Skip to main content

Abstract

The development of functional neuroimaging techniques has enabled energy metabolism in the developing human brain to be studied noninvasively. This can be accomplished using positron emission tomography (PET) and the principles underlying the 14C-2-deoxyglucose autoradiographic method developed by Sokoloff et al. (1977). With PET and the tracer 2-deoxy-2(l8F)fluoro-D-glucose (FDG), measurements of regional cerebral glucose utilisation can be made during different stages of development and related to behavioural maturation, synapto-genesis, plasticity and other neuromaturational phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andre-Thomas CY, Saint-Anne Dargassies S. (1960) The neurological examination of the infant. Medical Advisory Committee of the National Spastics Society, London

    Google Scholar 

  • Awaya S (1978) Stimulus vision deprivation amblyopia in humans. In: Reinecke RD (ed.) Strabismus. Grune and Stratton, New York, p 31–44

    Google Scholar 

  • Barlow HB (1975) Visual experience and cortical development. Nature 258: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Basser LS (1962) Hemiplegia of early onset and the faculty of speech with special reference to the effects of hemi-spherectomy. Brain 85: 427–460

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Kleinschmidt A, Gu Q.A, Singer W (1990) Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci 10: 909–925

    PubMed  CAS  Google Scholar 

  • Bronson G (1974) The postnatal growth of visual capacity. Child Dev 45: 873–890

    Article  PubMed  CAS  Google Scholar 

  • Changeux JP, Danchin A (1976) Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264: 705–712

    Article  PubMed  CAS  Google Scholar 

  • Chugani, HT (1994) Development of regional brain glucose metabolism in relation to behavior and plasticity. In: Dawson G, Fischer W (eds.), Human behavior and the developing brain. Guilford Publications, New York, p 153–175

    Google Scholar 

  • Chugani HT (in press) Neuroimaging of developmental non-linearity and developmental pathologies. In: Thatcher RW, Lyon RG, Rumsey J, Krasnegor N (eds.), Developmental neuroimaging: mapping the development of brain and behavior

    Google Scholar 

  • Chugani HT, Hovda DA, Villablanca JR, Phelps ME, Xu WF (1991) Metabolic maturation of the brain: A study of local cerebral glucose utilization in the developing cat. J Cerebr Blood Flow Metab 11: 35–47

    Article  CAS  Google Scholar 

  • Chugani HT, Mazziotta JC, Phelps ME (1989) Sturge-Weber syndrome: a study of cerebral glucose utilization with positron emission tomography. J Pediatr 114: 244–253

    Article  PubMed  CAS  Google Scholar 

  • Chugani HT, Phelps ME (1986) Maturational changes in cerebral function in infants determined by l8FDG positron emission tomography. Science 231: 840–843

    Article  PubMed  CAS  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22: 487–497

    Article  PubMed  CAS  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1989) Metabolic assessment of functional maturation and neuronal plasticity in the human brain. In: von Euler C, Forssberg H, Lagercrantz H (eds.), Neurobiology of early infant behaviour. Stockton Press, New York, p 323–330

    Google Scholar 

  • Cowan WM, Fawcett JW, O’Leary DDM, Stanfield BB (1984) Regressive events in neurogenesis. Science 225: 1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Curtiss S (1977) Genie: a psycholinguistic study of a modern-day “wild child”. Academic Press, New York

    Google Scholar 

  • Curtiss S (1981) Feral children. In: Wortis J (ed.) Mental retardation and developmental disabilities XII. Brunner-Mazel, New York, p 129–161

    Google Scholar 

  • Diemer K (1968) Capillarisation and oxygen supply of the brain. In: Lubbers DW, Luft UC, Thews G, Witzleb E (eds.), Oxygen transport in blood and tissue Thieme, Stuttgart, p 118–123

    Google Scholar 

  • Feinberg I, Thode HC, Chugani HT, March JD (1990) Gamma distribution model describes maturational curves for delta wave amplitude, cortical metabolic rate and synaptic density. J Theoret Biol 142: 149–161

    Article  CAS  Google Scholar 

  • Fuster JM (1984) Behavioral electrophysiology of the prefrontal cortex. Trends Neurosci 7: 408–414

    Article  Google Scholar 

  • Goldman-Rakic PS (1984) The frontal lobes: uncharted provinces of the brain. Trends Neurosci 7: 425–429

    Article  Google Scholar 

  • Himwich HE, Fazekas JF (1941) Comparative studies of the metabolism of the brain in infant and adult dogs. Am J Physiol 132: 454–459

    CAS  Google Scholar 

  • Hirsch HVB, Leventhal AG (1978) Functional modification of the developing visual system. In: Jaconson M (ed), Handbook of sensory physiology, Vol.IX: Development of sensory systems. Springer-Verlag, Berlin Heidelberg, P 279–335

    Google Scholar 

  • Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206: 419–436

    PubMed  CAS  Google Scholar 

  • Huttenlocher PR(i979) Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 163: 195–205

    Google Scholar 

  • Huttenlocher PR, de Corten C, Gary. LJ, Vanderloos H (1982) Synaptogenesis in human visual cortex: Evidence for synapse elimination during normal development. Neurosci Lett 33: 247–252

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher PR, de Courten C (1987) The development of striate cortex in of man. Hum Neurobiol 6: 10–9

    Google Scholar 

  • Huttenlocher PR, de Courten C, Gary LJ, van der Loos H (1982) Synaptogenesis in human visual cortex-evidence for synapse elimination during normal development. Neurosci Lett 33: 247–252

    Article  PubMed  CAS  Google Scholar 

  • Jacobs B, Chugani HT, Allada V, Chen S, Phelps ME, Pollack DB, Raleigh MJ (1995) Developmental changes in brain metabolism in sedated rhesus macaques and ver-vet monkeys revealed by positron emission tomography. Cereb Cortex 3: 222–233

    Article  Google Scholar 

  • Jacobson M (1978) Developmental neurobiology. (2nd ed.). Plenum Press, New York

    Google Scholar 

  • Kadekaro M, Crane AM, Sokoloff L (1985) Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Nat Acad Sci 82: 6010–6013

    Article  PubMed  CAS  Google Scholar 

  • Kagan J (1972) Do infants think? Sci Am 226: 74–82

    CAS  Google Scholar 

  • Kellaway P (1979) An orderly approach to visual analysis: parameters of the normal EEG in adults and children. In: Klass DW, Daly DD (eds.), Current practice of clinical electroencephalography. Raven Press, New York, p 69–147

    Google Scholar 

  • Kennedy C, Grave GD, Jehle JW, Sokoloff L (1972) Changes in blood flow in the component structures of the dog brain during postnatal maturation. J Neurochem 19: 2423–2433

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Sakurada O, Shinohara M, Miyaoka M (1982) Local cerebral glucose utilization in the newborn macaque monkey. Ann Neurol 12: 333–340

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Sokoloff L (1957) An adaptation of the nitrous oxide method to the study of the cerebral circulation in children; normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest 36: 1130–1137

    Article  PubMed  CAS  Google Scholar 

  • Kling A (1965) Behavioural and somatic development following lesions of the amygdala in the cat. J Psychiat Res 3: 263–273

    Article  PubMed  CAS  Google Scholar 

  • Lenneberg E (1967) Biological foundations of language. Wiley, New York, p 125–187

    Google Scholar 

  • Marg E (1982) