Skip to main content

Individual center experiences in pediatric mechanical circulatory support for bridge-to-transplant and myocardial recovery

  • Conference paper
Mechanical Circulatory Support

Abstract

For more than two decades mechanical circulatory support (MCS) has been applied to sustain patients with low cardiac output refractory to pharmacological treatment. The aim is to convert terminal heart failure into treatable heart disease or to bridge the patient to transplantation. As the less invasive possibility of partial circulatory support the intraaortic balloon pump (IABP) has been used extensively and successfully (7). However, its use is mainly limited to the improvement of left ventricular function. More effective support can be achieved with left ventricular (LVAD), right ventricular (RVAD) or biventricular assist devices (BVAD). The impact of these devices rises with the increasing number of patients waiting for heart transplantation as bridge-to-transplant. Therefore paracorporeal or intracorporeal mechanical ventricular assistance is frequently applied in adults either for temporary myocardial decompression or for bridge-to-transplant mostly after surgical treatment of aquired heart disease. The mode of pumping is either nonpulsatile or pulsatile. In the nonpulsatile group the greatest experience is gained with the paracorporeal centrifugal pump with overall survival rates of 25–39% (15, 16, 22). In the pulsatile group the systems of the currently inserted pumps are either pneumatic or electromechanic. Some of them are used as implantable LVADs, others as total artificial heart (TAH). The overall survival rates range from 25 to 69% (2, 4, 9, 13–16, 17, 22, 27). The duration of circulatory assistance is extending continuously with the ultimate goal of total mechanical replacement of the heart. In contrast cardiomyoplasty or muscular pumps for biomechanical support are under investigation, but need further improvement prior to wide application (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chachques JC, Grandjean P, Serraf A, Latremouille C, Jebara VA, Ponzi O, Mihaileanu S, Chauvaud S, Bourgeois I, Carpentier A (1990) Atrial cardiomyoplasty after Fontan-type procedures. Circulation 82 (suppl IV): IV-183-IV-189

    CAS  Google Scholar 

  2. Duveau D, Baron O, Meilhan E, Soulard D, Commin PL, Chevalier JC, Trochu JN, Tirouvan-ziam A, Al Habash O, Despins P, Michaud JL (1995) What about total artificial heart as a bridge to transplant?. Fifth International Symposium Bad Oeynhausen September 7–9, p 15 (abstr)

    Google Scholar 

  3. Filers R, Harbott P, Reul H, Rakhordt G, Rau G (1994) Design improvement of the HIA-VAD based on animal experiments. Artificial Organs 18(7):473–478

    Article  Google Scholar 

  4. Everts PAM, Schönberger JPAM, Peels CH (1995) The Abiomed BVS 5000 for Treatment of Postcardiotomy Cardiogenic Shock. In: Unger F (4th eds) Assisted Circulation, Springer-Verlag Berlin Heidelberg New York, pp 87–100

    Chapter  Google Scholar 

  5. Farrar DJ, Compton PG, Lawson JH, Hershorn JJ, Hill JD (1986) Control modes of a clinical ventricular assist device. IEEE Engineering in Medicine and Biology Magazine 3:19–25

    Article  Google Scholar 

  6. Ferrazzi P, Glauber M, Domenico AD, Fiocchi R, Mamprin F, Gamba A, Crupi G, Cossolini M, Parenzan L (1991) Assisted circulation for myocardial recovery after repair of congenital heart disease. Eur J Cardio-thorac Surg 5:419–424

    Article  CAS  Google Scholar 

  7. Frazier OH; Cooley DA (1989) Use of cardiac assist devices as bridges to cardiac transplantation: Review of Current Status and Report of the Texas Heart Institute’s Experience. In: Unger F (3rd eds) Assisted Circulation, Springer-Veriag Heidelberg, 247–259

    Chapter  Google Scholar 

  8. Hausdorf G, Loebe M (1994) Behandlung des Low-cardiac-output-Syndroms bei Neugeborenen und Kindern. Z. Kardiol. 83:Suppl 2:91–100

    PubMed  Google Scholar 

  9. Icenogle T, Copeland JG (1989) Experience with the total artificial heart as a bridge to transplantation. In: Unger F (3rd eds) Assisted Circulation, Berlin Heidelberg New York, pp 260–268

    Google Scholar 

  10. Karl TR, Sano S, Horton S, Mee RBB (1991) Centrifugal pump left heart assist in pediatric cardiac operations. J Thorac Cardiovasc Surg 102:624–30

    PubMed  CAS  Google Scholar 

  11. Knierbein B, Rosarius N, Unger A, Reul H, Rau G (1992) CAD-design, stress analysis and in vitro evaluation of three leaflet blood-pump valves. J Biomed Eng 14:275–285

    Article  PubMed  CAS  Google Scholar 

  12. Knierbein B, Rosarius N, Reul H, Rau G (1990) New methods for the development of pneumatic displacement pumps for cardiac assist. The International Journal of Artificial Organs 13,11:751–759

