcock GK, Dawbarn D. Normal β-NGF content in Alzheimer’s disease cerebral cortex and hippocampus. Neurosci Lett 1991, 131: 135–139PubMedCrossRefGoogle Scholar
  20. Allendoerfer KL, Cabelli RJ, Escandon E, Kaplan DR, Nikolics K, Shatz C. Regulation of neurotrophin receptors during the maturation of the mammalian visual system. J Neurosci 1994, 14: 1795–1811PubMedGoogle Scholar
  21. Alleva E, Aloe L, Bigi S. An updated role for nerve growth factor in neurobehavioral regulation of adult vertebrates. Rev Neurosci 1993, 4: 41–62PubMedCrossRefGoogle Scholar
  22. Alleva E, Petruzzi S, Cirulli F, Aloe L. NGF regulatory role in stress and coping of rodents and humans. Pharmacol Biochem Behav 1996a, 54: 65–72PubMedCrossRefGoogle Scholar
  23. Alleva E, Della Seta D, Cirulli F, Aloe L. Haloperidol treatment decreases nerve growth factor levels in the hypothalamus of adult mice. Prog Neuro-Psychopharmacol Biol Psychiatry 1996b, 20: 483–489CrossRefGoogle Scholar
  24. Alleva E, Aloe L, Cirulli F, Della-Seta D, Tirassa P. Serum NGF levels increase during lactation and following maternal aggression in mice. Physiol Behav 1996c, 59: 461–466PubMedCrossRefGoogle Scholar
  25. Alleva E, Cirulli F, Santucci D, Manni L, Aloe L. Haloperidol effects on NGF-controlled CNS functions in adult mice and humans. Biol Psychiatry 1997, 42: 173SCrossRefGoogle Scholar
  26. Aloe L. The effect of nerve growth factor and its antibody on mast cells in vivo. J Neuroimmunol 1988, 18: 1–12PubMedCrossRefGoogle Scholar
  27. Aloe L. Adrenalectomy decreases nerve growth factor in young adult rat hippocampus. Proc Natl Acad Sci USA 1989, 86: 5636–5640PubMedCrossRefGoogle Scholar
  28. Aloe L, Alleva E, Böhm A, Levi-Montalcini R. Aggressive behavior induces release of nerve growth factor from mouse salivary gland into the blood stream. Proc Natl Acad Sci USA 1986, 83: 6184–6187PubMedCrossRefGoogle Scholar
  29. Aloe L, Alleva E, De Simone R. Changes of NGF level in mouse hypothalamus following intermale aggressive behavior: biological and immunohistochemical evidence. Behav Brain Res 1990, 39: 53–61PubMedCrossRefGoogle Scholar
  30. Aloe L, Tirassa P. The effet of long-term alcohol intake on brain NGF-target cells of aged rats. Alcohol 1992, 9: 299–304PubMedCrossRefGoogle Scholar
  31. Aloe L, Tuveri MA, Carcassi U, Levi-Montalcini R. Nerve growth factor in the synovial fluid of patients with chronic arthritis. Arthritis Rheum 1992, 35: 351–355PubMedCrossRefGoogle Scholar
  32. Aloe L, Bracci-Laudiero L, Alleva E, Lambiase A, Micera A, Tirassa P. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes. Proc Natl Acad Sci USA 1994a, 91: 10440–10444PubMedCrossRefGoogle Scholar
  33. Aloe L, Marine S, Bersani G, Bracci-Laudiero L, Tirassa P, Musi B, Alleva E. I livelli basali di NGF plasmatico aumentano in pazienti schizofrenici. Rivista di Psichiatria 1994b, 29: 77–79Google Scholar
  34. Aloe L, Tirassa P, Alleva E. Cold water swimming stress alters NGF and low-affinity NGF receptor distribution in developing rat brain. Brain Res Bull 1994c, 33: 173–178PubMedCrossRefGoogle Scholar
  35. Aloe L, Musi B, Micera A, Santucci D, Tirassa P, Alleva E. NGF antibody production as a result of repeated psychosocial stress in adult mice. Neurosci Res Commun 1995a, 16: 19–28Google Scholar
  36. Aloe L, Probert L, Kollias G, Micera A, Tirassa P. Effect of NGF antibodies on mast cell distribution, histamine and substance P levels in the knee joint of TNF-arthritic transgenic mice. Rheumatol Int 1995b, 14: 249–252PubMedCrossRefGoogle Scholar
  37. Aloe L, Tuveri MA, Guerra G, Pinna L, Tirassa P, Micera A, Alleva E. Changes in human plasma nerve growth factor level after chronic alcohol consumption and withdrawal. Alcohol Clin Exp Res 1996, 20: 462–465PubMedCrossRefGoogle Scholar
  38. Altar CA. Nerve growth factor and neostriatum. Prog Neuro Psychopharmacol Biol Psychiatr 1991, 15: 157–169Google Scholar
  39. Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie und psychisch-gerichtliche Medizin 1907, 64: 146–148Google Scholar
  40. Alzheimer A. Über eigenartige Krankheitsfälle des späteren Alters. Zeitschrift für die gesamte Neurologie und Psychiatrie 1911, 4: 356–385CrossRefGoogle Scholar
  41. Amann R, Schuligoi R, Herzeg G, Donnerer J. Intraplantar injection of nerve growth factor into the rat hind paw: local edema and effects on thermal nociceptive threshold. Pain 1996, 64: 323–329PubMedCrossRefGoogle Scholar
  42. Amaral DG, Kurz J. An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 1985, 240: 37–59PubMedCrossRefGoogle Scholar
  43. Anand P. Nerve growth factor regulates nociception in human health and disease. Brit J Anaesth 1995, 75: 201–208PubMedGoogle Scholar
  44. Anand P. Neurotrophins and peripheral neuropathy. Philos T Roy Soc B 1996, 351: 449–454CrossRefGoogle Scholar
  45. Anand P, Rudge P, Mathias CJ, Springall DR, Ghatei MA, Naher-Noe M, Sharief M, Misra VP, Polak JM, Bloom SR, Thomas PK. A new autonomic and sensory neuropathy with loss of adrenergic sympathetic function and sensory neuropeptides. Lancet 1991, 337: 1353–1355CrossRefGoogle Scholar
  46. Anand P, Pandya S, Ladiwala U, Singhal B, Sinicropi DV, Williams-Chestnut RE. Depletion of nerve growth factor in leprosy. Lancet 1994, 344: 129–130PubMedCrossRefGoogle Scholar
  47. Anand P, Foley P, Navsaria HA, Sinicropi D, Williams-Chestnut RE, Leigh IM. Nerve growth factor levels in cultured human skin cells: effect of gestation and viral transformation. Neurosci Lett 1995a, 184: 157–160PubMedCrossRefGoogle Scholar
  48. Anand P, Parrett A, Martin J, Zeman S, Foley P, Swash M, Leigh PN, Cedarbaum JM, Lindsay RM, Williams-Chestnut RE, Sinicropi DV. Regional changes of ciliary neurotrophic factor and nerve growth factor levels in post mortem spinal cord and cerebral cortex from patients with motor disease. Nature Med 1995b, 1: 168–172PubMedCrossRefGoogle Scholar
  49. Anand P, Terenghi G, Warner G, Kopelman P, Williams-Chestnut RE, Sinicropi DV. The role of endogenous nerve growth factor in human diabetic neuropathy. Nature Med 1996, 2: 703–707PubMedCrossRefGoogle Scholar
  50. Anders D. Nerve growth factor (NGF) im Humanserum — Die mögliche Bedeutung von NGF in der Psychiatrie. Vom Habilitanden betreute Dissertation an der Freien Universität Berlin 1998Google Scholar
  51. Anderson KD, Alderson RF, Altar A, DiStefano PS, Corcoran TL, Lindsay RM, Wiegand SJ. Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. J Comp Neurol 1995, 357: 296–317PubMedCrossRefGoogle Scholar
  52. Andreev NY, Demitrieva N, Koltzenburg M, McMahon SB. Peripheral administration of nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence of sympathetic post-ganglionic neurones. Pain 1995, 63: 109–115PubMedCrossRefGoogle Scholar
  53. Andrews TJ, Cowen T. In vivo infusion of NGF induces the organotypic regrowth of perivascular nerves following their atrophy in aged rats. J Neurosci 1994, 14: 3048–3058PubMedGoogle Scholar
  54. Ang LC, Shul DD. Peptidergic neurons of subcortical white matter in aging and Alzheimer’s brain. Brain Res 1995, 674: 329–335PubMedCrossRefGoogle Scholar
  55. Angelucci L, Ramacci MT, Taglialatela G, Hulsebosch C, Morgan B, Werrbach-Perez K, Perez-Polo R. Nerve growth factor binding in aged rat central nervous system: effect of acetyl-L-carnitine. J Neurosci Res 1988, 20: 491–496PubMedCrossRefGoogle Scholar
  56. Anton ES, Weskamp G, Reichardt LF, Matthew WD. Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sci USA 1994, 91: 2795–2799PubMedCrossRefGoogle Scholar
  57. Antuono P, Sorbi S, Bracco L, Fusco T, Amaducci L. A discrete sampling technique in senile dementia of the Alzheimer type and alcoholic dementia: study of the cholinergic system. In: Amaducci L, Davison AN, Antuono P (Hrsg) Aging of the Brain and Dementia. Raven Press New York 1980: 151–158Google Scholar
  58. Aoyagik, Bergsten P, Eriksson UJ, Ebendal T, Hellerström C. In vitro regulation of insulin release and biosynthesis of fetal rat pancreatic cells explanted on pregnancy day 16. Biol Neonate 1997, 71: 60–68CrossRefGoogle Scholar
  59. Apfel SC, Lipton RB, Arezzo JC, Kessler JA. Nerve growth factor prevents toxic neuropathy in mice. Ann Neurol 1991; 29: 87–90PubMedCrossRefGoogle Scholar
  60. Apfel SC, Arezzo JC, Lipson LA, Kessler JA. Nerve growth factor prevents experimental cisplatin neuropathy. Ann Neurol 1992; 31: 76–80PubMedCrossRefGoogle Scholar
  61. Apfel SC, Arezzo JC, Brownlee M, Federoff H, Kessler JA. Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res 1994, 634: 7–12PubMedCrossRefGoogle Scholar
  62. Apfel SC, Kessler JA. Neurotrophic factors in the therapy of peripheral neuropathy. Bailliere Clin Neur 1995, 4: 593–606Google Scholar
  63. Apfel SC, Kessler JA. Neurotrophic factors in the treatment of peripheral neuropathy. Ciba Found Symp 1996, 196: 98–112PubMedGoogle Scholar
  64. Apfel S, Adornato B, Cornblath D, Kessler J, Petty B, Chaudry V, Schwartz S, Rask C. Clinical trial of recombinant human nerve growth factor (rhNGF) in peripheral neuropathy. Neurology 1995; 45 (Suppl. 4): 424SGoogle Scholar
  65. Apfel SC, Wright DE, Wiideman AM, Dormia C, Snider WD, Kessler JA. Nerve growth factor regulates the expression of brain-derived neurotrophic factor mRNA in the peripheral nervous system. Mol Cell Neurosci 1996, 7: 134–142PubMedCrossRefGoogle Scholar
  66. Appel SH. A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer’s disease. Ann Neurol 1981, 10: 499–505PubMedCrossRefGoogle Scholar
  67. Araujo DM, Lapchak PA, Robitaille Y, Gauthier S, Quirion R. Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 1988, 50: 1914–1923PubMedCrossRefGoogle Scholar
  68. Arbesfeld SJ, Kurban AK. Behçet’s disease. New perspectives on an enigmatic syndrome. J Am Acad Dermatol 1988, 19: 767–779PubMedCrossRefGoogle Scholar
  69. Arendt T, Bigl V, Arendt A, Tennstedt A. Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, palalysis agitans and Korsakoff’s disease. Acta Neuropathol 1983, 61: 101–108PubMedCrossRefGoogle Scholar
  70. Arendt T, Taubert G, Bigl V, Arendt A. Amyloid deposition in the nucleus basalis of Meynert complex: a topographic marker for degenerating cell clusters in Alzheimer’s disease. Acta Neuropathol 1988a, 75: 226–232PubMedCrossRefGoogle Scholar
  71. Arendt T, Allen Y, Sinden J, Schugens MM, Marchbanks RM, Lantos PL, Gray JA. Cholinergic-rich brain transplants reverse alcohol-induced memory deficits. Nature 1988b, 332: 448–450PubMedCrossRefGoogle Scholar
  72. Arendt T, Hennig D, Gray JA, Marchbanks RM. Loss of neurons in the rat basal forebrain cholinergic projecton system after a prolonged intake of ethanol. Brain Res Bull 1988c, 21: 563–570PubMedCrossRefGoogle Scholar
  73. Arendt T, Allen Y, Marchbanks RM, Schugens MM, Sinden J, Lantos PL, Gray JA. Cholinergic system and memory in the rat: effects of chronic ethanol, embryonic basal forebrain brain transplants and excitotoxic lesions of cholinergic basal forebrain projection system. Neuroscience 1989, 33: 435–462PubMedCrossRefGoogle Scholar
  74. Arendt T, Brückner MK. Perisomatic sprouts immunoreactive for nerve growth factor receptor and neurofibrillary degeneration affect different neuronal populations in the basal nucleus in patients with Alzheimer’s disease. Neurosci Lett 1992, 148: 63–66PubMedCrossRefGoogle Scholar
  75. Arendt T. The cholinergic deafferentation of the cerebral cortex induced by chronic consumption of alcohol: reversal by cholinergic drugs and transplantation. In: Hunt WA, Nixon SJ (Hrsg) Alcohol-induced Brain Demage. Rockvill: U.S. Department of Health and Human Services. Nih Publication No. 93-3549, 1993: 431-460Google Scholar
  76. Arendt T. Impairment in memory function and neurodegenerative changes in the cholinergic basal forebrain system induced by chronic intake of ethanol. J Neural Transm [Suppl] 1994, 44: 173–187Google Scholar
  77. Arendt T, Brückner MK, Pagliusi S, Krell T. Degeneration of rat cholinergic basal forebrain neurons and reactive changes in nerve growth factor expression after chronic neurotoxic injury — I. Degeneration and plastic response of basal forebrain neurons. Neuroscience 1995a, 65: 633–645PubMedCrossRefGoogle Scholar
  78. Arendt T, Brückner MK, Krell T, Pagliusi S, Kruska L, Heumann R. Degeneration of rat cholinergic basal forebrain neurons and reactive changes in nerve growth factor expression after chronic neurotoxic injury — II. Reactive expression of nerve growth factor gene in astrocytes. Neuroscience 1995b, 65: 647–659PubMedCrossRefGoogle Scholar
  79. Arinami T, Takekoshi K, Itokawa M, Hamaguchi H, Toru M. Failure to find associations of the CA repeat polymorphism in the first intron and the Gly-63/Glu-63 polymorphism of the neurotrophin-3 gene with schizophrenia. Psychiatr Genet 1996, 6: 13–15PubMedCrossRefGoogle Scholar
  80. Arnold SE, Franz BR, Gur RC, Gur RE, Shapiro RM, Moberg PJ, Trojanowski JQ. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am J Psychiatry 1995, 152: 738–748PubMedGoogle Scholar
  81. Ashe JH, Mckenna TM, Weinberger NM. Cholinergic modulation of frequency receptive fields in auditory cortex: II. Frequency-specific effects of anticholinesterases provide evidence for a modulatory action of endogenous ACh. Synapse 1989, 4: 44–54PubMedCrossRefGoogle Scholar
  82. Assouline JG, Bosch P, Lim R, Kim SI, Jensen R, Pantazis NJ. Rat astrocytes and Schwann cells in culture synthesize nerve growth factor-like neurite-promoting factors. Dev Brain Res 1987, 31: 103–108CrossRefGoogle Scholar
  83. Atouf F, Tazi A, Polak M, Czernichow P, Scharfmann R. Dexamethason regulates the expression of neuronal properties of a rat insulinoma cell line. J Neuroendocrinol 1995, 7: 957–964PubMedCrossRefGoogle Scholar
  84. Auburger G, Heumann R, Hellweg R, Korsching S, Thoenen H. Developmental changes of nerve growth factor and its mRNA in the rat hippocampus: comparison with choline acetyltransferase. Des Biol 1987, 120: 322–328Google Scholar
  85. Avrameas S, Ternynck T. Enzyme linked immunosorbent assay (ELISA). In: Roitt IM, Delves PJ (Hrsg) Encyclopedia of immunology. Academic Press London 1992, 508–510Google Scholar
  86. Ayer-Lelievre CS, Ebendal T, Olson L, Seiger A. Localization of nerve growth factor-like immunoreactivity in rat nervous tissue. Med Biol 1983, 61: 296–304PubMedGoogle Scholar
  87. Averill S, McMahon SB, Clary DO, Reichardt LF, Priestley JV. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur J Neurosci 1995, 7: 1484–1494PubMedCrossRefGoogle Scholar
  88. Awatsuji H, Furukawa Y, Hirota M, Furukawa S, Hayashi K. Interferons suppress nerve growth factor synthesis as a result of interference with cell growth in astrocytes cultured from neonatal mouse brain. J Neurochem 1995, 64: 1476–1482PubMedCrossRefGoogle Scholar
  89. Azevedo I, Sarmento A. Stress and the blood brain barrier. Nature Med 1997, 3: 253PubMedGoogle Scholar
  90. Bäckman C, Biddle PT, Ebendal T, Friden PM, Gerhardt GA, Henry MA, Mackerlova L, Söderström S, Strömberg I, Walus L, Hoffer BJ, Granholm AC. Effects of transferrin receptor antibody-NGF conjugate on young and aged septal transplants in oculo. Exp Neurol 1995, 132: 1–15PubMedCrossRefGoogle Scholar
  91. Bäckman C, Rose GM, Hoffer BJ, Henry MA, Bartus RT, Friden P, Granholm AC. Systemic administration of a nerve growth factor conjugate reverses age-related cognitive dysfunction and prevents cholinergic neuron atrophy. J Neurosci 1996, 16: 5437–5442PubMedGoogle Scholar
  92. Baek JK, Heaton MB, Walker DW. Chronic alcohol ingestion: nerve growth factor gene expression and neurotrophic activity in rat hippocampus. Alcohol Clin Exp Res 1994, 18: 1368–1376PubMedCrossRefGoogle Scholar
  93. Baethge CJ. NGF-Konzentration und chronische Alkoholexposition: Eine tierexperimentelle Untersuchung des peripheren Nervensystems und NGF-produzierender Zielgewebe. Vom Habilitanden betreute Dissertation an der Freien Universität Berlin 1997Google Scholar
  94. Baeuerle PA, Henkel T. Function and activation of NF-κB in the immune system. Annu Rev Immunol 1994, 12: 141–179PubMedCrossRefGoogle Scholar
  95. Bagetta G, Corasaniti MT, Aloe L, Berliocchi L, Costa N, Finazzi-Agrò A, Nisticò G. Intracerebral injection of human immunodeficiency virus type 1 coat protein gp 120 differentially affects the expression of nerve growth factor and nitric oxide synthase in the hippocampus of rat. Proc Natl Acad Sci USA 1996, 93: 928–933PubMedCrossRefGoogle Scholar
  96. Baker FH, Grigg P, Von Noorden GK. Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal. Brain Res 1974, 66: 185–208CrossRefGoogle Scholar
  97. Ballarin M, Ernfors P, Lindefors N, Persson H. Hippocampal damage and kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in the rat brain. Exp Neurol 1991, 114: 35–43PubMedCrossRefGoogle Scholar
  98. Banks WA, Ortiz L, Plotkin SR, Kastin AJ. Human interleukin (IL) 1α, murine IL-1α, and murine IL-1β are transported from blood to brain in the mouse by a shared saturable mechanism. J Pharmacol Exp Ther 1991, 259: 988–996PubMedGoogle Scholar
  99. Bannon AW, Curzon P, Gunther KL, Decker MW. Effects of intraseptal injection of 192-IgG-saporin in mature and aged long-evans rats. Brain Res 1996, 718: 25–36PubMedCrossRefGoogle Scholar
  100. Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol 1994, 25: 1386–1403PubMedCrossRefGoogle Scholar
  101. Barbacid M. Neurotrophic factors and their receptors. Curr Opin Cell Biol 1995, 7: 148–155PubMedCrossRefGoogle Scholar
  102. Barbany G, Persson H. Regulation of neurotrophin mRNA expression in the rat brain by glucocorticoids. Eur J Neurosci 1992, 4: 396–403PubMedCrossRefGoogle Scholar
  103. Barde YA. Trophic factors and neuronal survival. Neuron 1989, 2: 1525–1534PubMedCrossRefGoogle Scholar
  104. Barde YA. Neurotrophic factors: an evolutionary perspective. J Neurobiol 1994, 25: 1329–1333PubMedCrossRefGoogle Scholar
  105. Barde YA. Biological roles of neurotrophins. In: Hefti F (Hrsg) Handbook of experimental pharmacology, Vol 34: Neurotrophic factors. Springer Berlin Heidelberg 1998: 1–31Google Scholar
  106. Barden N, Reul JMH, Holsboer F. Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system? Trends Neurosci 1995, 18: 6–11PubMedCrossRefGoogle Scholar
  107. Barinaga M. Neurotrophic factors enter the clinic. Science 1994, 264: 772–774PubMedCrossRefGoogle Scholar
  108. Barr ML, Kiernan JA. The human nervous system. Lippincott Philadelphia 1993, 6. Aufl.: 31Google Scholar
  109. Barrett GL, Bartlett PF. The p75 nerve growth factor receptor mediates survival and death depending on the stage of sensory neuron development. Proc Natl Acad Sci USA 1994, 91: 6501–6505PubMedCrossRefGoogle Scholar
  110. Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217: 408–417PubMedCrossRefGoogle Scholar
  111. Batra A, Wegerer C, Bartels M, Günthner A, Mann K, Schott K. Antibody reactivity in serum against neuropeptides in mental disorder. A DOT-ELISA analysis. Neurol Psychiatry Brain Res 1995, 3: 91–94Google Scholar
  112. Bauer M, Hellweg R, Gräf KJ, Baumgartner A. Treatment of refractory depression with high-dose thyroxine. Neuropsychopharmacology 1998a, 18: 444–455PubMedCrossRefGoogle Scholar
  113. Bauer M, Hellweg R, Baumgartner A. Hochdosierte Thyroxinbehandlung bei therapie-und prophylaxeresistenten Patienten mit affektiven Psychosen. Nervenarzt 1998b, 69: 1019–1022PubMedCrossRefGoogle Scholar
  114. Baumgartner A, Bauer M, Hellweg R. Treatment of intractable non-rapid-cycling bipolar affective disorder with high-dose thyroxine: an open clinical trial. Neuropsychopharmacology 1994, 10: 183–189PubMedGoogle Scholar
  115. Bechter K, Herzog S, Richt JA, Schüttler R. Zur Pathogenität von Borna-disease-Virus für psychiatrische und neurologische Störungen beim Menschen. Derzeitiger Forschungsstand und kritischer Kommentar. Nervenarzt 1997, 68: 425–430PubMedCrossRefGoogle Scholar
  116. Beckmann H, Jakob H. Pränatale Entwicklungsstörungen von Hirastrukturen bei schizophrenen Psychosen. Nervenarzt 1994, 65: 454–463PubMedGoogle Scholar
  117. Benarroch EE. Neuropeptides in the sympathetic system: presence, plasticity, modulation, and implications. Ann Neurol 1994, 36: 6–13PubMedCrossRefGoogle Scholar
  118. Bengzon J, Kokaia Z, Ernfors P, Kokaia M, Leanza G, Nilsson OG, Persson H, Lindvall O. Regulation of neurotrophin and trkA, trkB and trkC tyrosine kinase receptor messenger RNA expression in kindling. Neuroscience 1993, 53: 433–446PubMedCrossRefGoogle Scholar
  119. Benkert O. Zum Wandel der psychiatrischen Pharmakotherapie. In: Lungershausen E, Kaschka WP, Witkowski RJ (Hrsg) Affektive Psychosen. Schattauer Stuttgart 1990: 529–532Google Scholar
  120. Benkert O, Hippius H. Antidepressiva — Neurobiologische Grundlagen. In: Benkert O, Hippius H (Hrsg) Psychiatrische Pharmakotherapie. Springer Berlin 1996, 6. Auflage: 13–28Google Scholar
  121. Bennett DLH, Averill S, Clary DO, Priestley JV, McMahon SB. Postnatal changes in the expression of the trkA high-affinity NGF receptor in primary sensory neurons. Eur J Neurosci 1996a, 8: 2204–2208PubMedCrossRefGoogle Scholar
  122. Bennett DLH, French J, Priestley JV, McMahon SB. NGF but not NT-3 or BDNF prevents the A fiber sprouting into lamina II of the spinal cord that occurs following axotomy. Mol Cell Neurosci 1996b, 8: 211–220PubMedCrossRefGoogle Scholar
  123. Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 1997, 20: 84–91PubMedCrossRefGoogle Scholar
  124. Beracochea D, Lescaudron L, Verna A, Jaffard R. Neuroanatomical effects of chronic ethanol consumption on dorsomedial and anterior thalamic nuclei and on substantia innominata in mice. Neurosci Lett 1987, 73: 81–84PubMedCrossRefGoogle Scholar
  125. Berardi N, Domenici L, Parisi V, Pizzorusso T, Cellerino A, Maffei L. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). I. Visual cortex. Proc R Soc Lond B 1993, 251: 17–23CrossRefGoogle Scholar
  126. Berardi N, Cellerino A, Domenici L, Fagiolini M, Pizzorusso T, Cattaneo A, Maffei L. Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system. Proc Nail Acad Sci USA 1994, 91: 684–688CrossRefGoogle Scholar
  127. Berg-Von Der Emde K, Les Dees W, Hiney JK, Hill DF, Dissen GA, Costa ME, Moholt-Siebert M, Ojeda SR. Neurotrophins and the neuroendocrine brain: different neurotrophins sustain anatomically and functionally segregated subsets of hypothalamic dopaminergic neurons. J Neurosci 1995, 15: 4223–4237Google Scholar
  128. Berninger B, Poo MM. Fast actions of neurotrophic factors. Curr Opin Neurol 1996, 6: 324–330CrossRefGoogle Scholar
  129. Bersani G, Iannitelli A, Maselli P, Angelucci F, Alleva E, Aloe L. Nerve growth factor plasma levels in schizophrenic patients: a preliminary study. American Psychiatric Association, 149th Annual Meeting 1996: abstract 0445Google Scholar
  130. Bertrand P, Roger O, Houlgatte R, Javoy-Agid F, Brandel JP, Doble A, Blanchard JC. Measurement of nerve growth factor-like immunoreactivity in human brain using an anti-mouse-NGF enzyme immunoassay. Neurochem Int 1992, 20: 215–218PubMedCrossRefGoogle Scholar
  131. Bickford-Wimer PC, Nagamoto H, Johnson R, Adler LE, Rose GM, Freedman R. Auditory sensory gating in hippocampal neurons: a model system in the rat. Biol Psychiatry 1990, 27: 189–192CrossRefGoogle Scholar
  132. Bienenstock J, Tonioka M, Matsuda H, Stead RH, Quinonez G, Simon GT, Coughlin MD, Denburg JA. Suggestive evidence for a direct innervation of mucosal mast cells. Int Arch Allergy Appl Immunol 1987, 82: 238–243PubMedCrossRefGoogle Scholar
  133. Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH. Cerebral function in diabetes mellitus. Diabetologia 1994, 37: 643–650PubMedCrossRefGoogle Scholar
  134. Bigi S, Maestripieri D, Aloe L, Alleva E. NGF decreases isolation-induced aggressive behavior, while increasing adrenal volume, in adult male mice. Physiol Behav 1992, 51: 337–343PubMedCrossRefGoogle Scholar
  135. Bischoff SC, Dahinden CA. Effect of nerve growth factor on the release of inflammatory mediators by mature human basophils. Blood 1992, 79: 2662–2669PubMedGoogle Scholar
  136. Björklund A, Dunnett SB. Acetylcholine revisited. Nature 1995, 375: 446Google Scholar
  137. Blalock JE. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 1989, 69: 1–32PubMedGoogle Scholar
  138. Blass JP. Pathophysiology of the Alzheimer’s syndrome. Neurology 1993, 43 Suppl 4: S25–S38.Google Scholar
  139. Blöchl A, Thoenen H. Characterization of nerve growth factor (NGF) release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur J Neurosci 1995, 7: 1220–1228PubMedCrossRefGoogle Scholar
  140. Blöchl A, Sirrenberg C. Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75 Lntr receptors. J Biol Chem 1996, 271: 21100–21107PubMedCrossRefGoogle Scholar
  141. Blokland A, Jolles J. Spatial learning deficit and reduced hippocampal ChAT activity in rats after an ICV injection of streptozotocin. Pharmacol Biochem Behav 1993, 44: 491–494PubMedCrossRefGoogle Scholar
  142. Blokland A, Jolles J. Behavioral and biochemical effects of an ICV injection of streptozotocin in old Lewis rats. Pharmacol Biochem Behav 1994, 47: 833–837PubMedCrossRefGoogle Scholar
  143. Blokland A. Acetylcholine: a neurotransmitter for learning and memory? Brain Res Rev 1996, 21: 285–300CrossRefGoogle Scholar
  144. Bodnoff S, Humphreys AG, Lehman JC, Diamond DM, Rose GM, Meaney MJ. Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. J Neurosci 1995, 15: 61–69PubMedGoogle Scholar
  145. Bogerts B. Recent advances in the neuropathology of schizophrenia. Schizophr Bull 1993, 19: 431–445PubMedGoogle Scholar
  146. Boissière F, Faucheux B, Agid Y, Hirsch EC. Expression of catalytic trkB gene in the striatum and the basal forebrain of patients with Alzheimer’s disease: an in situ hybridization study. Neurosci Lett 1997a, 221: 141–144PubMedCrossRefGoogle Scholar
  147. Boissiere F, Faucheux B, Ruberg M, Agid Y, Hirsch EC. Decreased trkA gene expression in cholinergic neurons of the striatum and basal forebrain of patients with Alzheimer’s disease. Exp Neurol 1997b, 145: 245–252PubMedCrossRefGoogle Scholar
  148. Bondareff W, Mountjoy CQ, Roth M, Rossor MN, Iversen LL, Reynolds GP. Age and histopathological heterogeneity in Alzheimer’s disease. Evidence for subtypes. Arch Gen Psychiatry 1987, 44: 412–417PubMedCrossRefGoogle Scholar
  149. Bonhoeffer T. Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol 1996, 6: 119–126PubMedCrossRefGoogle Scholar
  150. Bonini S, Lambiase A, Bonini S, Angelucci F, Magrini L, Manni L, Aloe L. Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma. Proc Natl Acad Sci USA 1996, 93: 10955–10960PubMedCrossRefGoogle Scholar
  151. Borrelli E, Sawchenko PE, Evans RM. Pituitary hyperplasia induced by ectopic expression of nerve growth factor. Proc Natl. Acad Sci USA 1992, 89: 2764–2768PubMedCrossRefGoogle Scholar
  152. Borson S, Schatteman G, Claude P, Bothwell M. Neurotrophins in the developing and adult primate adenohypophysis: a new pituitary hormone system? Neuroendocrinology 1994, 59: 466–476PubMedCrossRefGoogle Scholar
  153. Boscato LM, Stuart MC. Heterophilic antibodies: a problem for all immunoassays. Clin Chem 1988, 34: 27–33PubMedGoogle Scholar
  154. Bosch EP, Rasool CG, Chatterjee A, Lash RW, Brown L, Munsat IL, Bradley WG. Animal models of alcoholic neuropathy: morphologic, electrophysiologic, and biochemical findings. Muscle Nerve 1979, 2: 133–144PubMedCrossRefGoogle Scholar
  155. Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 1995, 18: 223–253PubMedCrossRefGoogle Scholar
  156. Bowen DM, Davidson AN. Biochemical studies of nerve cells and energy metabolism in Alzheimer’s disease. Br Med Bull 1986, 42: 75–80PubMedGoogle Scholar
  157. Boyle MDP, Lawman MJP, Gee AP, Young M. Nerve growth factor: a chemotactic factor for polymorphonuclear leukocytes in vivo. J Immunol 1985, 134: 564–568PubMedGoogle Scholar
  158. Braak H, Braak E. Pathology of Alzheimer’s disease. In: Calne DB (Hrsg) Neurodegenerative Diseases. Sounders Philadelphia 1993: 585-613Google Scholar
  159. Bracci-Laudiero L, Aloe L, Levi-Montalcini R, Buttinelli C, Schilter D, Gillesen S, Otten U. Multiple sclerosis patients express increased levels of β-nerve growth factor in cerebrospinal fluid. Neurosci Lett 1992, 147: 9–12CrossRefGoogle Scholar
  160. Bracci-Laudiero L, Aloe L, Levi-Montalcini R, Galeazzi M, Schilter D, Scully JL, Otten U. Increased levels of NGF in sera of systemic lupus erythematosus patients. Neuro Report 1993, 4: 563–565Google Scholar
  161. Bradley JL, Thomas PK, King RH, Muddle JR, Ward JD, Tesfaye S, Boulton AJ, Tsigos C, Young RJ. Myelinated nerve fibre regeneration in diabetic sensory polyneuropathy: correlation with type of diabetes. Acta Neuropathol 1995, 90: 403–410PubMedCrossRefGoogle Scholar
  162. Bradshaw RA. Nerve growth factor and related hormones. In: Litwack G (Hrsg) Biochemical Actions of Hormones. Academic Press Orlando 1983: 91–114Google Scholar
  163. Brammer GL, McGuire MT, Raleigh MJ. Vervet monkey (cercopithecus aethiops sabaeus) whole blood serotonin level is determined by platelet uptake sites. Life Sci 1984, 41: 1539–1546CrossRefGoogle Scholar
  164. Bredesen DE, Rabizadeh S. p75NTR and apoptosis: Trk-dependent and Trk-independent effects. Trends Neurosci 1997, 20: 287–290PubMedCrossRefGoogle Scholar
  165. Brewster WJ, Fernyhough P, Diemel LT, Mohiuddin L, Tomlinson DR. Diabetic neuropathy, nerve growth factor and other neurotrophic factors. Trends Neurosci 1994, 17: 321–325PubMedCrossRefGoogle Scholar
  166. Brewster WJ, Fernyhough P, Diemel LT, Mohiuddin L, Tomlinson. Changes in nerve growth factor and preprotachykinin messenger RNA levels in the iris and trigeminal ganglion in diabetic rats; effects of treatment with insulin or nerve growth factor. Mol Brain Res 1995, 29: 131–139PubMedCrossRefGoogle Scholar
  167. Broadbent DE. Decision and stress. Academic Press London 1971Google Scholar
  168. Brock JA, Van Helden DF, Dosen P, Rush RA. Prevention of high blood pressure by reducing sympathetic innervation in the spontaneously hypertensive rat. J Auton Nerv Syst 1996, 61: 97–102PubMedCrossRefGoogle Scholar
  169. Brodie C, Gelfand EW. Functional nerve growth factor receptors on human B Lymphocytes. J Immunol 1992, 148: 3492–3497PubMedGoogle Scholar
  170. Broersen LM, Heinsbroek RPW, De Bruin JPC, Uylings HBM, Olivier B. The role of the medial prefrontal cortex of rats in short-term memory functioning: further support for involvement of cholinergic, rather than dopaminergic mechanisms. Brain Res 1995, 674: 221–229PubMedCrossRefGoogle Scholar
  171. Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Srivastava R, Roy DS, Rosen BR, Beal MF. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 1993, 60: 356–359PubMedCrossRefGoogle Scholar
  172. Brown MC, Perry VH, Lunn ER, Gordon S, Heumann R. Macrophage dependence of peripheral sensory nerve regeneration: possible involvement of nerve growth factor. Neuron 1991, 6: 359–370PubMedCrossRefGoogle Scholar
  173. Brun A, Gustafson L. Distribution of cerebral degeneration in Alzheimer’s disease. A clinicopathological study. Arch Psychiatr Nervenkr 1976, 223: 15–33PubMedCrossRefGoogle Scholar
  174. Buchanan RW, Strauss ME, Breier A, Kirkpatrick B, Carpenter WT. Attentional impairments in deficit and nondeficit forms of schizophrenia. Am J Psychiatry 1997, 154: 363–370PubMedGoogle Scholar
  175. Bueker ED. Implantation of tumors in the hind limb of the embryonic chick and the developmental response of the lumbosacral nervous system. Anat Rec 1948, 102: 369–389PubMedCrossRefGoogle Scholar
  176. Bürgi B, Otten UH, Ochsenberger B, Rihs S, Heese K, Ehrhard PB, Ibáñez CF, Dahinden CA. Basophil priming by neurotrophic factors. Activation through the trk receptor. J Immunol 1996, 157: 5582–5588PubMedGoogle Scholar
  177. Bullock ED, Johnson EM Jr. Nerve growth factor induces the expression of certain cytokine genes and bcl-2 in mast cells. Potential role in survival promotion. J Biol Chem 1996, 271: 27500–27508PubMedCrossRefGoogle Scholar
  178. Bunney BG, Potkin SG, Bunney WE. New morphological and neuropathological findings in schizophrenia: a neurodevelopmental perspective. Clin Neurosci 1995, 3: 81–88PubMedGoogle Scholar
  179. Burke MA, Apter JR, Wainer BH, Mufson EJ, Kordower JH. Age-related vulnerability of developing cholinergic basal forebrain neurons following exitotoxic lesions of the hippocampus. Exp Neurol 1994a, 128: 159–171PubMedCrossRefGoogle Scholar
  180. Burke MA, Mobley WC, Cho J, Wiegand SJ, Lindsay RM, Mufson EJ, Kordower JH. Loss of developing cholinergic basal forebrain neurons following excitotoxic lesions of the hippocampus: rescue by neurotrophins. Exp Neurol 1994b, 130: 178–195PubMedCrossRefGoogle Scholar
  181. Butcher LL, Woolf NJ. Neurotrophic agents may exacerbate the pathologic cascade of Alzheimer’s disease. Neurobiol Aging 1989, 10: 557–570PubMedCrossRefGoogle Scholar
  182. Butcher LL, Semba K. Reassessing the cholinergic basal forebrain: nomenclature schemata and concepts. Trends Neurosci 1989, 12: 483–485PubMedCrossRefGoogle Scholar
  183. Butters N. Alcoholic Korsakoff s syndrome: some unresolved issues concerning etiology, neuropathology, and cognitive deficits. J Clin Exp Neuropsychol 1985, 7: 181–210PubMedCrossRefGoogle Scholar
  184. Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 1988, 8: 4007–4026PubMedGoogle Scholar
  185. Calamandrei G, Alleva E. Neuronal growth factors, neurotrophins and memory deficiency. Behav Brain Res 1995, 66: 129–132PubMedCrossRefGoogle Scholar
  186. Calogero AE, Kamilaris TC, Gomez T, Johnson EO, Tartaglia ME, Gold PW, Chrousos GP. The muscarinic cholinergic agonist arecoline stimulates the rat hypothalamicpituitary-adrenal axis through a centrally-mediated corticotropin-releasing hormone-mediated mechanism. Endocrinology 1989, 125: 2445–2453PubMedCrossRefGoogle Scholar
  187. Calzà L, Giardino L, Ceccatelli S, Hökfelt T. Neurotrophins and their receptors in the adult hypo-and hyperthyroid rat after kainic acid injection: an in situ hybridization study. Eur J Neurosci 1996, 8: 1873–1881PubMedCrossRefGoogle Scholar
  188. Canny BJ. Hippocampal glucocorticoid receptors and the regulation of ACTH secretion. Mol Cell Endocrinol 1990, 71: C35–C38PubMedCrossRefGoogle Scholar
  189. Carlson SL, Albers KM, Beiting DJ, Parish M, Conner JM, Davis BM. NGF modulates sympathetic innervation of lymphoid tissues. J Neurosci 1995, 15: 5892–5899PubMedGoogle Scholar
  190. Carmichael FJ, Israel Y. Effects of ethanol on neurotransmitter release by rat brain cortical slices. J Pharmacol Exp Ther 1975, 193: 824–834PubMedGoogle Scholar
  191. Carnahan J, Nawa H. Regulation of neuropeptide expression in the brain by neurotrophins. Potential role in vivo. Mol Neurobiol 1995, 10: 135–149PubMedCrossRefGoogle Scholar
  192. Carswell S. The potential for treating neurodegenerative disorders with NGF-inducing compounds. Exp Neurol 1993, 124: 36–42PubMedCrossRefGoogle Scholar
  193. Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhäuser N, Böhm-Matthaei R, Baeuerle PA, Barde YA. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75. Science 1996, 272: 542–545PubMedCrossRefGoogle Scholar
  194. Casanova MF, Carosella NW, Gold JM, Kleinman JE, Weinberger DR, Powers RE. A topographical study of senile plaques and neurofibrillary tangles in the hippocampi of patients with Alzheimer’s disease and cognitively impaired patients with schizophrenia. Psychiatry Res 1993, 49: 41–62PubMedCrossRefGoogle Scholar
  195. Cassileth BR, Lusk EJ, Miller DS, Brown LL, Miller C. Psychosocial correlates of survival in advanced malignant disease? New Engl J Med 1985, 312: 1551–1555PubMedCrossRefGoogle Scholar
  196. Castellano C, Cabib S, Puglisi-Allegra S. Psychopharmacology of memory modulation: evidence for multiple interaction among neurotransmitters and hormones. Behav Brain Res 1996, 77: 1–21PubMedCrossRefGoogle Scholar
  197. Cavicchioli L, Flanigan TP, Vantini G, Fusco M, Polato P, Toffano G, Walsh FS, Leon A. NGF amplifies expression of NGF receptor messenger RNA in forebrain cholinergic neurons of rats. Eur J Neurosci 1989, 1: 258–262PubMedCrossRefGoogle Scholar
  198. Cavicchioli L, Flanigan TP, Dickson JG, Vantini G, Dal Toso R, Fusco M, Walsh FS, Leon A. Choline acetyltransferase messenger RNA expression in developing and adult rat brain: regulation by nerve growth factor. Mol Brain Res 1991, 9: 319–325PubMedCrossRefGoogle Scholar
  199. Ceccatelli S, Ernfors P, Villar MJ, Persson H, Hökfelt T. Expanded distribution of messenger RNA for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 in the rat brain after colchicine treatment. Proc Natl. Acad Sci USA 1991, 88: 10352–10356PubMedCrossRefGoogle Scholar
  200. Chalazonitis A, Peterson ER, Crain SM. Nerve growth factor regulates the action potential duration of mature sensory neurons. Proc Natl Acad Sci USA 1987, 84: 289–293PubMedCrossRefGoogle Scholar
  201. Chan-Palay V. Galanin hyperinnervates surviving neurons of the human basal nucleus of Meynert in dementias of Alzheimer’s and Parkinson’s disease: a hypothesis for the role of galanin in accentuating cholinergic dysfunction in dementia. J Comp Neurol 1988, 273: 543–557PubMedCrossRefGoogle Scholar
  202. Chao MV. Nerve growth factor. In: Sporn MB, Roberts AB (Hrsg) Handbuch der experimentellen Pharmakologie. Springer Berlin Heidelberg 1990, 95(II): 135–165Google Scholar
  203. Chao MV. The p75 neurotrophin receptor. J Neurobiol 1994, 25: 1373–1383PubMedCrossRefGoogle Scholar
  204. Chao MV, Hempstead. p75 and trk: a two-receptor system. Trends Neurosci 1995, 18: 321–326PubMedCrossRefGoogle Scholar
  205. Charles V, Mufson EJ, Friden PM, Bartus RT, Kordower JH. Atrophy of cholinergic basal forebrain neurons following excitotoxic cortical lesions is reversed by intravenous administration of an NGF conjugate. Brain Res 1996, 728: 193–203PubMedCrossRefGoogle Scholar
  206. Chen KS, Gage FH. Somatic gene transfer of NGF to the aged brain: Behavioral and morphological amelioration. J Neurosci 1995, 15: 2819–2825PubMedGoogle Scholar
  207. Chen S, Bentivoglio M. Nerve growth factor receptor-containing cholinergic neurons of the basal forebrain project to the thalamic reticular nucleus in the rat. Brain Res 1993, 606: 207–212PubMedCrossRefGoogle Scholar
  208. Chouinard ML, Gallagher M, Yasuda RP, Wolfe BB, McKinney M. Hippocampal muscarinic receptor function in spatial learning-impaired aged rats. Neurobiol Aging 1995, 16: 955–963PubMedCrossRefGoogle Scholar
  209. Chozick B. The nucleus basalis of Meinert in neurological dementing disease: a review. Int J Neurosci 1987, 37: 31–48PubMedCrossRefGoogle Scholar
  210. Christensen H, Maltby N, Jorm AF, Creasey H, Broe GA. Cholinergic ‘blockade’ as a model of the cognitive deficits in Alzheimer’s disease. Brain 1992, 115: 1681–1699PubMedCrossRefGoogle Scholar
  211. Chrousos GP, Gold PW. The concept of stress and stress system disorders. JAMA 1992, 267: 1244–1252PubMedCrossRefGoogle Scholar
  212. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995, 332: 1351–1362PubMedCrossRefGoogle Scholar
  213. CIPS (Collegium Internationale Psychiatriae Scalarum) (Hrsg) Internationale Skalen für Psychiatric Beltz Weinheim 1986Google Scholar
  214. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnsonwood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St Georg Hyslop P, Selkoe D. Mutant presenilins of of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Med 1997, 3: 67–72PubMedCrossRefGoogle Scholar
  215. Clarris HJ, Nurcombe V, Small DH, Beyreuther K, Masters CL. Secretion of nerve growth factor from septum stimulates neurite outgrowth and release of amyloid protein precursor of Alzheimer’s disease from hippocampal explants. J Neurosci Res 1994, 38: 248–258PubMedCrossRefGoogle Scholar
  216. Cloninger CR. Multilocus genetics of schizophrenia. Curr Opin Psychiatr 1997, 10: 5–10CrossRefGoogle Scholar
  217. Cohen-Cory S, Dreyfus CF, Black IB. Expression of high-and low-affinity nerve growth factor receptors by purkinje cells in the developing rat cerebellum. Exp Neurol 1989, 105: 104–109PubMedCrossRefGoogle Scholar
  218. Cohen RI, Marmur R, Norton WT, Mehler MF, Kessler JA. Nerve growth factor and neurotrophin-3 differentially regulate the proliferation and survival of developing rat brain oligodendrocytes. J Neurosci 1996, 16: 6433–6442PubMedGoogle Scholar
  219. Collerton D. Cholinergic function and intellectual decline in Alzheimer’s disease. Neuroscience 1986, 19: 1–28PubMedCrossRefGoogle Scholar
  220. Collins F, Crutcher KA. Sustained elevation in hippocampal NGF-like biological activity following medial septal lesions in the rat. Brain Res 1989. 490: 355–360PubMedCrossRefGoogle Scholar
  221. Conner JM, Varon S. Nerve growth factor immunoreactivity in the anterior pituitary of the rat. Neuro Report 1993, 4: 395–398Google Scholar
  222. Conner JM, Varon S. Maintenance of sympathetic innervation into the hippocampal formation requires a continuous local availability of nerve growth factor. Neuroscience 1996, 72: 933–945PubMedCrossRefGoogle Scholar
  223. Conner JM, Muir D, Varon S, Hagg T, Manthorpe M. The localization of nerve growth factor-like immunoreactivity in the adult rat basal forebrain and hippocampal formation. J Comp Neurol 1992, 319: 454–462PubMedCrossRefGoogle Scholar
  224. Connor B, Young D, Lawlor P, Gai W, Waldvogel H, Faull RLM, Dragunow M. Trk receptor alterations in Alzheimer’s disease. Mol Brain Res 1996, 42: 1–17PubMedCrossRefGoogle Scholar
  225. Conti G, Stoll G, Scarpini E, Baron PL, Bianchi R, Livraghi S, Scarlato G. p75 Neurotrophin receptor induction and macrophage infiltration in peripheral nerve during experimental diabetic neuropathy: possible relevance on regeneration. Exp Neurol 1997, 146: 206–211PubMedCrossRefGoogle Scholar
  226. Cooper JD, Sofroniew MV. Increased vulnerability of septal cholinergic neurons to partial loss of target neurons in aged rats. Neuroscience 1996, 75: 29–35PubMedCrossRefGoogle Scholar
  227. Cooper JD, Lindholm D, Sofroniew MV. Reduced transport of [125I]nerve growth factor by cholinergic neurons and down-regulated trkA expression in the medial septum of aged rats. Neuroscience 1994, 62: 625–629PubMedCrossRefGoogle Scholar
  228. Copeland JRM, Kelleher MJ, Kellett JM, Gourlay AJ, Gurland BJ, Fleiss JL, Sharpe L. A semi-structured clinical interview for the assessment of diagnosis and mental state in the elderly: the Geriatric Mental State Schedule. I. Development and reliability. Psychol Med 1976, 6: 439–449PubMedCrossRefGoogle Scholar
  229. Cork LC, Masters C, Beyreuther K, Price DL. Development of senile plaques. Relationship of neuronal abnormalities and amyloid deposits. Am J Pathol 1990, 137: 1383–1392PubMedGoogle Scholar
  230. Corsi P, Coyle JT. Nerve growth factor corrects developmental impairments of basal forebrain cholinergic neurons in the trisomy 16 mouse. Proc Natl. Acad Sci USA 1991, 88: 1793–1797PubMedCrossRefGoogle Scholar
  231. Court JA, Piggott MA, Perry EK, Barlow RB, Perry RH. Age associated decline in high affinity nicotine binding in human brain frontal cortex does not correlate with the changes in choline acetyltransferase activity. Neurosci Res Commun 1992, 10: 125–133Google Scholar
  232. Court JA, Perry EK, Spurden D, Griffiths M, Kerwin JM, Morris CM, Johnson M, Oakley AE, Birdsall NJM, Clementi F, Perry RH. The role of the cholinergic system in the development of the human cerebellum. Dev Brain Res 1995, 90: 159–167CrossRefGoogle Scholar
  233. Coyle JT. Excitatory amino acid neurotoxins. In: Iversen LL, Iversen SD, Snyder SH (Hrsg) Handbook of Psychopharmacology, Vol 15: New Techniques in Psychopharmacology. Plenum Press New York 1982: 237–269CrossRefGoogle Scholar
  234. Craft S, Newcomer J, Kanne S, Dagogo-Jack S, Cryer P, Sheline Y, Luby J, Dagogo-Jack A, Alderson A. Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiol Aging 1996, 17: 123–130PubMedCrossRefGoogle Scholar
  235. Crépel V, Krnjevic K, Ben-Ari Y. Developmental and regional differences in the vulnerability of rat hippocampal slices to lack of glucose. Neuroscience 1992, 47: 579–587PubMedCrossRefGoogle Scholar
  236. Crookston KP, Webb DJ, Wolf BB, Gonias SL. Classification of α2-macroglobulin-cytokine interactions based on affinity of noncovalent association in solution under apparent equilibrium conditions. J Biol Chem 1994, 269: 1533–1540PubMedGoogle Scholar
  237. Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling LH, McMahon SB, Shelton DL, Levinson AD, Phillips HS. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 1994, 76: 1001–1011PubMedCrossRefGoogle Scholar
  238. Crutcher KA, Collins F. In vitro evidence for two distinct hippocampal growth factors: basis of neuronal plasticity? Science 1982, 217: 67–68PubMedCrossRefGoogle Scholar
  239. Crutcher KA, Weingartner J. Hippocampal NGF levels are not reduced in the aged Fischer 344 rat. Neurobiol Aging 1991, 12: 449–454PubMedCrossRefGoogle Scholar
  240. Crutcher KA, Madison R, Davis JN. A study of the rat septohippocampal pathway using anterograde transport of horseradish peroxidase. Neuroscience 1981, 6: 1961–1973PubMedCrossRefGoogle Scholar
  241. Crutcher KA, Scott SA, Liang S, Everson WV, Weingartner J. Detection of NGF-like activity in human brain tissue: increased levels in Alzheimer’s disease. J Neurosci 1993, 13: 2540–2550PubMedGoogle Scholar
  242. Csernansky JG, Sheline YI. Abnormalities of serotonin metabolism and nonpsychotic psychiatric disorders. Ann Clin Psychiatry 1993, 5: 275–281PubMedCrossRefGoogle Scholar
  243. Csillik B, Schwab ME, Thoenen H. Transganglionic regulation of central terminals of dorsal root ganglion nerve cells by nerve growth factor (NGF). Brain Res 1985, 331: 11–15PubMedCrossRefGoogle Scholar
  244. Cullum CM, Harris JG, Waldo MC, Smernoff E, Madison A, Nagamoto HT, Griffith J, Adler LE, Freedman R. Neurophysiological and neuropsychological evidence for attentional dysfunction in schizophrenia. Schizophr Res 1993, 10: 131–141PubMedCrossRefGoogle Scholar
  245. Cummings JL, Benson DF. The role of the nucleus basalis of Meynert in dementia: review and reconsideration. Alzheimer Dis Assoc Disord 1987, 1: 128–145PubMedCrossRefGoogle Scholar
  246. Curtis R, Adryan KM, Stark JL, Park JS, Compton DL, Weskamp G, Huber LJ, Chao MV, Jaenisch R, Lee KF, Lindsay RM, DiStefano PS. Differential role of the low affinity neurotrophin receptor (p75) in retrograde axonal transport of the neurotrophins. Neuron 1995, 14: 1201–1211PubMedCrossRefGoogle Scholar
  247. Danysz W, Zajaczkowski W, Parsons CG. Modulation of learning processes by ionotropic glutamate receptor ligands. Behav Pharmacol 1995, 6: 455–474PubMedGoogle Scholar
  248. Davies AM. Switching neurotrophin dependence. Curr Biol 1994, 4: 273–276PubMedCrossRefGoogle Scholar
  249. Davies AM. The neurotrophic hypothesis: where does it stand? Philos T Roy Soc B 1996, 351: 389–394CrossRefGoogle Scholar
  250. Davies P, Maloney AJF. Selective loss of central cholinergic neurones in Alzheimer’s disease. Lancet 1976, 2: 1403PubMedCrossRefGoogle Scholar
  251. Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G, Beyreuther K, Masters CL. A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 1988, 38: 1688–1693PubMedGoogle Scholar
  252. Dawson E, Powell JF, Sham PC, Nöthen M, Crocq MA, Propping P, Körner J, Rietschel M, Van OS J, Wright P, Murray RM, Gill M. An association study of a neurotrophin-3 (NT-3) gene polymorphism with schizophrenia. Acta Psychiatr Scand 1995, 92: 425–428PubMedCrossRefGoogle Scholar
  253. Day JC, Febiger HC. Dopaminergic regulation of cortical acetylcholine release. Synapse 1992, 12: 281–286PubMedCrossRefGoogle Scholar
  254. Day JC, Fibiger HC. Dopaminergic regulation of cortical acetylcholine release: effects of dopamine receptor agonists. Neuroscience 1993, 54: 643–648PubMedCrossRefGoogle Scholar
  255. Day JC, Fibiger HC. Dopaminergic regulation of septohippocampal cholinergic neurons. J Neurochem 1994, 63: 2086–2092PubMedCrossRefGoogle Scholar
  256. Day-Lollini PA, Stewart GR, Taylor MJ, Johnson RM, Chellman GJ. Hyperplastic changes within the leptomeninges of the rat and monkey in response to chronic intracerebroventricular infusion of nerve growth factor. Exp. Neurol 1997, 145: 24–37PubMedCrossRefGoogle Scholar
  257. Deadwyler SA, Foster TC, Hampson RE. Processing of sensory information in the hippocampus. Crit Rev Clin Neurobiol 1987, 2: 335–355Google Scholar
  258. Decker MW. The effects of aging on hippocampal and cortical projections of the forebrain cholinergic system. Brain Res Rev 1987, 12: 423–438CrossRefGoogle Scholar
  259. Decker MW, Pelleymounter MA, Gallagher M. Effects of training on a spatial memory task on high affinity choline uptake in hippocampus and cortex in young adult and aged rats. J Neurosci 1988, 8: 90–99PubMedGoogle Scholar
  260. Decker MW, McGaugh JL. The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 1991, 7: 151–168PubMedCrossRefGoogle Scholar
  261. Deckwerth TL, Johnson EM. Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor. J Cell Biol 1993, 123: 1207–1222PubMedCrossRefGoogle Scholar
  262. De Goeij DCE, Jezova D, Tilders FJH. Repeated stress enhances vasopressin synthesis in corticotropin releasing factor neurons in the paraventricular nucleus. Brain Res 1992, 577: 165–168PubMedCrossRefGoogle Scholar
  263. De Kloet ER. Brain corticosteroid receptor balance and homeostatic control. Front Neuroendocrinol 1991, 12: 95–164Google Scholar
  264. DeKosky ST, Goss JR, Miller PD, Styren SD, Kochanek PM, Marion D. Upregulation of nerve growth factor following cortical trauma. Exp Neurol 1994, 130: 173–177PubMedCrossRefGoogle Scholar
  265. De Simone R, Alleva E, Tirassa P, Aloe L. Nerve growth factor released into the blood stream following intraspecific fighting induces mast cell degranulation in adult male mice. Brain Behav Immun 1990, 4: 74–81PubMedCrossRefGoogle Scholar
  266. De Simone R, Aloe L. Influence of ethanol consumption on brain nerve growth factor and its target cells in developing and adult rodents. Ann Ist Super Sanita 1993, 29: 179–183PubMedGoogle Scholar
  267. De Souza EB, Grigoriadis DE. Corticotropin-releasing factor. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology: The fourth generation of progress. Raven Press New York 1995: 505–517Google Scholar
  268. Deutsch JA. The cholinergic synapse and the site of memory. Science 1971, 174: 788–794PubMedCrossRefGoogle Scholar
  269. Devanand DP, Sano M, Tang MX, Taylor S, Gurland BJ, Wilder D, Stern Y, Mayeux R. Depressed mood and the incidence of Alzheimer’s Disease in the elderly living in the community. Arch Gen Psychiatry 1996, 53: 175–182PubMedCrossRefGoogle Scholar
  270. Diamond J, Coughlin M, MacIntyre L, Holmes M, Visheau B. Evidence that endogenous β-nerve growth factor is responsible for the collateral sprouting, but not the regeneration, of nociceptive axons in adult rats. Proc Natl Acad Sci USA 1987, 84: 6596–6600PubMedCrossRefGoogle Scholar
  271. Diamond J, Holmes M, Coughlin M. Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat. J Neurosci 1992, 12: 1454–1466PubMedGoogle Scholar
  272. Dicou E. Nerve growth factor precursors in the rat thyroid and hippocampus. Mol Brain Res 1992, 14: 136–138PubMedCrossRefGoogle Scholar
  273. Dicou E, Lee J, Brachet P. Synthesis of nerve growth factor mRNA and precursor protein in the thyroid and parathyroid glands of the rat. Proc Natl Acad Sci USA 1986, 83: 7084–7088PubMedCrossRefGoogle Scholar
  274. Dicou E, Nerrière V, Labropoulou V. Naturally occuring antibodies against nerve growth factor in human and rabbit sera: comparison between control and herpes simplex virus-infected patients. J Neuroimmunol 1991, 34: 153–158PubMedCrossRefGoogle Scholar
  275. Dicou E, Masson C, Jabbour W, Nerrière V. Increased frequency of NGF in sera of rheumatoid arthritis and systemic lupus erythematosus patients. Neuro Report 1993a, 5: 321–324Google Scholar
  276. Dicou E, Hurez D, Nerrière V. Natural autoantibodies against the nerve growth factor in autoimmune diseases. J Neuroimmunol 1993b, 47: 159–168PubMedCrossRefGoogle Scholar
  277. Dicou E, Perrot S, Menkes CJ, Masson C, Nerrière V. Nerve growth factor (NGF) autoantibodies in the synovial fluid: implications in spondylarthropathies. Autoimmunity 1996, 24: 1–9PubMedCrossRefGoogle Scholar
  278. Diemel LT, Brewster WJ, Fernyhough P, Tomlinson DR. Expression of neuropeptides in experimental diabetes; effects of treatment with nerve growth factor or brain-derived neurotrophic factor. Mol Brain Res 1994, 21: 171–175PubMedCrossRefGoogle Scholar
  279. Dilling H, Mombour W, Schmidt MH (Hrsg) Internationale Klassifikation psychischer Störungen: ICD-10, Kapitel V (F). Klinisch-diagnostische Leitlinien. Weltgesundheitsorganisation. Huber Bern 1991Google Scholar
  280. Di Marco E, Cutuli N, Guerra L, Cancedda R, De Luca M. Molecular cloning of trkE, a novel trk-related putative tyrosine kinase receptor isolated from normal human keratinocytes and widely expressed by normal human tissues. J Biol Chem 1993, 268: 24290–24295PubMedGoogle Scholar
  281. Ding A, Nitsch R, Hoyer S. Changes in brain monoaminergic neurotransmitter concentrations in rat after intracerebroventricular injection of streptozotocin. J Cerebr Blood Flow Met 1992, 12: 103–109CrossRefGoogle Scholar
  282. Di Stefano PS, Clagett-Dame M, Chelsea DM, Loy R. Developmental regulation of human truncated nerve growth factor receptor. Ann Neurol 1991, 29: 13–20CrossRefGoogle Scholar
  283. Di Stefano PS, Friedman B, Radziejewski C, Alexander C, Boland P, Schick CM, Lindsay RM, Wiegand SJ. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 1992, 8: 983–993CrossRefGoogle Scholar
  284. D’mello GD, Steckler T. Animal models in cognitive behavioural pharmacology: an overview. Cognitive Brain Res 1996, 3: 345–352CrossRefGoogle Scholar
  285. Domenici L, Cellerino A, Maffei L. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). n. Lateral geniculate nucleus. Proc R Soc Lond B 1993, 251: 25–31CrossRefGoogle Scholar
  286. Domenici L, Cellerino A, Berardi N, Cattaneo A, Maffei L. Antibodies to nerve growth factor (NGF) prolong the sensitive period for monocular deprivation in the rat. Neuro Report 1994, 5: 2041–2044Google Scholar
  287. Donohue SJ, Head RJ, Stitzel RE. Elevated nerve growth factor levels in young spontaneously hypertensive rats. Hypertension 1989, 14: 421–426PubMedGoogle Scholar
  288. Doubleday, Robinson PP. The effect of NGF depletion on the neurotropic influence exerted by the distal stump following nerve transection. J Anat 1995, 186: 593–605PubMedGoogle Scholar
  289. Drachman DA, Leavitt J. Human memory and the cholinergic system. A relationship to aging? Arch Neurol 1974, 30: 113–121Google Scholar
  290. Duelli R, Schröck H, Kuschinsky W, Hoyer S. Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neuroscience 1994, 12: 737–743CrossRefGoogle Scholar
  291. Dudchenko P, Sarter M. GABAergic control of basal forebrain cholinergic neurons and memory. Behav Brain Res 1991, 42: 33–41PubMedCrossRefGoogle Scholar
  292. Duff K. Alzheimer transgenic mouse models come of age. Trends Neurosci 1997, 20: 279–280PubMedCrossRefGoogle Scholar
  293. Dufouil C, Fuhrer R, Dartigues JF, Alpérovitch A. Longitudinal analysis of the association between depressive symptomatology and cognitive deterioration. Am J Epidemiol 1996, 144: 634–641PubMedGoogle Scholar
  294. Duman RS, Vaidya VA, Nibuya M, Morinobu S, Rydelek Fitzgerald L. Stress, antidepressant treatments, and neurotrophic factors: molecular and cellular mechanisms. The Neuroscientist 1995, 1: 351–360CrossRefGoogle Scholar
  295. Duman RS, Heninger GR, Nestler EJ: A Molecular and cellular theory of depression. Arch Gen Psychiatry 1997, 54: 597–606PubMedCrossRefGoogle Scholar
  296. Dunbar GL, Rylett RJ, Schmidt BM, Sinclair RC, Williams LR. Hippocampal choline acetyltransferase activity correlates with spatial learning in aged rats. Brain Res 1993, 604: 266–272PubMedCrossRefGoogle Scholar
  297. Dunn AJ. Interactions between the nervous system and the immune system. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology: The fourth generation of progress. Raven Press New York 1995: 719–731Google Scholar
  298. Dunnett SB, Whishaw IQ, Jones GH, Bunch ST. Behavioural, biochemical and histochemical effects of different neurotoxic amino acids injected into nucleus basalis magnocellularis of rats. Neuroscience 1987, 20: 653–669PubMedCrossRefGoogle Scholar
  299. Dunnett SB, Wareham AT, Torres EM. Cholinergic blockade in prefrontal cortex and hippocampus disrupts short-term memory in rats. Neuro Report 1990, 1: 61–64Google Scholar
  300. Dunnett SB, Barth TM. Animal models of Alzheimer’s disease and dementia (with an emphasis on cortical cholinergic systems). In: Willner P (Hrsg) Behavioural Models in Psychopharmacology. Cambridge University Press London 1991: 359–418Google Scholar
  301. Dunnett SB, Everitt BJ, Robbins TW. The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions. Trends Neurosci 1991, 14: 494–501PubMedCrossRefGoogle Scholar
  302. Dunnett SB, Fibiger HC. Role of forebrain cholinergic systems in learning and memory: relevance to the cognitive deficits of aging an Alzheimer’s dementia. In: Cuello AC (Hrsg) Prog Brain Res 1993, 98: 413–420PubMedCrossRefGoogle Scholar
  303. Dunnett SB. Animal models of Alzheimer’s disease. In: Burns A, Levy R (Hrsg) Dementia. Chapman & Hall London 1994: 239–265Google Scholar
  304. Durkin T. Central cholinergic pathways and learning and memory processes: presynaptic aspects. Comp Biochem Physiol A 1989, 93: 273–280PubMedCrossRefGoogle Scholar
  305. Dyck P. Nerve growth factor and diabetic neuropathy. Lancet 1996, 348: 1044–1045PubMedCrossRefGoogle Scholar
  306. Dyck, Gianntni C. Pathologic alterations in the diabetic neuropathies of humans: a review. J Neuropath Exp Neur 1996, 55: 1181–1193PubMedCrossRefGoogle Scholar
  307. Ebendal T. NGF in CNS: experimental data and clinical implications. Progr Growth Factor Res 1989, 1: 143–159CrossRefGoogle Scholar
  308. Ebendal T. Function and evolution in the NGF family and its receptors. J Neurosci Res 1992, 32: 461–470PubMedCrossRefGoogle Scholar
  309. Edwards E, Harkins K, Wright G, Henn F. Effects of bilateral adrenalectomy on the induction of learned helplessness behavior. Neuropsychopharmacology 1990, 3: 109–114PubMedGoogle Scholar
  310. Edwards E, Harkins K, Wright G, Henn FA. 5HT1b receptors in an animal model of depression. Neuropharmacology 1991a, 30: 101–105PubMedCrossRefGoogle Scholar
  311. Edwards E, Harkins K, Wright G, Henn F. Modulation of [3H]paroxetine binding to the 5-hydroxytryptamine uptake site in an animal model of depression. J Neurochem 1991, 56: 1581–1586PubMedCrossRefGoogle Scholar
  312. Edwards SN, Tolkovsky AM. Characterization of apoptosis in cultured rat sympathetic neurons after nerve growth factor withdrawal. J Cell Biol 1994, 124: 537–546PubMedCrossRefGoogle Scholar
  313. Ehlers MD, Kaplan DR. Price DL, Koliatsos VE. NGF-stimulated retrograde transport of trkA in the mammalian nervous system. J Cell Biol 1995, 130: 149–156PubMedCrossRefGoogle Scholar
  314. Ehrhardt PB, Ganter U, Bauer J, Otten U. Expression of functional trk protooncogenes in human monocytes. Proc Natl Acad Sci USA 1993a, 90: 5423–5427CrossRefGoogle Scholar
  315. Ehrhard PB, Erb P, Graumann U, Otten U. Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl Acad Sci USA 1993b, 90: 10984–10988PubMedCrossRefGoogle Scholar
  316. Eide PF, Lowenstsein DH, Reichardt LF. Neurotrophins and their receptors — current concepts and implications for neurologic disease. Exp Neurol 1993, 121: 200–214PubMedCrossRefGoogle Scholar
  317. Elkabes S, DiCicco-Bloom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 1996, 16: 2508–2521PubMedGoogle Scholar
  318. Ellenberg M. Diabetic neuropathy: clinical aspects. Metabolism 1976, 25: 1627–1655PubMedCrossRefGoogle Scholar
  319. Elliot RC, Inturrisi CE, Black IB, Dreyfus CF. An improved method detects differential NGF and BDNF gene expression in response to depolarization in cultured hippocampal neurons. Mol Brain Res 1994, 26: 81–88CrossRefGoogle Scholar
  320. El Tamer A, Corey J, Wülfert E, Hanin I. Reversible cholinergic changes induced by AF64A in rat hippocampus and possible septal compensatory effect. Neuropharmacology 1992, 31: 397–402CrossRefGoogle Scholar
  321. Emmett CJ, Aswani SP, Stewart GR, Fairchild D, Johnson RM. Dose-response comparison of recombinant human nerve growth factor and recombinant human basic fibroblast growth factor in the fimbria fornix model of acute cholinergic degeneration. Brain Res 1995, 673: 199–207PubMedCrossRefGoogle Scholar
  322. Emmett CJ, Stewart GR, Johnson RM, Aswani SP, Chan RL, Jakeman LB. Distribution of radioiodinated recombinant human nerve growth factor in primate brain following intracerebroventricular infusion. Exp Neurol 1996, 140: 151–160PubMedCrossRefGoogle Scholar
  323. Ensoli F, Ensoli B, Thiele CJ. Hiv-1 gene expression and replication in neuronal and glial cell lines with immature phenotyp: effects of nerve growth factor. Virology 1994, 200: 668–676PubMedCrossRefGoogle Scholar
  324. Erickson CK. Regional distribution of ethanol in rat brain. Life Sci 1976, 19: 1439–1446PubMedCrossRefGoogle Scholar
  325. Ernfors P, Lindefors N, Chan-Palay V, Persson H. Cholinergic neurons of the nucleus basalis express elevated levels of nerve growth factor receptor mRNA in senile dementia of the Alzheimer type. Dementia 1990, 1: 138–145Google Scholar
  326. Ernfors P, Wetmore C, Eriksdotter-Nilsson M, Bygdeman M, Strömberg I, Olson L, Persson H. The nerve growth factor receptor gene is expressed in both neuronal and nonneuronal tissues in the human fetus. Int J Dev Neurosci 1991, 9: 57–66PubMedCrossRefGoogle Scholar
  327. Ernst M. Über Untergang von Zellen während der normalen Entwicklung bei Wirbeltieren. Zeitschr Anat u Entw gesch 1926, 79: 228–262CrossRefGoogle Scholar
  328. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, Mcclure D, Ward PJ. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 1990, 248: 1122–1124PubMedCrossRefGoogle Scholar
  329. Escobar ML, Russell RW, Booth RA, Bermúdez-Rattoni F. Accelerating behavioral recovery after cortical lesions. Behav Neural Biol 1994, 61: 73–80PubMedCrossRefGoogle Scholar
  330. Estenne-Bouhtou G, Kullander K, Karlsson M, Ebendal T, Hacksell U, Luthman K. Design, synthesis, tandem mass spectrometric sequencing and biological activity of NGF mimetics. Int J Pept Protein Res 1996, 48: 337–346PubMedCrossRefGoogle Scholar
  331. Evans DA, Funkenstein H, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO. Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. Jama 1989, 262: 2551–2556PubMedCrossRefGoogle Scholar
  332. Everitt BJ, Robbins TW, Evenden JL, Marston HM, Jones GH, Sirkiä TE. The effects of excitotoxic lesions of the substantia innominata, ventral and dorsal globus pallidus on the acquisition and retention of a conditional visual discrimination. Implications for cholinergic hypotheses of learning and memory. Neuroscience 1987, 22: 441–469PubMedCrossRefGoogle Scholar
  333. Ewing DJ, Clarke BF. Diabetic autonomie neuropathy: A clinical viewpoint. In: Dyck PJ, Asbury TPK, Winegrade A, Porte D (Hrsg) Diabetic Neuropathy. Saunders Philadelphia 1987: 66-68Google Scholar
  334. Fabian RH, Hulsebosch CE. Plasma nerve growth factor acces to the postnatal central nervous system. Brain Res 1993, 611: 46–52PubMedCrossRefGoogle Scholar
  335. Fabrazzo M, Costa E, Mocchetti I. Stimulation of nerve growth factor biosynthesis in developing rat brain by reserpine: steroids as potential mediators. Mol Pharmacol 1991, 39: 144–149PubMedGoogle Scholar
  336. Fabricant RN, Todaro GJ. Increased serum levels of nerve growth factor in von Recklinghausen’s disease. Arch Neurol 1981, 38: 401–405PubMedCrossRefGoogle Scholar
  337. Fagan AM, Zhang H, Landis S, Smeyne RJ, Silos-Santiago I, Barbacid M. TrkA, but not trkC, receptors are essential for survival of sympathetic neurons in vivo. J Neurosci 1996, 16: 6208–6218PubMedGoogle Scholar
  338. Fahnestock M, Scott SA, Jetté N, Weingartner JA, Crutcher KA. Nerve growth factor mRNA and protein levels measured in the same tissue from normal and Alzheimer’s disease parietal cortex. Mol Brain Res 1996, 42: 175–178PubMedCrossRefGoogle Scholar
  339. Falcini F, Matucci-Cerinic M, Lombardi A, Generini S, Pignone A, Tirassa P, Ermini M, Lepore L, Partsch G, Aloe L. Increased circulating nerve growth factor is directly correlated with disease activity in juvenile chronic arthritis. Ann Rheum Dis 1996, 55: 745–748PubMedCrossRefGoogle Scholar
  340. Falckh PH, Harkin LA, Head RJ. Resistance vessel gene expression of nerve growth factor is elevated in young spontaneously hypertensive rats. J Hypertens 1992, 10: 913–918PubMedCrossRefGoogle Scholar
  341. Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, McIntosh TK. Experimental brain injury induces expression of interleukin-lβ mRNA in the rat brain. Mol Brain Res 1995, 30: 125–130PubMedCrossRefGoogle Scholar
  342. Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, McIntosh TK. Experimental brain injury induces differential expression of tumor necrosis factor-α mRNA in the CNS. Mol Brain Res 1996, 36: 287–291PubMedCrossRefGoogle Scholar
  343. Faradji V, Sotelo J. Low serum levels of nerve growth factor in diabetic neuropathy. Acta Neurol Scand 1990, 81: 402–406PubMedCrossRefGoogle Scholar
  344. Fehm HL, Born J. Klinische Neuroendokrinologie. Internist 1995, 36: 350–356PubMedGoogle Scholar
  345. Feldman S, Weidenfeld J. Neural mechanisms involved in the corticosteroid feedback effects on the hypothalamo-pituitary-adrenocortical axis. Progr Neurobiol 1995, 45: 129–141CrossRefGoogle Scholar
  346. Feldman S, Conforti N, Chowers I. The role of the medial forebrain bundle in mediating adrenocortical responses to neurogenic stimuli. J Endocr 1971, 51: 745–749PubMedCrossRefGoogle Scholar
  347. Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S. Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol 1985, 135: 755–765Google Scholar
  348. Ferrari G, Greene LA. Prevention of neuronal apoptotic death by neurotrophic agents and ganglioside GM1: insights and speculations regarding a common mechanism. Perspect Dev Neurobiol 1996, 3: 93–100PubMedGoogle Scholar
  349. Ferguson IA, Schweitzer JB, Bartlett PF, Johnson EM. Receptor-mediated retrograde transport in CNS neurons after intraventricular administration of NGF and growth factors. J Comp Neurol 1991, 313: 680–692PubMedCrossRefGoogle Scholar
  350. Fernandez CI, Gonzalez O, Soto J, Alvarez L, Quijano Z. Effects of chronic infusion of nerve growth factor (NGF) in AF64A-lesioned rats. Mol Chem Neuropathol 1996, 28: 175–179PubMedCrossRefGoogle Scholar
  351. Fernyhough P, Diemel LT, Brewster WJ, Tomlinson DR. Deficits in sciatic nerve neuropeptide content coincide with a reduction in target tissue nerve growth factor messenger Rna in streptozotocin-diabetic rats: effects of insulin treatment. Neuroscience 1994, 62: 337–344PubMedCrossRefGoogle Scholar
  352. Fernyhough P, Diemel LT, Brewster WJ, Tomlinson DR. Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. J Neurochem 1995a, 64: 1231–1237PubMedCrossRefGoogle Scholar
  353. Fernyhough P, Diemel LT, Hardy J, Brewster WJ, Mohiuddin L, Tomlinson. Human recombinant nerve growth factor replaces deficient neurotrophic support in the diabetic rat. Eur J Neurosci 1995b, 7: 1107–1110PubMedCrossRefGoogle Scholar
  354. Fernyhough P, Maeda K, Tomlinson R. Brain-derived neurotrophic factor mRNA levels are up-regulated in hindlimb skeletal muscle of diabetic rats: effect of denervation. Exp Neurol 1996, 141: 297–303PubMedCrossRefGoogle Scholar
  355. Fewster PH, Griffin-Brooks S, MacGregor J, Ojalvo-Rose E, Ball MJ. A topographical pathway by which histopathological lesions disseminate through the brain of patients with Alzheimer’s disease. Dementia 1991, 2: 121–132Google Scholar
  356. Fibiger HC. Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci 1991, 14: 220–223PubMedCrossRefGoogle Scholar
  357. Fiez JA. Cerebellar contributions to cognition. Neuron 1996, 16: 13–15PubMedCrossRefGoogle Scholar
  358. Figenschou A, Hu GY, Storm JF. Cholinergic modulation of the action potential in rat hippocampal neurons. Eur J Neurosci 1996, 8: 211–219PubMedCrossRefGoogle Scholar
  359. Finch CE, Cohen DM. Aging, metabolism, and Alzheimer disease: review and hypotheses. Exp Neurol 1997, 143: 82–102PubMedCrossRefGoogle Scholar
  360. Fischer W, Wictorin K, Björklund A, Williams LR, Varon S, Gage FH. Amelioration of cholinergic neuronal atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 1987, 329: 65–68PubMedCrossRefGoogle Scholar
  361. Fischer W, Gage FH, Björklund A. Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur J Neurosci 1989, 1: 34–35PubMedCrossRefGoogle Scholar
  362. Fischer W, Björklund A, Chen K, Gage FH. NGF improves spatial memory in aged rodents as a function of age. J Neurosci 1991a, 11: 1889–1906PubMedGoogle Scholar
  363. Fischer W, Chen KS, Gage FH, Björklund A. Progressive decline in spatial learning and integrity of forebrain cholinergic neurons in rats during aging. Neurobiol Aging 1991b, 13: 9–23CrossRefGoogle Scholar
  364. Fischer W, Sirevaag A, Wiegand SJ, Lindsay RM, Björklund A. Reversal of spatial memory impairments in aged rats by nerve growth factor and neurotrophins 3 and 4/5 but not by brain-derived neurotrophic factor. Proc Natl Acad Sci USA 1994, 91: 8607–8611PubMedCrossRefGoogle Scholar
  365. Fisone G, Wu CF, Consolo S, Nordström Ö, Brynne N, Bartfai T, Melander T, Hökfelt T. Galanin inhibits acetylcholine release in the ventral hippocampus of the rat: histochemical, autoradiographic, in vivo and in vitro studies. Proc. Natl. Acad. Sci. Usa 1987, 84: 7339–7343PubMedCrossRefGoogle Scholar
  366. Fitzgerald M, Wall PD, Goedert M, Emson PC. Nerve growth factor counteracts the neurophysiological and neurochemical effects of chronic sciatic nerve section. Brain Res 1985, 332: 131–141PubMedCrossRefGoogle Scholar
  367. Förander P, Söderström S, Humpel C, Strömberg I. Chronic infusion of nerve growth factor into rat striatum increases cholinergic markers and inhibits striatal neuronal discharge rate. Eur J Neurosci 1996, 8: 1822–1832PubMedCrossRefGoogle Scholar
  368. Folstein MF, Folstein SE, McHugh PR. „mini Mental State“: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975, 12: 189–198PubMedCrossRefGoogle Scholar
  369. Follesa P, Mocchetti I. Regulation of basic fibroblast growth factor and nerve growth factor mRNA by β-adrenergic receptor activation and adrenal steroids in rat central nervous system. Mol Pharmacol 1993, 43: 132–138PubMedGoogle Scholar
  370. Follesa P, Gale K, Mocchetti I. Regional and temporal pattern of expression of nerve growth factor and basic fibroblast factor mRNA in rat brain following electroconvulsive shock. Exp Neurol 1994, 127: 37–44PubMedCrossRefGoogle Scholar
  371. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 1975, 24: 407–409PubMedCrossRefGoogle Scholar
  372. Foreman PJ, Taglialatela G, Angelucci L, Turner CP, Perez-Polo JR. Nerve growth factor and p75NGFR factor receptor mRNA change in rodent CNS following stress activation of the hypothalamo-pituitary-adrenocortical axis. J Neurosci Res 1993, 36: 10–18PubMedCrossRefGoogle Scholar
  373. Forloni G, Del BO R, Angeretti N, Smiroldo S, Gabellini N, Vantini G. Nerve growth factor does not influence the expression of beta amyloid precursor protein mRNA in rat brain: in vivo and in vitro studies. Brain Res 1993, 620: 292–296PubMedCrossRefGoogle Scholar
  374. Fort P, Khateb A, Pegna A, Mühlethaler M, Jones BE. Noradrenergic modulation of cholinergic nucleus basalis neurons demonstrated by in vitro pharmacological and immunohistochemical evidence in the guinea-pig brain. Eur J Neurosci 1995, 7: 1502–1511PubMedCrossRefGoogle Scholar
  375. Foster TC, Hampson RE, West MO, Deadwyler SA. Control of sensory activation of granule cells in the fascia dentata by extrinsic afferents: septal and entorhinal inputs. J Neurosci 1988, 8: 3869–3878PubMedGoogle Scholar
  376. Freedman R, Wetmore C, Strömberg I, Leonard S, Olson L. Alpha-bungarotoxin binding to hippocampal interneurons: immunocytochemical characterization and effects on growth factor expression. J Neurosci 1993, 13: 1965–1975PubMedGoogle Scholar
  377. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo MC, Reimherr F, Wender P, Yaw J, Young DA, Breese C, Adams C, Patterson D, Adler LE, Kruglyak L, Leonard S, Byerley W. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1991, 94: 587–592CrossRefGoogle Scholar
  378. Frei K, Malipiero UV, Leist PT, Zinkernagel RM, Schwab ME, Fontana A. On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur J Immunol 1989, 19: 689–694PubMedCrossRefGoogle Scholar
  379. Frey WH, Liu J, Thorne RG, Rahman YE. Intranasal delivery of 125I-labeled nerve growth factor to the brain via the olfactory route. In: Iqbal K, Mortimer JA, Winblad B, Wisniewski (Hrsg) Research Advances in Alzheimer’s Disease and Related Disorders 1995: 329-335Google Scholar
  380. Friedman WJ, Olson L, Persson H. Temporal and spatial expression of NGF receptor mRNA during postnatal rat brain development analyzed by in situ hybridization. Dev Brain Res 1991, 63: 43–51CrossRefGoogle Scholar
  381. Friedman WJ, Black IB, Persson H, Ibáñez CF. Synergistic trophic actions on rat basal forebrain neurons revealed by a synthetic NGF/BDNF chimaeric molecule. Eur J Neurosci 1995, 7: 656–662PubMedCrossRefGoogle Scholar
  382. Frim DM, Simpson J, Uhler TA, Short MP, Bossi SR, Breakefield XO, Isacson O. Striatal degeneration induced by mitochondrial blockade is prevented by biologically delivered NGF. J Neurosci Res 1993, 35: 452–458PubMedCrossRefGoogle Scholar
  383. Frödin M, Gammeltoft S. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation. Proc Natl Acad Sci USA 1994, 91: 1771–1775PubMedCrossRefGoogle Scholar
  384. Furukawa S, Furukawa Y, Satoyoshi E, Hayashi K. Synthesis and secretion of nerve growth factor by mouse astroglial cells in culture. Biochem Biophys Res Commun 1986, 136: 57–63PubMedCrossRefGoogle Scholar
  385. Fusco M, Bentivoglio M, Vantini G, Guidolin D, Polato P, Leon A. Nerve growth factor receptor-immunoreactive fibres innervate the reticular thalamic nucleus modulation by nerve growth factor treatment in neonate, adult and aged rats. Eur J Neurosci 1991, 3: 1008–1015PubMedCrossRefGoogle Scholar
  386. Fusco M, Polato P, Vantini G, Cavicchioli L, Benivoglio M, Leon A. Nerve growth factor differentially modulates the expression of its receptor within the Cns. J Comp Neurol 1991, 312: 477–491PubMedCrossRefGoogle Scholar
  387. Gaál G, Potter PE, Hanin I, Kakucska I, Vizi ES. Effects of intracerebroventricular AF64A administration on cholinergic, serotonergic and catecholaminergic circuitry in rat dorsal hippocampus. Neuroscience 1986, 19: 1197–1205PubMedCrossRefGoogle Scholar
  388. Gadient RA, Cron KC, Otten U. Interleukin-1β and tumor necrosis factor-α synergistically stimulate nerve growth factor (NGF) release from cultured rat astrocytes. Neurosci Lett 1990, 117: 335–340PubMedCrossRefGoogle Scholar
  389. Gage FH, Kelly PAT, Björklund A. Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. J Neurosci 1984, 4: 2856–2865PubMedGoogle Scholar
  390. Gage FH, Armstrong DM, Williams LR, Varon S. Morphological response of axotomised septal neurones to nerve growth factor. J Comp Neurol 1988, 269: 147–155PubMedCrossRefGoogle Scholar
  391. Gage FH, Buzsáki G, Armstrong DM. NGF-dependent sprouting and regeneration in the hippocampus. In: Storm-Mathisen J, Zimmer J, Ottersen OP (Hrsg) Progress in Brain Research 1990, 83: 357–369PubMedCrossRefGoogle Scholar
  392. Gall C. Moore RY. Distribution of enkephalin, substance P, tyrosine hydroxylase, and 5-hydroxytryptamine imunoreactivity in the septal region of the rat. J Comp Neurol 1984, 225: 212–227PubMedCrossRefGoogle Scholar
  393. Gall C, Isackson PJ. Limbic seizures increase neuronal production of mRNA for nerve growth factor. Science 1989, 245: 758–761PubMedCrossRefGoogle Scholar
  394. Gall C, Marray K, Isackson JP. Kainic acid-induced seizures stimulate increased expression of nerve growth factor mRNA in rat hippocampus. Mol Brain Res 1991, 9: 113–123PubMedCrossRefGoogle Scholar
  395. Galli SJ, Dvorak AM, Dvorak HF. Basophils and mast cells: morphologic insights into their biology, secretory patterns, and function. Progr Allergy 1984, 34: 1–141Google Scholar
  396. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hogopian S, Johnsonwood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Pinniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 1995, 373: 523–527PubMedCrossRefGoogle Scholar
  397. Garofalo L, Cuello AC. Nerve growth factor and the monosialoganglioside GM 1: analogous and different in vivo effects on biochemical, morphological, and behavioral parameters of adult cortically lesioned rats. Exp Neurol 1994, 125: 195–217PubMedCrossRefGoogle Scholar
  398. Garofalo L, Ribeiro-DA-Silva A, Cuello AC. Nerve growth factor-induced synaptogenesis and hypertrophy of cortical cholinergic terminals. Proc Natl Acad Sci USA 1992, 89: 2639–2643PubMedCrossRefGoogle Scholar
  399. Garret NE, Kidd BL, Cruwys SC, Tomlinson DR. Effect of streptozotocin-diabetes on knee joint inflammation-induced changes in substance P and nerve growth factor in the rat. Mol Brain Res 1996, 42: 272–278CrossRefGoogle Scholar
  400. Garret NE, Malcangio M, Dewhurst M, Tomlinson DR. α-Lipoic acid corrects neuropeptide deficits in diabetic rats via induction of trophic support. Neurosci Lett 1997, 222: 191–194CrossRefGoogle Scholar
  401. Gaspar P, Berger B, Alvarez C, Vigny A, Henry JP. Catecholaminergic innervation of the septal area in man: immunocytochemical study among TH and DBH antibodies. J Comp Neurol 1985, 241: 12–33PubMedCrossRefGoogle Scholar
  402. Gasser UE, Weskamp G, Otten U, Dravid AR. Time course of the elevation of nerve growth factor (NGF) content in the hippocampus and septum following lesions of the septohippocampal pathway in rats. Brain Res 1986, 376: 351–356PubMedCrossRefGoogle Scholar
  403. Gavazzi I, Cowen T. NGF can induce a ‘young’ pattern of reinnervation in transplanted cerebral blood vessels from ageing rats. J Comp Neurol 1993, 334: 489–496PubMedCrossRefGoogle Scholar
  404. Gavazzi I, Cowen T. Can the neurotrophic hypothesis explain degeneration and loss of plasticity in mature and ageing autonomie nerves? J Auton Nerv Syst 1996, 58: 1–10PubMedCrossRefGoogle Scholar
  405. Geldof AA. Nerve-growth-factor-dependent neurite outgrowth assay; a research model for chemotherapy-induced neuropathy. J Cancer Res Clin Oncol 1995, 121: 657–660PubMedCrossRefGoogle Scholar
  406. Gericke C. Nerve Growth Factor (NGF)-Gehalt im cholinergen System des basalen Vorderhirns der Ratte nach akuter und chronischer Läsion sowie im cerebralen Cortex von Patienten mit Demenz vom Alzheimer-Typ. Vom Habilitanden betreute Dissertation an der Freien Universität Berlin 1996Google Scholar
  407. Gibbs RB, Wu D, Hersh LB, Pfaff DW. Effects of estrogen replacement on the relative levels of cheoline acetyltransferase, trkA, and nerve growth factor messenger RNAs in the basal forebrain and hippocampal formation of adult rats. Exp Neurol 1994, 129: 70–80PubMedCrossRefGoogle Scholar
  408. Gibbs RB. Expression of estrogen receptor-like immunoreactivity by different subgroups of basal forebrain cholinergic neurons in gonadectomized male and female rats. Brain Res 1996a, 720: 61–68PubMedCrossRefGoogle Scholar
  409. Gibbs RB. Fluctuations in relative levels of choline acetyltransferase mRNA in different regions of the rat basal forebrain across the estrus cycle: effects of estrogen and progesterone. J Neurosci 1996b, 16: 1049–1055PubMedGoogle Scholar
  410. Gilad GM, Mahon BD, Finkelstein Y, Koffler B, Gilad VH. Stress-induced activation of the hippocampal cholinergic system and the pituitary-adrenocortical axis. Brain Res 1985, 347: 404–408PubMedCrossRefGoogle Scholar
  411. Gilad GM, Rabey JM, Tizabi Y, Gilad VH. Age-dependent loss and compensatory changes of septohippocampal cholinergic neurons in two rat strains differing in longevity and response to stress. Brain Res 1987, 436: 311–322PubMedCrossRefGoogle Scholar
  412. Gilad GM, Gilad VH. Chemotaxis and accumulation of nerve growth factor by microglia and macrophages. J Neurosci Res 1995, 41: 594–602PubMedCrossRefGoogle Scholar
  413. Giordano T, Pan JB, Casuto D, Watanabe S, Arneric SP. Thyroid hormone regulation of NGF, NT-3 and BDNF RNA in the adult rat brain. Mol Brain Res 1992, 16: 239–245PubMedCrossRefGoogle Scholar
  414. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984, 120: 885–890PubMedCrossRefGoogle Scholar
  415. Gnahn H, Hefti F, Heumann R, Schwab ME, Thoenen H. NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Dev Brain Res 1983, 9: 45–52CrossRefGoogle Scholar
  416. Godemann F, Hellweg R. 20 Jahre erfolglose Rezidivprophylaxe einer bipolar-affektiven Psychose. Nervenarzt 1997, 68: 582–585PubMedCrossRefGoogle Scholar
  417. Goedert M, Fine A, Hunt SP, Ullrich A. Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: Lesion effects in the rat brain and levels in Alzheimer’s disease. Mol Brain Res 1986, 1: 85–92CrossRefGoogle Scholar
  418. Goedert M, Fine A, Dawbarn D, Wilcock GK, Chao MV. Nerve growth factor receptor mRNA distribution in human brain: normal levels in basal forebrain in Alzheimer’s disease. Mol Brain Res 1989, 5: 1–7PubMedCrossRefGoogle Scholar
  419. Götz R, Köster R, Winkler C, Raulf F, Lottspeich F, Schartl M, Thoenen H. Neurotrophin-6 is a new member of the nerve growth factor family. Nature 1994, 372: 266–269PubMedCrossRefGoogle Scholar
  420. Götz R, Schartl M. The conservation of neurotrophic factors during vertebrate evolution. Comp Biochem Physiol 1994, 108C: 1–10CrossRefGoogle Scholar
  421. Gold BG, Mobley WC, Matheson SF. Regulation of axonal caliber, neurofilament content, and nuclear localization in mature sensory neurons by nerve growth factor. J Neurosci 1991, 11: 943–955PubMedGoogle Scholar
  422. Gold BG. Axonal regeneration of sensory nerves is delayed by continuous intrathecal infusion of nerve growth factor. Neuroscience 1997, 16: 1153–1158CrossRefGoogle Scholar
  423. Gomes-Pinilla F, Cotman CW, Nieto-Sampedro M. NGF receptor imunoreactivity in aged rat brain. Brain Res 1989, 479: 255–262CrossRefGoogle Scholar
  424. Gottesfeld Y, Simpson S, Yuwiler A, Perez-Polo JR. Effects of nerve growth factor on splenic norepinephrine and pineal N-acetyl-transferase in neonate rats exposed to alcohol in utero: neuroimmune correlates. Int J Dev Neurosci 1996, 14: 655–662PubMedCrossRefGoogle Scholar
  425. Gottfries CG. Neurochemical aspects of dementia disorders. Dementia 1990, 1: 56–64Google Scholar
  426. Gould E, Butcher LL. Transient expression of choline acetyltransferase-like immunoreactivity in Purkinje cells of the developing rat cerebellum. Dev Brain Res 1987, 34: 303–306CrossRefGoogle Scholar
  427. Graybiel AM. Building action repertoires: memory and learning functions of the basal ganglia. Curr Opin Neurol 1995, 5: 733–741CrossRefGoogle Scholar
  428. Greene LA, Varon AJ, Piltch AJ, Shooter EM. Substructure of the B subunit of mouse 7S nerve growth factor. Neurobiology 1971, 1: 37–48Google Scholar
  429. Greene LA, Shooter EM. The nerve growth factor: biochemistry, synthesis, and mechanism of action. Annu Rev Neurosci 1980, 3: 353–402PubMedCrossRefGoogle Scholar
  430. Gruss HJ. Molecular, structural, and biological characteristics of the tumor necrosis factor ligand superfamily. Int J Clin Lab Res 1996, 26: 143–159PubMedCrossRefGoogle Scholar
  431. Gutierrez EG, Banks WA, Kastin AJ. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 1993, 47: 169–176PubMedCrossRefGoogle Scholar
  432. Gwag BJ, Sessler FM, Waterhouse BD, Springer JE. Regulation of nerve growth factor mRNA in the hippocampal formation: effects of N-methyl-D-aspartate receptor activation. Exp Neurol 1993, 121: 160–171PubMedCrossRefGoogle Scholar
  433. Hacia JG, Brody LC, Chee MS, Fodor SPA, Collins FS. Detection of heterozygous mutations in Brca1 using high density oligonucleotide arrays and two-colour fluorescence analysis. Nature Genet 1996, 14: 441–447PubMedCrossRefGoogle Scholar
  434. Haddad J, Vilge V, Juif G, Maitre M, Donato L, Messer J, Mark J. β-Nerve growth factor levels in newborn cord sera. Pediatr Res 1994, 35: 637–639PubMedCrossRefGoogle Scholar
  435. Hagan JJ, Salamone JD, Simpson J, Iversen SD, Morris RG. Place navigation in rats is impaired by lesions of medial septum and diagonal band but not nucleus basalis magnocellularis. Behav Brain Res 1988, 27: 9–20PubMedCrossRefGoogle Scholar
  436. Hagg T, Manthorpe M, Vahlsing HL, Varon S. Delayed treatment with nerve growth factor reverses the apparent loss of cholinergic neurons after acute brain damage. Exp Neurol 1988, 101: 303–312PubMedCrossRefGoogle Scholar
  437. Hagg T, Hagg F, Vahlsing HL, Manthorpe M, Varon S. Nerve growth factor effects on cholinergic neurons of neostriatum and nucleus accumbens in the adult rat. Neuroscience 1989, 30: 95–103PubMedCrossRefGoogle Scholar
  438. Hagg T, Varon S. Neurotropism of nerve growth factor for adult rat septal cholinergic axons in vivo. Exp Neurol 1993, 119: 37–45PubMedCrossRefGoogle Scholar
  439. Hamburger V, Brunso-Bechthold VJK, Yip JW. Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci 1981, 1: 60–71PubMedGoogle Scholar
  440. Hamill RW, Lindner MD, Loy R. Decline in levels of NGF protein and p75 receptor in Alzheimer’s diseased cortex. Soc Neurosci Abstr 1993, 19: 191Google Scholar
  441. Hamilton M. Development of a rating scale for primary depressive illness. Brit J Soc Clin Psychol 1967, 6: 278–296CrossRefGoogle Scholar
  442. Hammes HP, Federoff HJ, Brownlee M. Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1995, 1: 527–534PubMedGoogle Scholar
  443. Hanaoka Y, Ohi T, Furukawa S, Furukawa Y, Hayashi K, Matsukura S. Effect of 4-methylcatechol on sciatic nerve growth factor level and motor nerve conduction velocity in experimental diabetic neuropathic process in rats. Exp Neurol 1992, 115: 292–296PubMedCrossRefGoogle Scholar
  444. Hanaoka Y, Ohi T, Furukawa S, Furukawa Y, Hayashi K, Matsukura S. The therapeutic effects of 4-methylcatechol a stimulator of endogenous nerve growth factor synthesis, on experimental diabetic neuropathy in rats. J Neurol Sci 1994, 122: 28–32PubMedCrossRefGoogle Scholar
  445. Hanemann CO, Gabreels-Festen Aawm, Müller HW, Stoll G. Low affinity NGF receptor expression in CMT1A nerve biopsie of different disease stages. Brain 1996, 119: 1469–1461CrossRefGoogle Scholar
  446. Hanin I, Fisher A, Hörtnagl H, Leventer SM, Potter PE, Walsh TL. Ethylcholine aziridinium (AF64A, ECM) and other potential cholinergic neuronspecific neurotoxins. In: Melzer HY (Hrsg) Psychopharmacology: The third generation of Progress. Raven Press New York 1987: 341–349Google Scholar
  447. Hanin I. Cholinergic toxins and Alzheimer’s disease. Ann NY Acad Sci 1992, 648: 63–70PubMedCrossRefGoogle Scholar
  448. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991, 12: 383–388PubMedCrossRefGoogle Scholar
  449. Hardy J. Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 1997, 20: 154–159PubMedCrossRefGoogle Scholar
  450. Hardardóttir I, Grünfeld C, Feingold KR. Effects of endotoxin and cytokines on lipid metabolism. Curr Opin Lipidol 1994, 5: 207–215PubMedCrossRefGoogle Scholar
  451. Harper GP, Thoenen H. Nerve growth factor: biological significance, measurement, and distribution. J Neurochem 1980, 34: 5–16PubMedCrossRefGoogle Scholar
  452. Hartung HD. Quantitative Bestimmung von Nerve Growth Factor im peripheren Nervensystem und dessen Zielgebieten beim experimentellen Diabetes mellitus. Vom Habilitanden betreute Dissertation an der Ludwig-Maximilians-Universität zu München 1992Google Scholar
  453. Hashimoto Y, Kawatsura H, Shiga Y, Furukawa S, Shigeno T. Significance of nerve growth factor content levels after transient forebrain ischemia in gerbils. Neuroscci Lett 1992, 139: 45–46CrossRefGoogle Scholar
  454. Hashimoto Y, Furukawa S, Omae F, Miyama Y, Hayashi K. Correlative regulation of nerve growth factor level and choline acetyltransferase activity by thyroxine in particular regions of infant rat brain. J Neurochem 1994, 63: 326–332PubMedCrossRefGoogle Scholar
  455. Assan AHS, Von Rosenstiel P, Patchev VK, Holsboer F, Almeida OFX. Exacerbation of apoptosis in the dentate gyrus of the aged rat by dexamethasone and the protective role of corticosterone. Exp Neurol 1996, 140: 43–52CrossRefGoogle Scholar
  456. Hattori M, Nanko S. Association of neurotrophin-3 gene variant with severe form of schizophrenia. Biochem Biophys Res Commun 1995, 209: 513–518PubMedCrossRefGoogle Scholar
  457. Hautzinger M. Die CES-D Skala: Ein Depressionsmeßinstrument für Untersuchungen in der Allgemeinbevölkerung. Diagnostica 1988, 34: 167–173Google Scholar
  458. Hayakawa K, Sobue G, Itoh T, Mitsuma T. Nerve growth factor prevents neurotoxic effects of cisplatin, vincristine and taxol, on adult rat sympathetic ganglion expiants in vitro. Life Sci 1994, 55: 519–525PubMedCrossRefGoogle Scholar
  459. Heath RG, McCarron KL, O’Neil CE. Antiseptal brain antibody in IgG of schizophrenic patients. Biol Psychiatry 1989, 25: 725–733PubMedCrossRefGoogle Scholar
  460. Heaton MB, Paiva M, Swanson DJ, Walker DW. Modulation of ethanol neurotoxicity by nerve growth factor. Brain Res 1993, 620: 78–85PubMedCrossRefGoogle Scholar
  461. Heckers S, Ohtake T, Wiley RG, Lappi DA, Geula C, Mesulam MM. Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J Neurosci 1994, 14: 1271–1289PubMedGoogle Scholar
  462. Hefti F. Is Alzheimer disease caused by lack of nerve growth factor? Ann Neurol 1983, 13: 109–110PubMedCrossRefGoogle Scholar
  463. Hefti F. Growth factors and neurodegeneration. In: Calne DB (Hrsg) Neurodegenerative Diseases. Saunders Philadelphia 1993: 177-194Google Scholar
  464. Hefti F. Neurotrophic factor therapy for nervous system degenerative diseases. J Neurobiol 1994, 25: 1418–1435PubMedCrossRefGoogle Scholar
  465. Hefti F. Nerve growth factor treatment for Alzheimer’s disease: the experience of the first attempt at intracerebral neurotrophic factor therapy. In: Hefti F (Hrsg) Handbook of experimental pharmacology, Vol 34: Neurotrophic factors. Springer Berlin Heidelberg 1998: 175–187Google Scholar
  466. Hefti F, Dravid A, Hartikka J. Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septohippocampal lesions. Brain Res 1984, 293: 305–311PubMedCrossRefGoogle Scholar
  467. Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 1986, 6: 2155–2162PubMedGoogle Scholar
  468. Hefti F, Weiner WJ. Nerve growth factor and Alzheimer’s disease. Ann Neurol 1986, 20: 275–281PubMedCrossRefGoogle Scholar
  469. Hefti F, Hartikka J, Salvatierra A, Weiner WJ, Mash DC. Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neurosci Lett 1986, 69: 37–41PubMedCrossRefGoogle Scholar
  470. Hefti F, Mash D. Localization of nerve growth factor receptors in the normal human brain and in Alzheimer’s disease. Neurobiol Aging 1989, 10: 75–87PubMedCrossRefGoogle Scholar
  471. Hefti F, Schneider LS. Nerve growth factor and Alzheimer’s disease. Clin Neuropharmacol 1991, 14 (Suppl 1): S62–S76PubMedCrossRefGoogle Scholar
  472. Hefti F, Venero JL, Widmer HR, Knusel B. Nerve growth factor therapy for Alzheimer’s disease: comparison with brain-derived neurotrophic factor. In: Iqbal K, Mortimer JA, Winblad B, Wisniewski HM (Hrsg) Research Advances in Alzheimer’s Disease and Related Disorders 1995: 321-328Google Scholar
  473. Heine H, Förster FJ. Relationships between mast cells and preterminal nerve fibers. Z Mikrosk Anat Forsch 1975, 89: 934–937PubMedGoogle Scholar
  474. Heinrich G, Meyer TE. Nerve growth factor (NGF) is present in human placenta and semen, but undetectable in normal and Paget’s disease blood: measurements with an anti-mouse-NGF enzyme immunoassay using a recombinat human NGF reference. Biochem Biophys Res Commun 1988, 155: 482–486PubMedCrossRefGoogle Scholar
  475. Hellweg R, Hartung HD. Levels of nerve growth factor are altered during experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy? Psychopharmacol 1988, 96 (Suppl): 365CrossRefGoogle Scholar
  476. Hellweg R, Bandtlow C, Heumann R, Korsching S. Nerve growth factor synthesis in cultured rat iris: modulation by endogenous transmitter substances. Exp Cell Res 1988a, 179: 18–30PubMedCrossRefGoogle Scholar
  477. Hellweg R, Hock C., Fischer W, Björklund A, Heumann R, Thoenen H. Nerve growth factor and choline acetyltransferase activity in normal and learning-impaired aging rat brain. Neurochem Int 1988b, 13: 126Google Scholar
  478. Hellweg R, Hock C, Hartung HD. An improved rapid and highly sensitive enzyme immunoassay for nerve growth factor. Technique, J Methods Cell Mol Biol 1989, 1: 43–49Google Scholar
  479. Hellweg R, Hartung HD. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res 1990, 26: 258–267PubMedCrossRefGoogle Scholar
  480. Hellweg R, Fischer W, Hock C, Gage FH, Björklund A, Thoenen H. Nerve growth factor levels and choline acetyltransferase activity in the brain of aged rats with spatial memory impairments. Brain Res 1990, 537: 123–130PubMedCrossRefGoogle Scholar
  481. Hellweg R, Wöhrle M, Hartung HD, Stracke H, Hock C, Federlin K. Diabetes mellitus-associated decrease in nerve growth factor fevels is reversed by allogeneic pancreatic islet transplantation. Neurosci Lett 1991, 125: 1–4PubMedCrossRefGoogle Scholar
  482. Hellweg R. „nerve growth factor“ (NGF): pathophysiologische Bedeutung und mögliche therapeutische Konsequenzen. Nervenarzt 1992a, 63: 52–56PubMedGoogle Scholar
  483. Hellweg R. Fattori di crescita e neuropatia diabetica. In: Fedele D, Boulton AJM (Hrsg) La Neuropatia Diabetica. Stampa Union Printing Viterbo 1992b: 75-85Google Scholar
  484. Hellweg R, Hock C, Hartung HD. The physiological role of β-nerve growth factor and its possible pathophysiological implication in the central nervous system. In: Emrich HM, Wiegand M (Hrsg) Integrative Biological Psychiatry. Berlin: Springer-Verlag 1992a: 105–122CrossRefGoogle Scholar
  485. Hellweg R, Nitsch R, Hock C, Jaksch M, Hoyer S. Nerve growth factor and choline acetyltransferase activity levels in the rat brain following experimental impairment of cerebral glucose and energy metabolism. J Neurosci Res 1992b, 31: 479–486PubMedCrossRefGoogle Scholar
  486. Hellweg R, Hock C, Nitsch R, Hartung HD, Mayer G, Hoyer S. Impaired cerebral glucose and energy metabolism alters nerve growth factor levels and choline acetyltransferase activity in the rat forebrain cholinergic system: a model for age-related cognitive impairment? In: Ruiz-Torres A, Hofecker G (Hrsg) Modification of the rate of aging. Facultas Universitätsverlag Wien 1992c: 163–169Google Scholar
  487. Hellweg R. Psychotrope Multimedikation. In: Helmchen H, Hippius H (Hrsg) Psychiatrie für die Praxis 17. Mmw Medizin Verlag München, 1993: 186-192Google Scholar
  488. Hellweg R. Trophic factors during normal brain aging and after functional damage. J Neural Transm [Suppl] 1994, 44: S209–S217Google Scholar
  489. Hellweg R, Jockers-Scherübl M. Neurotrophic factors in memory disorders. Life Sci 1994, 55: 2165–2169PubMedCrossRefGoogle Scholar
  490. Hellweg R, Raivich G. Nerve growth factor: pathophysiological and therapeutic implications. Pharmacopsychiatry (Suppl) 1994, 27: 15–17CrossRefGoogle Scholar
  491. Hellweg R, Raivich G, Hartung HD, Hock C, Kreutzberg GW. Axonal transport of endogenous nerve growth factor (NGF) and NGF receptor in experimental diabetic neuropathy. Exp Neurol 1994a, 130: 24–30PubMedCrossRefGoogle Scholar
  492. Hellweg R, Hartung HD, Nitsch R, Hoyer S. Nerve growth factor and neuronal glucose metabolism: impacts on the diabetic peripheral and aging central nervous system. In: Knook DL, Hofecker G. (Hrsg) Aspects of Aging and Disease. Facultas Universitätsverlag Wien 1994b: 211–217Google Scholar
  493. Hellweg R, Baethge C, Hartung H-D, Brückner MK, Arendt T. NGF level in the rat sciatic nerve is decreased after long-term consumption of ethanol. Neuro Report 1996a, 7: 777–780Google Scholar
  494. Hellweg R, Gericke C, Vahar-Matiar K, Steckler T, Arendt T. Nerve growth factor und Cholinazetyltransferase im alternden Gehirn der Ratte und nach Läsion des basalen Vorderhirns. In: Möller HJ, Müller-Spahn F, Kurtz G (Hrsg) Biologische Psychiatrie 1994. Springer-Verlag Wien 1996b: 75–78Google Scholar
  495. Hellweg R, Humpel C, Löwe A, Hörtnagel H. Moderate lesion of the rat cholinergic septohippocampal pathway increases hippocampal nerve growth factor synthesis: evidence for long-term compensatory changes? Mol Brain Res 1997, 45: 177–181PubMedCrossRefGoogle Scholar
  496. Hellweg R, Gericke CA, Jendroska K, Hartung HD, Cervós-Navarro J. NGF content in the cerebral cortex of non-demented patients with amyloid-plaques and in symptomatic Alzheimer’s disease. Int J Devl Neuroscience 1998a, 16: 787–794CrossRefGoogle Scholar
  497. Hellweg R, von Richthofen S, Anders D, Baethge C, Röpke ST, Hartung HD., Gericke CA. The time course of nerve growth factor content in different neuropsychiatric diseases — a unifying hypothesis. J Neural Transm 1998b, 105: 871–903PubMedCrossRefGoogle Scholar
  498. Helmchen H, Baltes MM, Geiselmann B, Kanowsky S, Linden M, Reischies FM, Wagner M, Wilms HU. Psychische Erkrankungen im Alter. In: Mayer KU, Baltes PB (Hrsg) Die Berliner Altersstudie. Akademie Verlag Berlin 1996: 185–219Google Scholar
  499. Hempstsead BL. Strategies for modulating trk receptor activity. Exp Neurol 1993, 124: 31–35CrossRefGoogle Scholar
  500. Henderson CE. Role of neurotrophic factors in neuronal development. Curr Opin Neurol 1996, 6: 64–70CrossRefGoogle Scholar
  501. Hendry IA, Iversen LL. Reduction in the concentration of nerve growth factor in mice after sialectomy and castration. Nature 1973, 243: 500–504CrossRefGoogle Scholar
  502. Hendry IA, Stöckel K, Thoenen H, Iversen LL. The retrograde axonal transport of nerve growth factor. Brain Res 1974, 68: 103–121PubMedCrossRefGoogle Scholar
  503. Heninger GR. Indoleamines. The role of serotonin in clinical disorders. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology: The fourth generation of progress. Raven Press New York 1995: 471–482Google Scholar
  504. Henn F. Neurotransmitters and astroglia lead to neuromodulation. Prog Brain Res 1982, 55: 241–252PubMedCrossRefGoogle Scholar
  505. Henn FA. Neurobiologie der Schizophrenic Schweiz Arch Neurol Psychiatr 1995, 146: 224–229PubMedGoogle Scholar
  506. Henneberg AE, Ruffert S, Henneberg HJ, Kornhuber HH. Antibodies to brain tissue in sera of schizophrenic patients — Preliminary findings. Eur Arch Psychiatry Clin Neurosci 1993, 242: 314–317PubMedCrossRefGoogle Scholar
  507. Henneberg N, Hoyer S. Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? Arch Gerontol Geriat 1995, 21: 63–74CrossRefGoogle Scholar
  508. Henriksson BG, Söderström S, Gower AJ, Ebendal T, Winblad B, Mohammed AH. Hippocampal nerve growth factor levels are related to spatial learning ability in aged rats. Behav Brain Res 1992, 48: 15–20PubMedCrossRefGoogle Scholar
  509. Herman JP, Schäfer MKH, Young EA, Thompson R, Douglass J, Akil H, Watson SJ. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J Neurosci 1989, 9: 3072–3082PubMedGoogle Scholar
  510. Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997, 20: 78–84PubMedCrossRefGoogle Scholar
  511. Herrera DG, Maysinger D, Gadient R, Boeckh C, Otten U, Cuello AC. Spreading depression induces c-fos-like immunoreactivity and NGF mRNA in the rat cerebral cortex. Brain Res 1993, 602: 99–103PubMedCrossRefGoogle Scholar
  512. Heumann R, Korsching S, Bandtlow C, Thoenen H. Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol 1987, 104: 1623–1631PubMedCrossRefGoogle Scholar
  513. Heumann R. Neurotrophin signalling. Curr Opin Neurobiol 1994, 4: 668–679PubMedCrossRefGoogle Scholar
  514. Heuser I, Heuser-Link M, Gotthardt U, Grasser A, Holsboer F. Behavioral effects of a synthetic corticotropin 4-9 analog in patients with depression and patients with Alzheimer’s disease. J Clin Psychopharmacol 1993, 13: 171–174PubMedCrossRefGoogle Scholar
  515. Heuser IJ, Gotthardt U, Schweiger U, Schmider J, Lammers CH, Dettling M, Holsboer F. Age-associated changes of pituitary-adrenocortical hormone regulation in humans: importance of gender. Neurobiol Aging 1994a, 15: 227–231PubMedCrossRefGoogle Scholar
  516. Heuser I, Yassouridis A, Holsboer F. The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiatr Res 1994b, 28: 341–356PubMedCrossRefGoogle Scholar
  517. Heuser I, Schweiger U, Gotthardt U, Schmider J, Lammers C-H, Dettling M, Yassouridis A, Holsboer F. Pituitary-adrenal-system regulation and psychopathology during amitriptyline treatment in elderly depressed patients and normal comparison subjects. Am J Psychiatry 1996, 153: 93–99PubMedGoogle Scholar
  518. Higgins GA, Koh S, Chen KS, Gage FH. NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron 1989, 3: 247–256PubMedCrossRefGoogle Scholar
  519. Hock C. Quantitative Bestimmung von Nerve Growth Factor-Gehalt und Cholinazetyltransferase im Gehirn von alten Ratten mit räumlichen Lernstörungen. Vom Habilitanden betreute Dissertation an der Ludwig-Maximilians-Universität zu München 1991Google Scholar
  520. Hoener MC, Hewitt E, Conner JM, Costello JW, Varon S. Nerve growth factor (NGF) content in adult rat brain tissues is several-fold higher than generally reported and is largely associated with sedimentable fractions. Brain Res 1996, 728: 47–56PubMedCrossRefGoogle Scholar
  521. Hörtnagl H, Potter PE, Hanin I. Effect of cholinergic deficit induced by ethylcholine aziridinium on serotonergic parameters in rat brain. Neuroscience 1987, 22: 203–213PubMedCrossRefGoogle Scholar
  522. Hörtnagl H, Hanin I. Toxins affecting the cholinergic system. In: Herken H, Hucho F (Hrsg) Selective Neurotoxicity. Berlin: Springer-Verlag 1992: 293–332Google Scholar
  523. Hörtnagel H, Berger ML, Havelec L, Hornykiewicz O. Role of glucocorticoids in the cholinergic degeneration in rat hippocampus induced by ethylcholine aziridinium (AF64A). J Neurosci 1993, 13: 2939–2945Google Scholar
  524. Hörtnagl H. AF64A-induced brain damage and its relation to dementia. J Neural Transm [Suppl] 1994, 44: 245–257Google Scholar
  525. Hörtnagel H, Hellweg R. Insights into the role of the cholinergic component of the septohippocampal pathway: what have we learned from experimental lesion studies? Brain Res Bull 1997a, 43: 245–255CrossRefGoogle Scholar
  526. Hörtnagel H, Hellweg R. Pathophysiological aspects of human neurodegenerative diseases. Wien Klin Wochenschr 1997b, 109/16: 623–635Google Scholar
  527. Hoffmeyer J. Molekularbiologie und Genetik in semiotischer Sicht. In: Adler RH, Herrmann JM, Köhle K, Schonecke OW, von Uexküll T, Wesiack W. (Hrsg) Psychosomatische Medizin. Urban & Schwarzenberg München 1996: 5. Aufl.: 53-62Google Scholar
  528. Holsboer F. Psychiatric implications of altered limbic-hypothalamic-pituitary-adrenocortical activity. Eur Arch Psychiatr Neurol Sci 1989, 238: 302–322CrossRefGoogle Scholar
  529. Holsboer F. Neuroendocrinology of mood disorders. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology: the fourth generation of progress. Raven Press New York 1995: 957–969Google Scholar
  530. Holsboer F, Spengler D, Heuser I. The role of corticotropin-releasing hormone in the pathogenesis of Cushing’s disease, anorexia nervosa, alcoholism, affective disorders and dementia. In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (Hrsg) Prog Brain Res 1992, 93: 385–417PubMedCrossRefGoogle Scholar
  531. Holtzman DM, Li Y, Parada LF, Kinsman S, Chen CK, Valletta JS, Zhou J, Long JB, Mobley WC. p140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron 1992, 9: 465–478PubMedCrossRefGoogle Scholar
  532. Holtzman DM, Li Y, Chen K, Gage FH, Epstein CJ, Mobley WC. Nerve growth factor reverses neuronal atrophy in a Down syndrome model of age-related neurodgeneration. Neurology 1993, 43: 2668–2673PubMedGoogle Scholar
  533. Holtzman DM, Kilbridge J, Li Y, Cunningham ET, Lenn NJ, Clary DO, Reichardt LF, Mobley WC. TrkA expression in the CNS: evidence for the existence of several novel NGF-responsive CNS neurons. J Neurosci 1995, 15: 1567–1576PubMedGoogle Scholar
  534. Holtzman DM, Sheldon RA, Jaffe W, Cheng Y, Ferriero DM. Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 1996, 39: 114–122PubMedCrossRefGoogle Scholar
  535. Honegger P, Lenoir D. Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Dev Brain Res 1982, 3: 229–238CrossRefGoogle Scholar
  536. Hopkins SJ, Rothwell NJ. Cytokines and the nervous system I: expression and recognition. Trends Neurosci 1995, 18: 83–88PubMedCrossRefGoogle Scholar
  537. Horigome K, Pryor JC, Bullock ED, Johnson EM. Mediator release from mast cells by nerve growth factor. J Biol Chem 1993, 268: 14881–14887PubMedGoogle Scholar
  538. Horigome K, Bullock ED, Johnson EMJ. Effects of nerve growth factor on rat peritoneal mast cells. Survival promotion and immediate-early gene induction. J Biol Chem 1994, 269: 2695–2702PubMedGoogle Scholar
  539. Hottinger AF, Aebischer P. Strategies for administering neurotrophic factors to the central nervous system. In: Hefti F (Hrsg) Handbook of experimental pharmacology, Vol 34: Neurotrophic factors. Springer Berlin Heidelberg 1998: 255–280Google Scholar
  540. Houle JD. Regeneration of dorsal root axons is related to specific non-neuronal cells lining NGF-treated intraspinal nitrocellulose implants. Exp Neurol 1992, 118: 133–142PubMedCrossRefGoogle Scholar
  541. Hoyer S. Glucose and related brain metabolism in dementia of Alzheimer type and its morphological significance. Age 1988, 11: 158–166CrossRefGoogle Scholar
  542. Hoyer S. Brain glucose and energy metabolism during normal aging. Aging 1990, 2: 245–258PubMedGoogle Scholar
  543. Hoyer S, Nitsch R, Oesterreich K. Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross-sectional comparison against advanced late-onset and incipient early-onset cases. J Neural Transm [P-DSect] 1991, 3: 1–14CrossRefGoogle Scholar
  544. Hoyer S. Oxidative energy metabolism in Alzheimer brain: studies in early-onset and late-onset cases. Mol Chem Neuropathol 1992, 16: 207–224PubMedCrossRefGoogle Scholar
  545. Hoyer S. Neurodegeneration, Alzheimer’s disease and beta-amyloid toxicity. Life Sci 1994, 55: 1977–1983PubMedCrossRefGoogle Scholar
  546. Hoyer S, Müller D, Plaschke K. Desensitization of brain insulin receptor: effect on glucose/energy and related metabolism. J Neural Transm [Suppl] 1994, 44: 259–268Google Scholar
  547. Hu L, Coté SL, Cuello AC. Differential modulation of the cholinergic phenotype of the nucleus basalis magnocellularis neurons by applying NGF at the cell body or cortical terminal fields. Exp Neurol 1997, 143: 162–171PubMedCrossRefGoogle Scholar
  548. Ibáñez CF. Neurotrophic factors: from structure-function studies to designing effective therapeutics. Tibtech 1995, 13: 217–227CrossRefGoogle Scholar
  549. Ichekawa T, Hirata Y. Organization of choline acetyltransferase-containing structures in the forebrain of the rat. J Neurosci 1986, 6: 281–292Google Scholar
  550. Ide C. Peripheral nerve regeneration. Neurosci Res 1996, 25: 101–121PubMedGoogle Scholar
  551. Ikeda SI, Allsop D, Glenner GG. The morphology and distribution of plaques and related deposits in the brains of Alzheimer’s disease and control cases: an immunohistochemical study using amyloid β protein antibody. Lab Invest 1989, 60: 113–122PubMedGoogle Scholar
  552. Ikegami S, Nihonmatsu I, Hatanaka H, Takei N, Kawamura H. Recovery of hippocampal cholinergic activity by transplantation of septal neurons in AF64A treated rats. Neurosci Lett 1989, 101: 17–22PubMedCrossRefGoogle Scholar
  553. Elag LL, Curtis R, Glass D, Funakoshi H, Tobkes NJ, Ryan TE, Acheson A, Lindsay RM, Persson H, Yancopoulos GD, DiStefano PS, Ibáñez CF. Panneurotrophin 1: a genetically engineered neurotrophic factor displaying multiple specificities in peripheral neurons in vitro and in vivo. Proc Natl Acad Sci USA 1995, 92: 607–611CrossRefGoogle Scholar
  554. Imiperato A, Puglisi-Allegra S, Casolini P, Angelucci L. Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary-adrenocortical axis. Brain Res 1991, 538: 111–117CrossRefGoogle Scholar
  555. Ip NY, Stitt TN, Tapley P, Klein R, Glass DJ, Fandl J, Greene LA, Barbacid M, Yancopoulos GD. Similarities and differences in the way neurotrophins interact with the trk receptors in neuronal and nonneuronal cells. Neuron 1993, 10: 137–149PubMedCrossRefGoogle Scholar
  556. Isaacson JS, Solís JM, Nicoll RA. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 1993, 10: 165–175PubMedCrossRefGoogle Scholar
  557. Isaacson LG, Ondris D, Crutcher KA. Plasticity of mature sensory cerebrovascular axons following intracranial infusion of nerve growth factor. J Comp Neurol 1995, 361: 451–460PubMedCrossRefGoogle Scholar
  558. Isaacson LG, Crutcher KA. The duration of sprouted cerebrovascular axons following intracranial infusion of nerve growth factor. Exp Neurol 1995, 131: 174–179PubMedCrossRefGoogle Scholar
  559. Isaacson LG, Billieu SC. Increased perivascular norepinephrine following intracerebroventricular infusion of NGF into adult rats. Exp Neurol 1996, 139: 54–60PubMedCrossRefGoogle Scholar
  560. Isaacson LG, Schwenk KL, Billieu SC, Crutcher KA. Sympathetic response to intracranial NGF infusion in the absence of afferent input: axonal sprouting without neurotransmitter production. Exp Neurol 1996, 141: 57–66PubMedCrossRefGoogle Scholar
  561. Isaacson LG, Mareska M, Nixdorf W, Oris JT. Dose-dependent response of mature cerebrovascular axons in vivo following intracranial infusion of nerve growth factor. Neurosci Lett 1997, 222: 21–24PubMedCrossRefGoogle Scholar
  562. Ishn DN. Implication of insulin-like growth factors in the pathogenesis of diabetic neuropathy. Brain Res Rev 1995, 20: 47–67CrossRefGoogle Scholar
  563. Issa AM, Rowe W, Gauthier S, Meaney MJ. Hypothalamic-pituitary-adrenal activity in aged, cognitively impaired and cognitively unimpaired rats. J Neurosci 1990, 10: 3247PubMedGoogle Scholar
  564. Itoh A, Nitta A, Nadai M, Nishimura K, Hirose M, Hasegawa T, Nabeshima T. Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats. J Neurochem 1996, 66: 1113–1117PubMedCrossRefGoogle Scholar
  565. Jackson GR, Werrbach-Perez K, Pan Z, Sampath D, Perez-Polo JR. Neurotrophin regulation of energy homeostasis in the central nervous system. Dev Neurosci 1994, 16: 285–290PubMedCrossRefGoogle Scholar
  566. Jacobs BL, Fornal CA. Serotonin and behavior. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology: The fourth generation of progress. Raven Press New York 1995: 461–469Google Scholar
  567. Janis LS, Glasier MM, Martin G, Stackman RW, Walsh TJ, Stein DG. A single intraseptal injection of nerve growth factor facilitates radial maze performance following damage to the medial septum in rats. Brain Res 1995, 679: 99–109PubMedCrossRefGoogle Scholar
  568. Janowsky DS, Overstreet DH. The role of acetylcholine mechanisms in mood disorders. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology: The fourth generation of progress. Raven Press New York 1995: 945–956Google Scholar
  569. Jeffreson S, Rush R, Zettler C, Frewin DB, Head RJ. The influence of the renin angiotensin system on abnormal expression of nerve growth factor in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol 1995, 22: 478–480PubMedCrossRefGoogle Scholar
  570. Jehan F, Neveu I, Naveilhan P, Brachet P, Wion D. Complex interactions among second messenger pathways, steroid hormones, and protooncogenes of the fos and jun families converge in the regulation of the nerve growth factor gene. J Neurochem 1993, 60: 1843–1853PubMedCrossRefGoogle Scholar
  571. Jelsma TN, Aguayo AJ. Trophic factors. Curr Opin Neurobiol 1994, 4: 717–725PubMedCrossRefGoogle Scholar
  572. Jetté N, Cole MS, Fahnestock M. NGF mRNA is not decreased in frontal cortex from Alzheimer’s disease patients. Mol Brain Res 1994, 25: 242–250PubMedCrossRefGoogle Scholar
  573. Jockers-Scherübl MC, Zouboulis CC, Boegner F, Hellweg R. Is nerve growth factor a serum marker for neurological and psychiatric complications in Behçet’s disease? Lancet 1996, 347: 982PubMedCrossRefGoogle Scholar
  574. Johnson EM, Taniuchi M, Clark HB, Springer JE, Koh S, Tayrien MW, Loy R. Demonstration of the retrograde transport of nerve growth factor receptor in the peripheral and central nervous systems. J Neurosci 1987, 7: 923–929PubMedGoogle Scholar
  575. Johnson GV, Simonato M, Jope RS. Dose-and time-dependent hippocampal cholinergic lesions induced by ethylcholine mustard aziridinium ion: effects of nerve growth factor, GM1 ganglioside, and vitamin E. Neurochem Res 1988, 13: 685–692PubMedCrossRefGoogle Scholar
  576. Jones BE, Cuello AC. Afferents to the basal forebrain cholinergic cell area from pontomesenchephalic-catecholamine, serotonin, and acetylcholine-neurons. Neuroscience 1989, 31: 37–61PubMedCrossRefGoogle Scholar
  577. Jones TH, Brown BL, Dobson PRM. Paracrine control of anterior pituitary hormone secretion. J Endocrinol 1990, 127: 5–13PubMedCrossRefGoogle Scholar
  578. Jorm AF, Korten AE, Henderson AS. The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr Scand 1987, 76: 456–479CrossRefGoogle Scholar
  579. Joyce PR, Mulder RT, Cloninger CR. Temperament and hypercortisolemia in depression. Am J Psychiatry 1994, 151: 195–198PubMedGoogle Scholar
  580. Junard EO, Montero CN, Hefti F. Long-term administration of mouse nerve growth factor to adult rats with partial lesions of the cholinergic septohippocampal pathway. Exp Neurol 1990, 110: 25–38PubMedCrossRefGoogle Scholar
  581. Juntunen J, Teräväinen H, Eriksson K, Panula P, Larsen A. Experimental alcoholic neuropathy in the rat: histological and electrophysiological study on the myoneural junctions and the peripheral nerves. Acta Neuropathol 1978, 41: 131–137PubMedCrossRefGoogle Scholar
  582. Kadar T, Arbel I, Silbermann M, Levy A. Morphological hippocampal changes during normal aging and their relation to cognitive deterioration. J Neural Transm [Suppl] 1994, 44: 133–143Google Scholar
  583. Kahn BB, Weintraub BD, Csako G, Zweig MH. Factitious elevation of thyrotropin in a new ultrasensitive assay: Implications for the use of monoclonal antibodies in „sandwich“ immunoassay. J Clin Enocrinol Metabol 1988, 66: 526–533CrossRefGoogle Scholar
  584. Kalivas PW, Jennes L, Miller JS. A catecholaminergic projection from the ventral tegmental area to the diagonal band of Broca: modulation by neurotensin. Brain Res 1985, 326: 229–238PubMedCrossRefGoogle Scholar
  585. Kanaka-Gantenbein C, Dicou E, Czernichow P, Scharfmann R. Presence of nerve growth factor and its receptor in an in vitro model of islet cell development: implication in normal islet morphogenesis. Endocrinology 1995a, 136: 3154–3162PubMedCrossRefGoogle Scholar
  586. Kanaka-Gantenbein C, Tazi A, Czernichow P, Scharfmann R. In vivo presence of the high affinity nerve growth factor receptor Trk-A in the rat pancreas: differential localization during pancreatic development. Endocrinology 1995b, 136: 761–769PubMedCrossRefGoogle Scholar
  587. Kanazir S, Ruzdijic S, Vukosavic S, Ivkovic S, Milosevic A, Zecevic N, Rakic L. Gap-43 mRNA expression in early development of human nervous system. Mol Brain Res 1996, 38: 145–155PubMedCrossRefGoogle Scholar
  588. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987, 325: 733–736PubMedCrossRefGoogle Scholar
  589. Kannan Y, Matsuda H, Ushio H, Kawamato K, Shimada Y. Murine granulocytemacrophage and mast cell colony formation promoted by nerve growth factor. Int Arch Allergy Immunol 1993, 102: 362–367PubMedCrossRefGoogle Scholar
  590. Kannan Y, Ushio H, Koyama H, Okada M, Oikawa M, Yoshihara T, Kaneko M, Matsuda H. 2.5S nerve growth factor enhances survival, phagocytosis, and Superoxide production of murine neutrophils. Blood 1991, 77: 1320–1325PubMedGoogle Scholar
  591. Kapás L, Obal F, Book AA, Schweitzer JB, Wiley RG, Krueger JM. The effects of imunolesions of nerve growth factor-receptive neurons by 192 IgG-saporin on sleep. Brain Res 1996, 712: 53–59PubMedCrossRefGoogle Scholar
  592. Kaplan DR, Stephens RM. Neurotrophin signal transduction by the Trk receptor. J Neurobiol 1994, 25: 1404–1417PubMedCrossRefGoogle Scholar
  593. Kapuscinski M, Charchar F, Innes B, Mitchell GA, Norman TL, Harrap SB. Nerve growth factor gene and hypertension in spontaneously hypertensive rats. J Hypertens 1996, 14: 191–197PubMedCrossRefGoogle Scholar
  594. Karayiorgou M, Gogos JA. Dissecting the genetic complexity of schizophrenia. Mol Psychiatry 1997, 2: 211–223PubMedCrossRefGoogle Scholar
  595. Kasayama S, Oka T. Impaired production of nerve growth factor in the submandibular gland of diabetic mice. Am J Physiol 1989, 257: E400–E404PubMedGoogle Scholar
  596. Kask K, Berthold M, Bartfai T. Galanin receptors: involvement in feeding, pain, depression and Alzheimer’s disease. Life Sci 1997, 60: 1523–1533PubMedCrossRefGoogle Scholar
  597. Katoh-Semba R, Semba R, Kashiwamata S, Kato K. Sex-dependent and sex-independent distribution of the β-subunit of nerve growth factor in the central nervous and peripheral tissues of mice. J Neurochem 1989, 52: 1559–1565PubMedCrossRefGoogle Scholar
  598. Katzman R. Alzheimer’s disease. N Engl. J Med 1986, 314: 964–973PubMedCrossRefGoogle Scholar
  599. Katzman R. Education and the prevalence of dementia and Alzheimer’s disease. Neurology 1993, 43: 13–20PubMedGoogle Scholar
  600. Katzman R, Terry R, Deteresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A. Clinical, pathological, and neurochemical changs in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 1988, 23: 138–144PubMedCrossRefGoogle Scholar
  601. Kawamoto K, Okada T, Kannan Y, Ushio H, Matsumoto M, Matsuda H. Nerve growth factor prevents apoptosis of rat peritoneal mast cells through the trk proto-oncogene receptor. Blood 1995, 86: 4638–4644PubMedGoogle Scholar
  602. Keller SE, Weiss JM, Miller NE, Stein M. Stress-induced suppression of immunity in adrenalectomized rats. Science 1983, 221: 1301–1304PubMedCrossRefGoogle Scholar
  603. Kerwin JM, Morris CM, Perry RH, Perry EK. Hippocampal nerve growth factor receptor immunoreactivity in patients with Alzheimer’s and Parkinson’s disease. Neurosci Lett 1992, 143: 101–104PubMedCrossRefGoogle Scholar
  604. Kerwin JM, Morris CM, Johnson M, Perry RH, Perry EK. Hippocampal p75 nerve growth factor receptor immunoreactivity in development, normal aging and senescence. Acta Anat 1993, 147: 216–222PubMedCrossRefGoogle Scholar
  605. Kesner RP. Reevaluation of the contribution of the basal forebrain cholinergic system to memory. Neurobiol Aging 1988, 9: 609–616PubMedCrossRefGoogle Scholar
  606. Kewitz H, Rost KL, Pleul O, Handke A. Dose-related effects of nerve growth factor (NGF) on choline acetyltransferase (ChAT), acetylcholine (ACh) content and ACh turnover in the brain of newborn rats. Neurochem Int 1990, 17: 239–244PubMedCrossRefGoogle Scholar
  607. Khachaturian ZS. Diagnosis of Alzheimer’s disease. Arch Neurol 1985, 42: 1097–1105PubMedCrossRefGoogle Scholar
  608. Khan AS, Freedman R, Byerley W, Leonard S. Temperature gradient gel electrophoresis analysis of the β-NGF gene in schizophrenia. J Psychiatry Neurosci 1995, 20: 199–209PubMedGoogle Scholar
  609. Kimata H, Yoshida A, Ishioka C, Mikawa H. Stimulation of Ig production and growth of lymphoblastoid B-cell lines by nerve growth factor. Immunology 1991, 72: 451–452PubMedGoogle Scholar
  610. Kiss J, Patel AJ, Halász B. Colocalization of NGF receptor with VIP in rat suprachiasmatic neurones. Neuro Report 1993, 4: 1315–1318Google Scholar
  611. Kittur SD, Song L, Endo H, Adler WH. Nerve growth factor receptor gene expression in human peripheral blood lymphocytes in aging. J Neurosci Res 1992, 32: 444–448PubMedCrossRefGoogle Scholar
  612. Klein LE, Roca RP, McArthur J, Vogels G, Klein GB, Kirby SM, Folstein M. Diagnosing dementia: Univariate and multivariate analyses of the mental status examination. J Am Geriatr Soc 1985, 33: 483–488PubMedGoogle Scholar
  613. Knight JG, Knight A, Menkes DB, Mullen PE. Autoantibodies against brain septal region. Antigens specific to unmedicated schizophrenia? Biol Psychiatry 1990, 28: 467–474PubMedCrossRefGoogle Scholar
  614. Knipper M, DA Penha Berzaghi M, Blöchl A, Breer H, Thoenen H, Lindholm D. Positive feedback between acetylcholine and the neurotrophins nerve growth factor and brain-derived neurotrophic factor in the rat hippocampus. Eur J Neurosci 1994a, 6: 668–671PubMedCrossRefGoogle Scholar
  615. Knipper M, Leung LS, Zhao D, Rylett RJ. Short-term modulation of glutaminergic synapses in adult rat hippocampus by NGF. Neuro Report 1994b, 5: 2433–2436Google Scholar
  616. Knüsel B, Rabin SJ, Hefti F, Kaplan DR. Regulated neurotrophin receptor responsiveness during neuronal migration and early differentiation. J Neurosci 1994, 14: 1542–1554PubMedGoogle Scholar
  617. Knusel B, Gao H. Neurotrophins and Alzheimer’s disease: beyond the cholinergic neurons. Life Sci 1996, 58: 2019–2027PubMedCrossRefGoogle Scholar
  618. Knusel B, Kaplan DR, Hefti F. Intraparenchymal NGF injections in adult and aged rats induce long-lasting trk tyrosine phosphorylation. Exp Neurol 1996, 139: 121–130PubMedCrossRefGoogle Scholar
  619. Koh S, Loy R. Age-related loss of nerve growth factor sensitivity in rat basal forebrain neurons. Brain Res 1988, 440: 396–401PubMedCrossRefGoogle Scholar
  620. Koh S, Chang P, Collier TJ, Loy R. Loss of NGF receptor immunoreactivity in basal forebrain neurons of aged rats: correlation with spatial memory impairment. Brain Res 1989a, 498: 397–404PubMedCrossRefGoogle Scholar
  621. Koh S, Oyler GA, Higgins GA. Localization of nerve growth factor receptor messenger RNA and protein in the adult rat brain. Exp Neurol 1989b, 106: 209–221PubMedCrossRefGoogle Scholar
  622. Koh S, Higgins GA. Differential regulation of the low-affinity nerve growth factor receptor during postnatal development of the rat brain. J Comp Neurol 1991, 313: 494–508PubMedCrossRefGoogle Scholar
  623. Kokaia M, Ferencz I, Leanza G, Elmér E, Metsis E, Kokaia Z, Wiley RG, Lindvall O. Immunolesioning of basal forebrain cholinergic neurons facilitates hippocampal kindling and perturbs neurotrophin messenger RNA regulation. Neuroscience 1996, 70: 313–327PubMedCrossRefGoogle Scholar
  624. Kolb B, Cote S, Ribeiro-DA-Silva A, Cuello AC. Nerve growth factor treatment prevents dendritic atrophy and promotes recovery of function after cortical injury. Neuroscience 1996, 76: 1139–1151CrossRefGoogle Scholar
  625. Koliatsos VE. Biological therapies for Alzheimer’s disease: focus on trophic factors. Crit Rev Neurobiol 1996, 10: 205–238PubMedGoogle Scholar
  626. Koliatsos VE, Nauta HJW, Clatterbuck RE, Holtzman DM, Mobley WC, Price DL. Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in monkeys. J Neurosci 1990, 10: 3801–3813PubMedGoogle Scholar
  627. Koliatsos VE, Applegate MD, Knüsel B, Junard EO, Burton LE, Mobley WC, Hefti FF, Price DL. Recombinant human nerve growth factor prevents retrograde degeneration of axotomized basal forebrain cholinergic neurons in rats. Exp Neurol 1991a, 112: 161–173PubMedCrossRefGoogle Scholar
  628. Koliatsos VE, Clatterbuck RE, Nauta HJW, Knüsel B, Burton LE, Hefti FF, Mobley WC, Price DL. Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann Neurol 1991b, 30: 831–840PubMedCrossRefGoogle Scholar
  629. Konings PNM, Makkink WK, Van Delft AML, Ruigt GSF. Reversal by NGF of cytostatic drug-induced reduction of neurite outgrowth in rat dorsal root ganglia in vitro. Brain Res 1994; 640: 195–204PubMedCrossRefGoogle Scholar
  630. Koo HP, Santarosa RP, Buttyan R, Shabsigh R, Olsson CA, Kaplan SA. Early molecular changes associated with streptozotocin-induced diabetic bladder hypertrophy in the rat. Urol Res 1993, 21: 375–381PubMedCrossRefGoogle Scholar
  631. Kopelman MD, Corn TH. Cholinergic ‘blockade’ as a model for cholinergic depletion. A comparison of the memory deficits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain 1988, 111: 1079–1110PubMedCrossRefGoogle Scholar
  632. Kordower JH, Gash DM, Bothwell M, Hersh L, Mufson EJ. Nerve growth factor receptor and choline acetyltransferase remain colocalized in the nucleus basalis (Ch4) of Alzheimer’s patients. Neurobiol Aging 1989, 10: 67–74PubMedCrossRefGoogle Scholar
  633. Kordower JH, Mufson EJ, Granholm AC, Hoffer B, Friden PM. Delivery of trophic factors to the primate brain. Exp Neurol 1993, 124: 21–30PubMedCrossRefGoogle Scholar
  634. Kordower JH, Charles V, Bayer R, Bartus RT, Putney S, Walus LR, Friden PM. Intravenous administration of a transferrin receptor antibody-nerve growth factor conjugate prevents the degeneration of cholinergic striatal neurons in a model of Huntington disease. Proc Natl Acad Sci USA 1994a, 91: 9077–9080PubMedCrossRefGoogle Scholar
  635. Kordower JH, Winn SR, Liu YT, Mufson EJ, Sladek JR, Hammang JP, Baetge EE, Emerich DF. The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc Natl Acad Sci USA 1994b, 91: 10898–10902PubMedCrossRefGoogle Scholar
  636. Kornack DR, Lu B, Black IB. Sexually dimorphic expression of the NGF receptor gene in the developing rat brain. Brain Res 1991, 542: 171–174PubMedCrossRefGoogle Scholar
  637. Korsching S. The neurotrophic factor concept: a reexamination. J Neurosci 1993, 13: 2739–2748PubMedGoogle Scholar
  638. Korsching S, Thoenen H. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc Natl Acad Sci USA 1983, 80: 3313–3316CrossRefGoogle Scholar
  639. Korsching S, Thoenen H. Treatment with 6-hydroxydopamine and colchicine decreases nerve growth factor levels in sympathetic ganglia and increases them in the corresponding target tissues. J Neurosci 1985, 5: 1058–1061PubMedGoogle Scholar
  640. Korsching S, Thoenen H. Two-site enzyme immunoassay for nerve growth factor. In.: Barnes D, Sirkbasku DA (Hrsg) Meth Enzymol 1987: 147: 167–185PubMedCrossRefGoogle Scholar
  641. Korsching S, Thoenen H. Developmental changes of nerve growth factor levels in sympathetic ganglia and their target organs. Dev Biol 1988, 126: 40–46PubMedCrossRefGoogle Scholar
  642. Korsching S, Auburger G, Heumann R, Scott J, Thoenen H. Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. Eur Mol Biol Org J 1985, 4: 1389–1393Google Scholar
  643. Korsching S, Heumann R, Thoenen H, Hefti F. Cholinergic denervation of the rat hippocampus by fimbrial transection leads to a transient accumulation of nerve growth factor (NGF) without change in mRNANGF content. Neurosci Lett 1986, 66: 175–180PubMedCrossRefGoogle Scholar
  644. Kossmann T, Hans V, Imhof HG, Trentz O, Morganti-Kossmann MC. Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes. Brain Res 1996, 713: 143–152PubMedCrossRefGoogle Scholar
  645. Kowall NW, Beal MF. Cortical somatostatin, neuropeptide Y, and NADPH diaphorase neurons: normal anatomy and alterations in Alzheimer’s disease. Ann Neurol 1988, 23: 105–114PubMedCrossRefGoogle Scholar
  646. Kramer R, Zhang Y, Gehrmann J, Gold R, Thoenen H, Wekerle H. Gene transfer through the blood-nerve barrier: NGF-engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nature 1995, 1: 1162–1166CrossRefGoogle Scholar
  647. Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res 1995, 680: 196–206PubMedCrossRefGoogle Scholar
  648. Krewson CE, Saltzman WM. Transport and elimination of recombinant human NGF during long-term delivery to the brain. Brain Res 1996, 727: 169–181PubMedCrossRefGoogle Scholar
  649. Kromer LF. Nerve growth factor treatment after brain injury prevents neuronal death. Science 1987, 235: 214–216PubMedCrossRefGoogle Scholar
  650. Lachman HM, Papolos DF, Boyle A, Sheftel G, Juthani M, Edwards E, Hennfa. Alterations in glucocorticoid inducible RNAs in the limbic system of learned helpless rats. Brain Res 1993, 609: 110–116PubMedCrossRefGoogle Scholar
  651. Lärkfors L, Ebendal T. Highly sensitive enzyme immunoassay for β-nerve growth factor. J Immunol Meth 1987a, 97: 41–47CrossRefGoogle Scholar
  652. Lärkfors L, Ebendal T, Whittemore SR, Persson H, Hoffer B, Olson L. Decreased level of nerve growth factor (NGF) and its messenger RNA in the aged rat brain. Mol Brain Res 1987b, 3: 55–60CrossRefGoogle Scholar
  653. Lärkfors L, Strömberg I, Ebendal T, Olson L. Nerve growth factor protein levels increases in the adult rat hippocampus after a specific cholinergic lesion. J Neurosci Res 1987c, 18: 525–531PubMedCrossRefGoogle Scholar
  654. Lärkfors, L, Ebendal T, Whittemore SR, Persson H, Hoffer B, Olson L. Developmental appearance of nerve growth factor in the rat brain: significant deficits in the aged forebrain. In: Gash DM, Slades JR Jr (Hrsg) Progr Brain Res Vol. 78. Amsterdam: Elsevier, 1988: 27–31Google Scholar
  655. Lahiri DK, Nall C. Promoter activity of the gene encoding the beta-amyloid precursor protein is up-regulated by growth factors, phorbol ester, retinoic acid and interleukin-1. Mol Brain Res 1995, 32: 233–240PubMedCrossRefGoogle Scholar
  656. Lahtinen T, Soinila S, Lakshmanan J. Biological demonstration of nerve growth factor in the rat pituitary gland. Neuroscience 1989, 30: 165–170PubMedCrossRefGoogle Scholar
  657. Lai KO, Fu WY, Ip FCF, Ip NY. Cloning and expression of a novel neurotrophin, NT-7, from carp. Mol Cell Neurosci 1998, 11: 64–76PubMedCrossRefGoogle Scholar
  658. Lakshmanan J. β-nerve growth factor measurements in mouse serum. J Neurochem 1986, 46: 882–891PubMedCrossRefGoogle Scholar
  659. Lakshmanan J. Nerve growth factor levels in mouse serum: Variations due to stress. Neurochemical Res 1987, 12: 393–397CrossRefGoogle Scholar
  660. Lambiase A, Bonini S, Bonini S, Micera A, Magrini L, Bracci-Laudiero L, Aloe L. Increased plasma levels of nerve growth factor in vernal keratoconjunctivitis and relationship to conjunctival mast cells. Invest Ophtalmol Visual Sci 1995, 36: 2127–2132Google Scholar
  661. Lambracht-Hall M, Dimitriadou V, Theoharides TC. Migration of mast cells in the developing brain. Dev Brain Res 1990, 56: 151–159CrossRefGoogle Scholar
  662. Landfield PW, Waymire JC, Lynch G. Hippocampal aging and adrenocorticoids: quantitative correlation. Science 1978, 202: 1098–1102PubMedCrossRefGoogle Scholar
  663. Landin K, Blennow K, Wallin A, Gottfries CG. Low blood pressure and blood glucose levels in Alzheimer’s disease. Evidence for a hypometabolic disorder? J Intern Med 1993, 233: 357–363PubMedCrossRefGoogle Scholar
  664. Landreth GE, Shooter EM. Nerve growth factor receptors on PC12 cells: ligand-induced conversion from low-to high-affinity states. Proc Natl Acad Sci USA 1980, 77: 4751–4755PubMedCrossRefGoogle Scholar
  665. Lapchak PA, Araujo DM. NGF suppression of weight gain in adult female rats correlates with decreased hypothalamic cholecystokinin levels. Brain Res 1994, 655: 12–16PubMedCrossRefGoogle Scholar
  666. Lapchak PA, Jenden DJ, Hefti F. Pharmacological stimulation reveals recombinant human nerve growth factor-induced increases of in vivo hippocampal cholinergic function measured in rats with partial fimbrial transections. Neuroscience 1992, 50: 847–856PubMedCrossRefGoogle Scholar
  667. Large TH, Bodary SC, Clegg DO, Weskamp G, Otten U, Reichardt LF. Nerve growth factor gene expression in the developing rat brain. Science 1986, 234: 352–355PubMedCrossRefGoogle Scholar
  668. Lauterborn JC, Isackson PJ, Gall CM. Nerve growth factor mRNA-containing cells are distributed within regions of cholinergic neurons in the rat basal forebrain. J Comp Neurol 1991, 306: 439–446PubMedCrossRefGoogle Scholar
  669. Lauterborn JC, Tran TMD, Isackson PJ, Gall CM. Nerve growth factor mRNA is expressed by GABAergic neurons in rat hippocampus. Neuro Report 1993, 5: 273–276Google Scholar
  670. Lauterborn JC, Bizon JL, Tran TMD, Gall CM. NGF mRNA is expressed by GABAergic but not cholinergic neurons in rat basal forebrain. J Comp Neurol 1995, 360: 454–462PubMedCrossRefGoogle Scholar
  671. Le W, Yang K, Whitson JS, Clifton GL, Hayes RL. Liposome-mediated NGF gene transfection increases ChAT activity in Cns cell cultures. Neuro Report 1996, 7: 710–712Google Scholar
  672. Leanza G, Ndlsson OG, Wiley RG, Björklund A. Selective lesioning of the basal forebrain cholinergic system by intraventricular 192 IgG-saporin: behavioural, biochemical and stereological studies in the rat. Eur J Neurosci 1995, 7: 329–343PubMedCrossRefGoogle Scholar
  673. Leanza G, Muir J, Nilsson OG, Wiley RG, Dunnett SB, Björklund A. Selective immunolesioning of the basal forebrain cholinergic system disrupts short-term memory in rats. Eur J Neurosci 1996, 8: 1535–1544PubMedCrossRefGoogle Scholar
  674. Lee TH, Kato H, Kogure K, Itoyama Y. Temporal profile of nerve growth factor-like immunoreactivity after transient focal cerebral ischemia in rats. Brain Res 1996, 713: 199–210PubMedCrossRefGoogle Scholar
  675. Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci USA 1994, 91: 3739–3743PubMedCrossRefGoogle Scholar
  676. Lesauteur L, Maliartchouk S, Le-Jeune H, Quirion R, Saragovi HU. Potent human p140-TrkA agonists derived from an anti-receptor monoclonal antibody. J Neurosci 1996, 16: 1308–1316PubMedGoogle Scholar
  677. Leserman J, Petitto JM, Perkins DO, Folds JD, Golden RN, Evans DL. Severe stress, depressive symptoms, and changes in lymphocyte subsets in human immunodeficiency virus-infected men. A 2-year follow-up study. Arch Gen Psychiatry 1997, 54: 279–285PubMedCrossRefGoogle Scholar
  678. Leventer SM, Wulfert E, Hanin I. Time course of ethylcholine mustard aziridinium ion (AF64A)-induced cholinotoxicity in vivo. Neuropharmacology 1987, 26: 361–365PubMedCrossRefGoogle Scholar
  679. Levi A, Shechter Y, Neufeld EJ, Schlessinger J. Mobility, clustering, and transport of nerve growth factor in embryonal sensory cells and in a sympathetic neuronal cell line. Proc Natl Acad Sci USA 1980, 77: 3469–3473PubMedCrossRefGoogle Scholar
  680. Levi-Montalcini R, Angeletti PU. Nerve growth factor. Physiol Rev 1968, 48: 534–569PubMedGoogle Scholar
  681. Levi-Montalcini R. The nerve growth factor: 35 years later. Science 1987, 237: 1154–1162PubMedCrossRefGoogle Scholar
  682. Levi-Montalcini R, Calissano P. The nerve growth factor. Sci Am 1979, June: 44-53Google Scholar
  683. Levi-Montalcini R, Dal Toso R, Della Valle F, Skaper SD, Leon A. Update of the NGF saga. J Neurol Sci 1995, 130: 119–127PubMedCrossRefGoogle Scholar
  684. Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A. Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 1996, 19: 514–520PubMedCrossRefGoogle Scholar
  685. Lewin GR, Mendell LM. Nerve growth factor and nociception. Trends Neurosci 1993, 16: 353–359PubMedCrossRefGoogle Scholar
  686. Lewin GR, Ritter AM, Mendell LM. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J Neurosci 1993, 13: 2136–2148PubMedGoogle Scholar
  687. Lewin GR. Neurotrophic factors and pain. The Neurosci 1995, 7: 227–232Google Scholar
  688. Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci 1996, 19: 289–317PubMedCrossRefGoogle Scholar
  689. Li Y, Holtzman DM, Kromer LF, Kaplan DR, Chua-Couzens J, Clary DO, Knüsel B, Mobley WC. Regulation of trkA and ChAT expression in developing rat basal forebrain: evidence that both exogenous and endogenous NGF regulate differentiation of cholinergic neurons. J Neurosci 1995, 15: 2888–2905PubMedGoogle Scholar
  690. Lincoln J, Milner P, Appenzeller O, Burnstock G, Qualls C. Innervation of normal human sural and optic nerves by noradrenaline-and peptide-containing nervi vasorum and nervorum: effect of diabetes and alcoholism. Brain Res 1993, 632: 48–56PubMedCrossRefGoogle Scholar
  691. Lindefors N, Ernfors P, Falkenberg T, Persson H. Septal cholinergic afferents regulate expression of brain-derived neurotrophic factor and β-nerve growth factor mRNA in rat hippocampus. Exp Brain Res 1992, 88: 78–90PubMedCrossRefGoogle Scholar
  692. Lindefors N, Brodin E, Metsis M. Spatiotemporal selective effects on Brain-derived neurotrophic factor and trkB messenger RNA in rat hippocampus by electroconvulsive shock. Neuroscience 1995, 65: 661–670PubMedCrossRefGoogle Scholar
  693. Lindenberger U, Gilberg R, Pötter U, Little TD, Baltes PB. Stichprobenselektivität und Generalisierbarkeit der Ergebnisse in der Berliner Altersstudie. In: Mayer KU, Baltes PB (Hrsg) Die Berliner Altersstudie. Akademie Verlag Berlin 1996: 85–108Google Scholar
  694. Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 1987, 330: 658–659PubMedCrossRefGoogle Scholar
  695. Lindholm D, Hengerer B, Heumann R, Carroll P, Thoenen H. Glucocorticoid hormones negatively regulate nerve growth factor expression in vivo and in cultured rat fibroblasts. Eur J Neurosci 1990a, 2: 795–801PubMedCrossRefGoogle Scholar
  696. Lindholm D, Hengerer B, Zafra F, Thoenen H. Transforming growth factor-β1 stimulates expression of nerve growth factor in the rat CNS. Neuro Report 1990b, 1: 9–12Google Scholar
  697. Lindholm D, Castrén E, Hengerer B, Zafra F, Berninger B, Thoenen H. Differential regulation of nerve growth factor (NGF) synthesis in neurons and astrocytes by glucocorticoid hormones. Eur J Neurosci 1992a, 4: 404–410PubMedCrossRefGoogle Scholar
  698. Lindholm D, Castrén E, Kiefer R, Zafra F, Thoenen H. Transforming growth factor-β1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 1992b, 117: 395–400PubMedCrossRefGoogle Scholar
  699. Lindholm D, Berzaghi MDP, Cooper J, Thoenen H, Castren E. Brain-derived neurotrophic factor and neurotrophin-4 increase neurotrophin-3 expression in the rat hippocampus. Int J Dev Neurosci 1994a, 12: 745–751PubMedCrossRefGoogle Scholar
  700. Lindholm D, Castrén E, Berzaghi M, Blöchl A, Thoenen H. Activity-dependent and hormonal regulation of neurotrophin mRNA levels in the brain — implications for neuronal plasticity. J Neurobiol 1994b, 25: 1362–1372PubMedCrossRefGoogle Scholar
  701. Lindholm D, Carroll P, Tzimagiorgis G, Thoenen H. Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins Bdnf, NT-3 and NT-4. Eur J Neurosci 1996, 8: 1452–1460PubMedCrossRefGoogle Scholar
  702. Lindner MD, Gordon DD, Miller JM, Tariot PN, McDaniel KD, Hamill RW, Distefano PS, Loy R. Increased levels of truncated nerve growth factor receptor in urine of mildly demented patients with Alzheimer’s disease. Arch Neurol 1993, 50: 1054–1058PubMedCrossRefGoogle Scholar
  703. Lindner MD, Dworetzky SI, Sampson C, Loy R. Relationship of APP mRNA transcripts and levels of NGF and low-affinity NGF receptors to behavioral measures of age-related cognitive dysfunction. J Neurosci 1994, 14: 2282–2289PubMedGoogle Scholar
  704. Lindsay RM. Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurones. Nature 1979, 282: 80–82PubMedCrossRefGoogle Scholar
  705. Lindsay RM, Lockett C, Sternberg J, Winter J. Neuropeptide expression in cultures of adult sensory neurons: Modulation of substance P and calcitonin gene-related peptide levels by nerve growth factor. Neuroscience 1989, 33: 53–65PubMedCrossRefGoogle Scholar
  706. Lindsay RM, Shooter EM, Radeke MJ, Misko TP, Dechant G, Thoenen H, Lindholm D. Nerve growth factor regulates expression of the nerve growth factor receptor in adult sensory neurons. Eur J Neurosci 1990, 2: 389–396PubMedCrossRefGoogle Scholar
  707. Lindsay RM, Altar CA, Cedarbaum JM, Hyman C, Wiegand SJ. The therapeutic potential of neurotrophic factors in the treatment of Parkinson’s disease. Exp Neurol 1993, 124: 103–118PubMedCrossRefGoogle Scholar
  708. Lindsay RM, Wiegand SJ, Altar CA, Di Stefano PS. Neurotrophic factors: from molecule to man. Trends Neurosci 1994, 17: 182–190PubMedCrossRefGoogle Scholar
  709. Lindsay RM. Role of neurotrophins and trk receptors in the development and maintenance of sensory neurons: an overview. Philos T Roy Soc B 1996, 351: 365–373CrossRefGoogle Scholar
  710. Lindvall O. Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci USA 1992, 89: 648–652PubMedCrossRefGoogle Scholar
  711. Lindvall O, Kokaia Z, Bengzon J, Elmér E, Kokaia M. Neurotrophins and brain insults. Trends Neurosci 1994, 17: 490–496PubMedCrossRefGoogle Scholar
  712. Lipinski WJ, Rusiniak KW, Hilliard M. Davis RE. Nerve growth factor faciliates conditioned taste aversion learning in normal rats. Brain Res 1995, 692: 143–153PubMedCrossRefGoogle Scholar
  713. Lipton SA. Janus faces of NF-κB: neurodestruction versus neuroprotection. Nature Med 1997, 3: 20–22PubMedCrossRefGoogle Scholar
  714. Lishman WA. Alcoholic dementia: a hypothesis. Lancet 1986, 1: 1184–1185PubMedCrossRefGoogle Scholar
  715. Liu HM, Lei HY, Kao KP. Correlation between NGF levels in wound chamber fluid and cytological localization of NGF and NGF receptor in axotomized rat sciatic nerve. Exp Neurol 1995, 132: 24–32PubMedCrossRefGoogle Scholar
  716. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol 1996, 14: 1675–1680CrossRefGoogle Scholar
  717. Loconte G, Bartolini L, Casamenti F, Marconcini-Pepeu I, Pepeu G. Lesions of cholinergic forebrain nuclei: changes in avoidance behavior and scopolamine actions. Pharmacol Biochem Behav 1982, 17: 933–937CrossRefGoogle Scholar
  718. Longo FM, Holtzman DM, Grimes M, Mobley WC. Nerve growth factor: actions in the peripheral and central nervous systems. In: Loughlin SE, Fallon JH (Hrsg). Neurotrophic Factors. Academic Press San Diego 1993: 209–256Google Scholar
  719. Lorez H, Keller F, Ruess G, Otten U. Nerve growth factor increases in adult rat brain after hypoxic injury. Neurosci Lett 1989, 98: 339–344PubMedCrossRefGoogle Scholar
  720. Lorigados L, Söderström S, Ebendal T. Two-site enzyme immunoassay for βNGF applied to human patient sera. J Neurosci Res 1992, 32: 329–339PubMedCrossRefGoogle Scholar
  721. Lorigados L, Alvarez P, Pavon N, Serrano T, Blanco L, Macias R. NGF in experimental models of Parkinson disease. Mol Chem Neuropathol 1996, 28: 225–228PubMedCrossRefGoogle Scholar
  722. Low PA, Suarez GA. Diabetic neuropathies. Bailliere Clin Neur 1995, 4: 401–425Google Scholar
  723. Loy R, Sheldon RA. Sexually dimorphic development of cholinergic enzymes in the rat septohippocampal system. Dev Brain Res 1987, 34: 156–160CrossRefGoogle Scholar
  724. Loy R, Lachyankar MB, Condon PJ, Poluha DK, Ross AH. Retrograde axonal transport and lesion-induced upregulation of the trkA high-affinity NGF receptor. Exp Neurol 1994a, 130: 377–386PubMedCrossRefGoogle Scholar
  725. Loy R, Taglialatela G, Angelucci L, Heyer D, Perez-Polo R. Regional CNS uptake of blood-borne nerve growth factor. J Neurosci Res 1994b, 39: 339–346PubMedCrossRefGoogle Scholar
  726. Lu B, Yokoyama M, Dreyfus CF, Black IB. Depolarizing stimuli regulate nerve growth factor gene expression in cultured hippocampal neurons. Proc Natl Acad Sci USA 1991a, 88-6289-6292Google Scholar
  727. Lu B, Lee JM, Elliott R, Dreyfus CF, Adler JE, Black IB. Regulation of NGF gene expression in CNS glia by cell-cell contact. Mol Brain Res 1991b, 11: 359–362PubMedCrossRefGoogle Scholar
  728. Lucidi-Phillipi CA, Clary DO, Reichardt LF, Gage FH. TrkA activation is sufficient to rescue axotomized cholinergic neurons. Neuron 1996, 16: 653–663PubMedCrossRefGoogle Scholar
  729. Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M. 3-Nitropropionic acid — exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 1991, 18: 492–498PubMedGoogle Scholar
  730. Luft D, Pagallies OB, Konz K, Mann K, Renn W, Eggstein M. Differential diagnosis of neuropathic lesions in diabetic and alcoholic patients. Clin Invest 1994, 72: 200–205CrossRefGoogle Scholar
  731. Luine V, Hearns M. Spatial memory deficits in aged rats: contributions of the cholinergic system assessed by ChAT. Brain Res 1990, 523: 321–324PubMedCrossRefGoogle Scholar
  732. Luntz-Leybman V, Bickford PC, Freedman R. Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 1992, 587: 130–136PubMedCrossRefGoogle Scholar
  733. Lupien S, Lecours AR, Lussier I, Schwartz G, Nair NPV, Meaney MJ. Basal cortisol levels and cognitive deficits in human aging. J Neurosci 1994, 14: 2893–2903PubMedGoogle Scholar
  734. Lupien S, Lecours AR, Schwartz G, Sharma S, Hauger RL, Meaney MJ, Nair NPV. Longitudinal study of basal cortisol levels in healthy elderly subjects: evidence for subgroups. Neurobiol Aging 1996, 17: 95–105PubMedCrossRefGoogle Scholar
  735. Luppi P, Levi-Montalcini R, Bracci-Laudiero L, Bertolini A, Arletti R, Tavernari D, Vigneti E, Aloe L. NGF is released into plasma during human pregnancy: an oxytocin-mediated response? Neuro Report 1993, 4: 1063–1065Google Scholar
  736. Lyketsos CG, Tune LE, Pearlson G, Steele C. Major depression in Alzheimer’s disease. An interaction between gender and family history. Psychosomatics 1996, 37: 380–384PubMedCrossRefGoogle Scholar
  737. Ma QP, Woolf CJ. The progressive tactile hyperalgesia induced by peripheral inflammation is nerve growth factor dependent. Neuro Report 1997, 8: 807–810Google Scholar
  738. Maas JW, Katz MM, Koslow SH, Swann A, Davis JM, Berman N, Bowden CL, Stokes PE, Landis H. Adrenomedullary function in depressed patients. J Psychiatr Res 1994, 28: 357–367PubMedCrossRefGoogle Scholar
  739. Macdonald E, Sirviö J. Neurotoxins as tools in lesioning experiments. In: Harvey AL (ed). Natural and Synthetic Neurotoxins. London: Academic Press 1993: 1–46Google Scholar
  740. Maciejek Z, Slotala T, Nicpon K. Chronic alcoholism and Alzheimer’s disease. Neuroscience 1987, 22: S440Google Scholar
  741. Maeda K, Fernyhough P, Tomlinson DR. Regeneration sensory neurones of diabetic rats express reduced levels of mRNA for GAP-43, γ-preprotachykinin and the nerve growth factor receptors, trkA and p75NGFR. Mol Brain Res 1996, 37: 166–174PubMedCrossRefGoogle Scholar
  742. Maestripieri D, De Simone R, Aloe L, Alleva E. Social status and nerve growth factor serum levels after agonistic encounters in mice. Physiol Behav 1990, 47: 161–164PubMedCrossRefGoogle Scholar
  743. Maffei L, Berardi N, Domenici L, Parisi V, Pizzorusso T. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J Neurosci 1992, 12: 4651–4662PubMedGoogle Scholar
  744. Mahadeo D, Kaplan L, Chao MV, Hemstead BL. High affinity nerve growth factor binding displays a faster rate of association than p140trk. J Biol Chem 1994, 269: 6884–6891PubMedGoogle Scholar
  745. Maier SF, Watkins LR, Fleshner M. Psychoneuroimmunology. The interface between behavior, brain, and immunity. Am Psychol 1994, 49: 1004–1017PubMedCrossRefGoogle Scholar
  746. Maier W, Lichtermann D, Minges J, Hallmayer J, Heun R, Benkert O, Levinson DF. Continuity and discontinuity of affective disorders and schizophrenia. Arch Gen Psychiatry 1993, 50: 871–883PubMedCrossRefGoogle Scholar
  747. Maimone D, Gregory S, Arnason BGW, Reder AT. Cytokine levels in the cerebrospinal fluid and serum of patients with multiple sclerosis. J Neuroimmunol 1991, 32: 67–74PubMedCrossRefGoogle Scholar
  748. Maisonpierre PC, Le Beau MM, Espinosa Iii R, Ip NY, Belluscio L, De La Monte SM, Squinto S, Furth ME, Yancopoulos GD. Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distrubution, and chromosomal localizations. Genomics 1991, 10: 558–568PubMedCrossRefGoogle Scholar
  749. Maker HS, Leherer GM. Effect of ischemia. In: Lajtha A (Hrsg) Handbook of Neurochemistry. Plenum New York 1971: 267-310Google Scholar
  750. Mallat M, Houlgatte R, Brachet P, Prochiantz A. Lipopolysaccharide-stimulated rat brain macrophages release NGF in vitro. Dev Biol 1989, 133: 309–311PubMedCrossRefGoogle Scholar
  751. Mandel RJ, Gage FH, Thal LJ. Spatial learning in rats: correlation with cortical choline acetyltransferase and improvement with NGF following NBM damage. Exp Neurol 1989, 104: 208–217PubMedCrossRefGoogle Scholar
  752. Maness LM, Kastin AJ, Weber JT, Banks WA, Beckman BS, Zadina JE. The neurotrophins and their receptors: structure, function, and neuropathology. Neurosci Biobehav Rev 1994, 18: 143–159PubMedCrossRefGoogle Scholar
  753. Mann DM, Brown AM, Prinja D, Jones D, Davies CA. A morphological analysis of senile plaques in the brains of non-demented persons of different ages using silver, immunocytochemical and lectin histochemical staining techniques. Neuropathol Appl Neurobiol 1990, 16: 17–25PubMedCrossRefGoogle Scholar
  754. Mann DMA. Vulnerability of specific neurons to aging. In: Calne DB (ed). Neurodegenerative Diseases. Philadelphia: Saunders 1994: 15–31Google Scholar
  755. Markowska AL, Koliatsos VE, Breckler SJ, Price DL, Olton DS. Human nerve growth factor improves spatial memory in aged but not in young rats. J Neurosci 1994, 14: 4815–4824PubMedGoogle Scholar
  756. Markowska AL, Olton DS, Gives B. Cholinergic manipulations in the medial septal area: age-related effects on working memory and hippocampal electrophysiology. J Neurosci 1995, 15: 2063–2073PubMedGoogle Scholar
  757. Markowska AL, Price D, Koliatsos VE. Selective effects of nerve growth factor on spatial recent memory as assessed by a delayed nonmatching-to-position task in the water maze. J Neurosci 1996, 16: 3541–3548PubMedGoogle Scholar
  758. Marshall JS, Bienenstock J. The role of mast cells in inflammatory reactions of the airways, skin and intestine. Curr Opin Immunol 6: 853-859Google Scholar
  759. Marston HM, West HL, Wilkinson LS, Everitt BJ, Robbins TW. Effects of excitotoxic lesions of the septum and vertical limb nucleus of the diagonal band of Broca on conditional visual discrimination: relationship between performance and choline acetyltransferase activity in the cingulate cortes. J Neurosci 1994, 14: 2009–2019PubMedGoogle Scholar
  760. Martin JV, Edwards E, Johnson JO, Henn FA. Monoamine receptors in an animal model of affective disorder. J Neurochem 1990, 55: 1142–1148PubMedCrossRefGoogle Scholar
  761. Martinez-Serrano A, Lundberg C, Horellou P, Fischer W, Bentlage C, Campbell K, McKay RDG, Mallet J, Björklund A. CNS-derived neural progenitor cells for gene transfer of nerve growth factor to the adult rat brain: complete rescue of axotomized cholinergic neurons after transplantation into the seprum. J Neurosci 1995, 15: 5668–5680PubMedGoogle Scholar
  762. Massaro AR, Soranzo C, Bigon E, Battiston S, Morandi A, Carnevale A, Callegaro L. Nerve growth factor (NGF) in cerebrospinal fluid (CSF) from patients with various neurological disorders. Ital J Neurol Sci 1994, 15: 105–108PubMedCrossRefGoogle Scholar
  763. Masters CL, Simms G, Weinman NA, Multhaup G, Mcdonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer Disease and Down syndrome. Proc Natl Acad Sci USA 1985, 82: 4245–4249PubMedCrossRefGoogle Scholar
  764. Masters CL, Beyreuther K. Amyloid: cause or effect in Alzheimer’s disease. In: Price DL, Thoenen H, Aguayo AJ (Hrsg) Neurodegenerative Disorders: Mechanisms and Prospects for Therapy. West Sussex: John Wiley & Sons 1991: 75–86Google Scholar
  765. Matsuda H, Coughlin MD, Bienenstock J, Denburg JA. Nerve growth factor promotes human hemopoietic colony growth and differentiation. Proc Natl Acad Sci USA 1988a, 85: 6508–6512PubMedCrossRefGoogle Scholar
  766. Matsuda H, Switzer J, Coughlin MD, Bienenstock J, Denburg JA. Human basophilic cell differentiation promoted by 2.5S nerve growth factor. Int Arch Allergy Appl Immunol 1988b, 86: 453–457PubMedCrossRefGoogle Scholar
  767. Matsuda H, Kannan Y, Ushio H, Kiso Y, Kanemoto T, Suzuki H, Kitamura Y. Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J Exp Med 1991, 174: 7–14PubMedCrossRefGoogle Scholar
  768. Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith-Swintosky VL, Rydel RE. β-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci 1993, 16: 409–414PubMedCrossRefGoogle Scholar
  769. Mattson MP, Scheff SW. Endogenous neuroprotection factors and traumatic brain injury: Mechansisms of action and implications for therapy. J Neurotrauma 1994, 11: 3–33PubMedCrossRefGoogle Scholar
  770. Mattson MP, Barger SW, Furukawa K, Bruce AJ, Wyss-Coray T, Mark RJ, Mucke L. Cellular signaling roles of TGFß, Tnfa and ßapp in brain injury responses and Alzheimer’s disease. Brain Res Rev 1997, 23: 47–61PubMedCrossRefGoogle Scholar
  771. Mayer G, Nitsch R, Hoyer S. Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res 1990, 532-95-100Google Scholar
  772. Mayer KU, Baltes PB (Hrsg) Die Berliner Altersstudie. Akademie Verlag Berlin 1996Google Scholar
  773. Maysinger D, Piccardo P, Liberini P, Jalsenjak I, Cuello AC. Encapsulated genetically engineered fibroblasts: release of nerve growth factor and effects in vivo on recovery of cholinergic markers after devascularizing cortical lesions. Neurochem Int 1994, 24: 495–503PubMedCrossRefGoogle Scholar
  774. Mazurek N, Weskamp G, Erne P, Otten U. Nerve growth factor induces mast cell degranulation without changing intracellular calcium levels. Febs Lett 198: 315-320Google Scholar
  775. McDonald NQ, Lapatto R, Murray-Rust J, Gunning J, Wlodawer A, Blundell TL. New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature 1991, 354: 411–414PubMedCrossRefGoogle Scholar
  776. McEwen BS, Biron CA, Brunson KW, Bulloch K, Chambers WH, Dhabhar FS, Goldfarb RH, Kitson RP, Miller AH, Spencer RL, Weiss JM. The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine, and immune interactions. Brain Res Rev 1997, 23: 79–133PubMedCrossRefGoogle Scholar
  777. McMahon SB, Bennett DLH, Priestley JV, Shelton DL. The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA-IgG fusion molecule. Nature 1995, 1: 774–780CrossRefGoogle Scholar
  778. McMahon SB. NGF as a mediator of inflammatory pain. Philos Trans R Soc Lond B Biol Sci 1996, 351: 431–440PubMedCrossRefGoogle Scholar
  779. McNamara RK, Skelton RW. The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Res Rev 1993, 18: 33–49PubMedCrossRefGoogle Scholar
  780. McPhillips MA, Barnes TRE. Negative symptoms. Curr Opin Psychiatr 1997, 10: 30–35CrossRefGoogle Scholar
  781. McQueen G, Marshall J, Perdue M, Siegel S, Bienenstock J. Pavlovian conditioning of rat mucosal mast cells to secrete rat mast cell protease II. Science 1989, 243: 83–85CrossRefGoogle Scholar
  782. Meakin SO, Shooter EM. The nerve growth factor family of receptors. Trends Neurosci 1992, 15: 323–331PubMedCrossRefGoogle Scholar
  783. Mearow KM, Kril Y. Anti-NGF treatment blocks the upregulation of NGF receptor mRNA expression associated with collateral sprouting of rat dorsal root ganglion neurons. Neurosci Lett 1995, 184: 55–58PubMedCrossRefGoogle Scholar
  784. Meier-Ruge W, Bertoni-Freddari C, Iwangoff P. Changes in brain glucose metabolism as a key to the pathogenesis of Alzheimer’s disease. Gerontology 1994, 40: 246–252PubMedCrossRefGoogle Scholar
  785. Melamed I, Kelleher CA, Franklin RA, Brodie C, Hempstead B, Kaplan D, Gelfand EW. Nerve growth factor signal transduction in human B lymphocytes is mediated by gp 140trk. EurJ Immunol 1996, 26: 1985–1992CrossRefGoogle Scholar
  786. Melander T, Staines WA, Hökfelt T, Rökaeus A, Eckenstein F, Salvaterra PM, Wainer BH. Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat. Brain Res. 1985, 360: 130–138PubMedCrossRefGoogle Scholar
  787. Mervis RF, Pope D, Lewis R, Dvorak RM, Williams LR. Exogenous nerve growth factor reverses age-related structural changes in neocortical neurons in the aging rat. In: Growdon JH, Corkin S, Ritter-Walker E, Wurtman RJ (Hrsg) Aging and Alzheimer’s Disease. Sensory Systems, Neuronal Growth and Neuronal Metabolism. Annals of the New York Academy of Sciences 1991, 640: 95–101Google Scholar
  788. Messina A, Bell C. Are genetically hypertensive rats deficient in nerve growth factor? Neuro Report 1991, 2: 45–48Google Scholar
  789. Mesulam MM, Mufson EJ, Wainer BH, Levey AI. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch 1-Ch 6). Neuroscience 1983, 10: 1185–1201PubMedCrossRefGoogle Scholar
  790. Mesulam MM. Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In: Mesulam MM (ed). Principles of Behavioral Neurology. Philadelphia: F. A. Davis Company 1985: 1–70Google Scholar
  791. Mesulam MM. Human brain cholinergic pathways. In: Aquilonius SM, Gillberg PG (Hrsg) Progress in Brain Research, Vol. 84. Amsterdamm: Elsevier 1990: 231–241PubMedCrossRefGoogle Scholar
  792. Mesulam MM. Structure and function of cholinergic pathways in the cerebral cortex, limbic system, basal ganglia, and thalamus of the human brain. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology: The fourth generation of progress. Raven Press New York 1995: 135–146Google Scholar
  793. Metalnikov S, Chorine V. Role des réflexes conditionnels dans l’immunité. Annales de l’Institut Pasteur 1926, 40: 893–900Google Scholar
  794. Metherate R, Ashe JH. Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors. Brain Res 1991, 559: 163–167PubMedCrossRefGoogle Scholar
  795. Micera A, De Simone R, Aloe L. Elevated levels of nerve growth factor in the thalamus and spinal cord of rats affected by experimental allergic encephalomyelitis. Arch Ital Biol 1995, 133: 131–142PubMedGoogle Scholar
  796. Miller CL, Freedman R. Medial septal neuron activity in relation to an auditory sensory gating paradigm. Neuroscience 1993, 55: 373–380PubMedCrossRefGoogle Scholar
  797. Miller MS, Miller MJ, Burks TF, Sipes IG. Altered retrograde axonal transport of nerve growth factor after single and repeated doses of acrylamide in the rat. Toxicol Appl Pharmacol 1983, 69: 96–101PubMedCrossRefGoogle Scholar
  798. Miller FD, Speelman A, Mathew TC, Fabian J, Chang E, Pozniak C, Toma JG. Nerve growth factor derived from terminals selectively increases the ratio of p75 to trkA NGF receptors on mature sympathetic neurons. Dev Biol 1994, 161: 206–217PubMedCrossRefGoogle Scholar
  799. Milner TA. Ultrastructural localization of tyrosine hydroxylase immunoreactivity in the rat diagonal band of Broca. J Neurosci 1991, 30: 498–511CrossRefGoogle Scholar
  800. Milner TA, Kurucz, Veznedaroglu E, Pierce JP. Septohippocampal neurons in the rat septal complex have substantial glial coverage and receive direct contacts from noradrenaline terminals. Brain Res 1995, 670: 121–136PubMedCrossRefGoogle Scholar
  801. Minth-Worby CA. Transcriptional regulation of the human neuropeptide Y gene by nerve growth factor. J Biol Chem 1994, 269: 15460–15468PubMedGoogle Scholar
  802. Miranda RC, Sohrabji F, Toran-Allerand CD. Presumptive estrogen target neurons express mRNAs for both the neurotrophins and neurotrophin receptors: a basis for potential developmental interactions of estrogen with the neurotrophins. Mol Cell Neurosci 1993, 4: 510–525PubMedCrossRefGoogle Scholar
  803. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, Van Belle G, Berg L. The Consortium to Establish a Registry for Alzheimer’s Disease (Cerad). Part II. Standardization of the neuropathological assessment of Alzheimer’s disease. Neurology 1991, 41: 479–486Google Scholar
  804. Missale C, Boroni F, Sigala S, Buriani A, Fabris M, Leon A, Dal Toso R, Spano PF. Nerve growth factor in the anterior pituitary: localization in mammotroph cells and cosecretion with prolactin by a dopamine-regulated mechanism. Proc Natl Acad Sci USA 1996, 93: 4240–4245PubMedCrossRefGoogle Scholar
  805. Mobley WC, Neve RL, Prusiner SB, McKinley MP. Nerve growth factor increases mRNA levels for the prion protein and the beta-amyloid protein precursor in developing hamster brain. Proc Natl Acad Sci USA 1988, 85: 9811–9815PubMedCrossRefGoogle Scholar
  806. Mocchetti I, Spiga G, Hayes VY, Isackson PJ, Colangelo A. Glucocorticoids differentially increase nerve growth factor and basic fibroblast growth factor expression in the rat brain. J Neurosci 1996, 16: 2141–2148PubMedGoogle Scholar
  807. Mohammed AK, Winblad B, Ebendal T, Lärkfors L. Environmental influence on behaviour and nerve growth factor in the brain. Brain Res 1990, 528: 62–72PubMedCrossRefGoogle Scholar
  808. Mohammed AH, Henriksson BG, Söderström S, Ebendal T, Olsson T, Seckl JR. Environmental influences on the central nervous system and their implications for the aging rat. Behav Brain Res 1993, 57: 183–191PubMedCrossRefGoogle Scholar
  809. Molnar M, Ruberti F, Cozzari C, Domenici L, Cattaneo A. A critical period in the sensitivity of basal forebrain cholinergic neurones to NGF deprivation. Neuro Report 1997, 8: 575–579Google Scholar
  810. Morano S, Sensi M, Di Gregorio S, Pozzessere G, Petrucci AFG, Valle E, Pugliese G, Caltabiano V, Vetri M, Di Mario U, Purello F. Peripheral, but not central, nervous system abnormalities are reversed by pancreatic islet transplantation in diabetic lewis rats. Eur J Neurosci 1996, 8: 1117–1123PubMedCrossRefGoogle Scholar
  811. Morgan JI, Curran T. Proto-Oncogenes-beyond second messengers. In: Bloom FE, Kupfer DJ (Hrsg) Psychopharmacology: The fourth generation of progress. Raven Press New York 1995: 631–642Google Scholar
  812. Mori N. Toward understanding of the molecular basis of loss of neuronal plasticity in ageing. Age Ageing 1993, 22: S5–S18PubMedCrossRef