Mechanical circulatory support systems 1995 — New devices under investigation

  • E. Hennig
Conference paper


With the first generation of implantable left ventricular assist devices intended for semi-permanent or permanent use, clinical experiences have been gathered worldwide during the last 8 to 10 years. The development phase of these devices started in the early 1970’s, it took 15–20 years until initial clinical applications.


Centrifugal Pump Artificial Organ Blood Pump Energy Converter Artificial Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takatani S, Orime Y, Tasai K, Ohara Y, Naito K, Mizuguchi K, Makinouchi K, Damm G, Glueck J, Ling J, Noon G, Nosé Y (1994) Totally implantable total artificial heart and ventricular assist device with multipurpose miniature electromechanical energy system. Artificial Organs 18 (1): 80–92PubMedCrossRefGoogle Scholar
  2. 2.
    Takatani S, Shiono M, Sasaki T, Glueck J, Noon GP, Nosé Y, DeBakey ME (1992) Development of a totally implantable electromechanical total artificial heart: Baylor TAH. Artificial Organs 16 (4): 398–406PubMedCrossRefGoogle Scholar
  3. 3.
    Orime Y, Takatani S, Tasai K, Ohara Y, Naito K, Miziguchi K, Meier D, Wernicke JT, Damm G, Glueck J, Noon GP, Nosé Y (1994) The Baylor total artificial heart; Flow visualization studies. ASAIO J 40: M499-M505PubMedCrossRefGoogle Scholar
  4. 4.
    Snyder A, Rosenberg G, Weiss W, Pierce W, Pae W Jr., Marlotte J, Nazarian R, Ford S (1991) A completely implantable total artificial heart system. ASAIOI Transactions 37: M237-M238Google Scholar
  5. 5.
    Snyder AJ, Rosenberg G, Weiss WJ, Ford SK, Nazarian RA, Hicks DL, Marlotte JA et al (1993) In vivo testing of a completely implanted total artificial heart system. ASAIO J 39: M177-M184PubMedCrossRefGoogle Scholar
  6. 6.
    Okamoto E, Tomoda K, Yamamoto K, Mitamura Y, Mikami T (1994) Development of a compact, highly efficient, totally implantable motor-driven assist pump system. Artificial Organs 18 (12): 911–917PubMedCrossRefGoogle Scholar
  7. 7.
    Mambrito B, Arabia M, Chieco S, Ferrazzi P, Ferri E, Fierli M, Glauber M, Meli M, Zagara M (1994) The Italien Artificial heart Program. Artificial Organs 18 (7): 533–537PubMedCrossRefGoogle Scholar
  8. 8.
    Hee Chan Kim, Byoung Goo Min (1992) Cardiac output regulation in the moving actuator total artificial heart without a compliance chamber. ASAIO J 38: 846–850Google Scholar
  9. 9.
    Myers TJ, Dasse KA, Macris MP, Poirier VL, Cloy MJ, Frazier OH (1994) Use of a left ventricular assist device in an outpatient setting. ASAIO J 40: M471-M475PubMedCrossRefGoogle Scholar
  10. 10.
    Kaufmann R, Reul H, Rau G (1994) The Helmholtz Total Artificial Heart Labtype. Artificial Organs 18(7): 537–542PubMedCrossRefGoogle Scholar
  11. 11.
    Sauer IM, Frank J, Spiegelberg A, Bücherl ES (1995) A new energy converter for a total artificial heart. Int. J. Artif. Org. 18 (8)Google Scholar
  12. 12.
    Goa H, Smith LM, Krymkowski MG, Kohl RJ, Schmidt DH, Christensen CW (1992) In vitro assessment of the Milwaukee Heart and right to left balance. ASAIO J 38: M722-M725CrossRefGoogle Scholar
  13. 13.
    Montiès JR, Havlik P, Mesana T, Tourres JL, Demunck JL: Development of the Marseille pulsatile rotary blood pump for permanent implantable left ventricular assistance. Artificial Organs 18(7): 506–511Google Scholar
  14. 14.
    Abe Y, Chinzei T, Isoyama T, Ono T, Mabuchi K, Imanishi K, Kouno A, Atsumi K, Fujimasa I, Imachi K (1995) Basic study to develop the undulation pump for practical use: Antithrombogenicity, Hemolysis, and flow patterns inside the pump. Artificial Organs 19(7): 691–693PubMedCrossRefGoogle Scholar
  15. 15.
    Miller PJ, Green GF, Chen H, Ramasamy N, LaForge DH, Jassawalla JS, Ream AK, Oyer PE, Portner PM (1983) In vivo evaluation of a compact, implantable left ventricular assist system (LVAS). ASAIO Transactions 29: 551Google Scholar
  16. 16.
    Daniel MA, Lee J, LaForge DH, Chen H, Billich J, Miller PJ, Ramasamy N, Strauss LR, Jassawalla JS, Portner PM (1991) Clinic evaluation of the Novacor totally implantable ventricular assist system. ASAIO Transactions 37: M423-M525PubMedGoogle Scholar
  17. 17.
    Miller PJ, Billich TJ, LaForge DH, Lee J, Naegli A, Ramasamy N, Jassawalla JS, Portner PM (1994) Initial clinical experience with a wearable controller for the Novacor left ventricular assist system. ASAIO J 40: M465-M470PubMedCrossRefGoogle Scholar
  18. 18.
    Pristas JM, Wonowich S, Nastala CJ, Gifford J, Conner EA, Borovetz HS, Griffith BP, Portner PM, Kormos RL (1995) Protocol for releasing Novacor left ventricular assist system patients out-of-hospital. ASAIO J 41: M539-M543PubMedCrossRefGoogle Scholar
  19. 19.
    Kovacs SG, Reynolds DG, McKeown PP; Augereau PG, Wasselle JA, Ondrovic LE, Aiba M (1992) A magnetically actuated left ventricular assist device. ASAIO J 38: 38–46PubMedCrossRefGoogle Scholar
  20. 20.
    Nitta S, Yambe T, Sonobe T, Naganuma S, Kakinuma Y, Kobayashi S, Tanaka M, Matsuki H, Abe K, Yoshizawa M, Kasai T, Hashimoto H (1995) Totally implantable ventricular assist system using a vibrating flow pump. Artificial Organs 19(7): 676–679PubMedCrossRefGoogle Scholar
  21. 21.
    Yambe T, Tanaka A, Maekawa T, Hashimoto H et al. (1995) Fractal dimension analysis of the oscillated blood flow with a vibrating flow pump Artifical Organs 19(7): 729–733Google Scholar
  22. 22.
    Naganuma S, Nitta S, Yambe T, Kobayashi S, Tanaka M, Hashimoto H (1995) Gas exchange efficiency of a membrane oxygenator with use of a vibrating flow pump. Artificial Organs 19(7): 747–749PubMedCrossRefGoogle Scholar
  23. 23.
    Mitamura Y, Wada T, Sakai K (1992) A ferrofluidic actuator for an implantable artificial heart. Artificial Organs 16(5): 490–495PubMedCrossRefGoogle Scholar
  24. 24.
    Tatsumi E, Diegel PD, Holfert JW, Dew PA, Crump KR, Hansen AC, Khanwilkar PS, Rowles JR, Olsen DB (1992) A blood pump with an interatrial shunt for use as an electrohydraulic total artificial heart. ASAIO J 38: M425-M430PubMedCrossRefGoogle Scholar
  25. 25.
    Kung RTV, Yu LS, Ochs BD, Parnis SM, Macris MP, Frazier OH (1995) Progress in the development of the ABIOMED total artificial heart. ASAIO J 41: M245-M248PubMedCrossRefGoogle Scholar
  26. 26.
    Harasaki H, Fukamachi K, Massiello A, Chen J-F, Himley SC, Fukumura F et al. (1994) Progress in Cleveland Clinic — Nimbus total artificial heart development. ASAIO J 40: M494-M498PubMedCrossRefGoogle Scholar
  27. 27.
    Rintoul TC, Butler KC, Thomas DC, Carriker JW, Maher TR, Kiraly RJ, Massiello A et al. (1993) Continuing development of the Cleveland Clinic — Nimbus total artificial heart ASAIO J 39: M168-M171Google Scholar
  28. 28.
    Masuzawa T, Taenaka Y, Tatsumi E, Choi WW, Toda K et al. (1995) Development of an electrohydraulic total artificial heart at the National Cardiovascular Center, Osaka, Japan ASAIO J 41: M249-M253CrossRefGoogle Scholar
  29. 29.
    Affeld K, Bailleu A, Buß A, Diluweit J, Friedrichsen U, Gadischke J, Hanitsch R, Hetzer R, Huber A et al. (1994) A new electrohydraulic energy converter for a left ventricular assist device. Artificial Organs 18(7): 479–483PubMedCrossRefGoogle Scholar
  30. 30.
    Schima H, Schmallegger H, Huber, L, Birgmann I, Reindl Ch, Schmidt Ch et al. (1995) An implantable Seal-less centrifugal pump with integrated double-disk motor. Artificial Organs 19 (7): 639–643PubMedCrossRefGoogle Scholar
  31. 31.
    Reddy RC, Goldstein AH, Pacella JJ, Cattivera GR, Clark RE, Magovern GJ Sr (1995) End organ function with prolonged nonpulsatile circulary support. ASAIO J 41: M547-M551PubMedCrossRefGoogle Scholar
  32. 32.
    Ohara Y, Makinouchi K, Orime Y, Tasai K, Naito K, Mizuguchi K, Shimono T et al. (1994) An ultimate, compact, seal-less centrifugal ventricular assist device: Baylor C-Gyro pump Artificial Organs 18(1): 17–24Google Scholar
  33. 33.
    Yamane T, Ikeda T, Orita T, Tsutsui T, Jikuya T (1995) Design of a centrifugal blood pump with magnetic suspension. Artificial Organs 19(7): 625–630PubMedCrossRefGoogle Scholar
  34. 34.
    Kim HC, Bearson GB, Khanwilkar PS, Olsen DB, Maslen EH, Allaire PE (1995) In vitro characterization of a magnetically suspended continous flow ventricular assist device. ASAIO J 41: M359-M364PubMedCrossRefGoogle Scholar
  35. 35.
    Qian KX, Wang SS, Chu SH (1995) In vivo studies of pulsatile implantable impeller assist and total hearts. Artificial Organs 19(4): 328–333PubMedCrossRefGoogle Scholar
  36. 36.
    Jarvik RK (1995) System considerations favoring rotary artificial hearts with blood-immersed bearings. Artificial Organs 19(7): 565–570PubMedCrossRefGoogle Scholar
  37. 37.
    Wernicke J-T, Meier D, Mizuguchi K, Damm G, Aber G, Benkowski R, Nosé Y, Noon GP, DeBakey ME (1995) A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement. Artificial Organs 19(2): 161–177PubMedCrossRefGoogle Scholar
  38. 38.
    Kameneva MV, Antaki JF, Butler KC, Watach MJ, Kormos RL, Griffith BP, Borovetz HS (1994) A Sheep model for the study of hemorheology with assisted circulation. Effect of an axial flow blood pump ASAIO J 40: 959–963Google Scholar
  39. 39.
    Yamazaki K, Okamoto E, Yamamoto K, Mitamura Y, Tanaka T, Yozu R (1992) The valvo-pump, an axial blood pump implanted at the heart valve position: Concept and initial results. Artificial Organs 16(3): 297–301PubMedCrossRefGoogle Scholar
  40. 40.
    Sieß T, Reul H, Rau G. (1995) Concept, realization, and first in vitro testing of an intraarterial microaxial blood pump. Artificial Organs 19(7): 644–652PubMedCrossRefGoogle Scholar
  41. 41.
    Yamazaki K, Kormos R, Mori T, Umezu M, Kameneva M, Antaki J, Outa E, Litwak P et al. (1995) An intraventricular axial flow blood pump integrated with a bearing purge system. ASAIO J 41: M327-M332PubMedCrossRefGoogle Scholar
  42. 42.
    Farrar DJ, Reichenbach StH, Hill JD (1995) Mechanical advantage of sekletal muscle as a cardiac assist power source. ASAIO J 41: M481-M484PubMedCrossRefGoogle Scholar
  43. 43.
    Takatani S, Takami Y, Nakazawa T, Jacobs G, Nosé Y (1995) Double chamber ventricular assist device with a roller screw linear actuator driven by left an right latissimus dorsi muscles. ASAIO J 41: M475-M480PubMedCrossRefGoogle Scholar
  44. 44.
    Mizuhara H, Koshiji T, Nishimura K, Nomoto S, Matsuda K, Tsutsui N, Kanda K, Ban T (1995) Applicability of the latissimus dorsi muscle in situ as a biomechanical energy source. ASAIO J 41: M495-M499PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1997

Authors and Affiliations

  • E. Hennig
    • 1
    • 2
  1. 1.Deutsches Herzzentrum BerlinBerlinGermany
  2. 2.Humboldt University of BerlinGermany

Personalised recommendations