    PubMed  CAS  Google Scholar 

  13. Konertz W, Laube H, Herwig V, Waldenberger F, Redlin M, Kleber FX, Hausdorf G (1994) NOVACOR and HIA/MEDOS: Two different devices for different indications, The Third International Conference on Circulatory Support Devices for Severe Cardiac Failure, Pittsburgh USA

    Google Scholar 

  14. Lawson JH, Cederwall G (1989) Clinical Experience with the Thoratec Ventricular Assist Device. In: Unger F (3rd eds) Assisted Circulation, Springer-Verlag Berlin Heidelberg New York, pp 191–196

    Chapter  Google Scholar 

  15. Minami K, Körner MM, Posival H, El-Banayosy A, Körfer R (1995) Mechanical ventricular support in postcardiotomy cardiac failure. Transplantforum 1:16–20

    Google Scholar 

  16. Minami K, Posival H, El-Bynayosy A, Körner MM, Schrofel H, Murray E, Körfer R: Mechanical ventricular support using pulsatile Abiomed BVS 5000 and centrifugal Biomedicus-pump in postcardiotomy shock.

    Google Scholar 

  17. Poirier V, Dasse K (1995) Clinical Results of the Heart Mate Implantable Blood Pump. In: Unger F (4th eds) Assisted Circulation. Springer-Verlag, Berlin Heidelberg New York, pp 77–86

    Google Scholar 

  18. Pollock JC, Charlton RN, Williams WG, Edmonds JF, Trusler GA (1980): Intraaortic balloon pumping in children. Ann Thorac Surg 29:522–528

    Article  PubMed  CAS  Google Scholar 

  19. Rakhorst G, Hensens AG, Blanksma PK, Bom VJJ, Elstrodt J, van der Meer J, Schakenraad JM, Verkerke GJ, Reul H (1992) Evaluation of a Protocol for Animal Experiments with Helmholtz Left Ventricular Assist Devices. Cor Europ 4:155–159

    Google Scholar 

  20. Rakhorst G, Hensens AG, Verkerke GJ, Blanksma PK, Bom VJJ, Elstrodt J, Magielse CPE, van der Meer J, Eilers R, Reul H (1994) In-vivo Evaluation of the ‘HIA-VAD’: a New German Ventricular Assist Device. Thorac cardiovasc. Surgeon 42:136–40

    Article  CAS  Google Scholar 

  21. Reul H, Taguchi K, Herold M, Lo HB, Reck B, Mückter H, Messmer BJ, Rau G (1988) Comparative evaluation of disk- and trileaflet valves in left-ventricular assist devices (LVAD). The International J Artific Organs 11:127–130

    CAS  Google Scholar 

  22. Richenbacher EW, Myers JL, Waldhausen JA (1989) Current Status of Cardiac Surgery: A 40 Year Review. JACC 14, 3:535–544

    PubMed  CAS  Google Scholar 

  23. Schiessler A, Friedel N, Weng Y, Heinz U, Hummel M, Hetzer R (1994) Mechanical Circulatory Support and Heart Transplantation. Pre-Operative Status and Outsome. ASAIO Journal 40,3:476–481

    Article  Google Scholar 

  24. Taenaka Y, Takano H, Noda H, Kinoshita M, Tatsumi E, Yagura A, Sekii H, Sasaki E, Akutsu T (1989) Experimental Evaluation and Clinical Application of a Pediatric Ventricular Assist Device. ASAIO-Trans 35(3):606–608

    Article  PubMed  CAS  Google Scholar 

  25. Taenaka Y, Takano H, Noda H, Kinoshita M (1990) A pediatric ventricular assist device: ist development and experimental evaluation of hemodynamic effects on postoperative heart failure of congenital heart disease. Artif-Organs 14(1):49–56

    Article  PubMed  CAS  Google Scholar 

  26. Veasy LG, Blalock RC, Orth JL, Boucek MM (1983) Intra-aortic balloon pumping in infants and children. Circulation 68:1095–110

    Article  PubMed  CAS  Google Scholar 

  27. de Vivo F, Galdieri N, Livi U, Martinelli L, Munoretto C, Pagani F, Quaini E, Villa L, Casarotto D, Cotrufo M, Pellegrini A, Vigano M, Scuri S (1995) Novacor LVAS as bridge to heart transplant: Italian multicenter study. Fifth International Symposium Bad Oeynhausen, September 7–9, p 19 (abstr)

    Google Scholar 

  28. Waldenberger FR (1995) Novel Cardiac Assist Devices with different unloading capacities. An experimental study. Acta Biomedica Loveniensa 107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Däbritz, S., Messmer, B.J. (1997). Individual center experiences in pediatric mechanical circulatory support for bridge-to-transplant and myocardial recovery. In: Hetzer, R., Hennig, E., Loebe, M. (eds) Mechanical Circulatory Support. Steinkopff. https://doi.org/10.1007/978-3-642-95984-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95984-4_3

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-95986-8

  • Online ISBN: 978-3-642-95984-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics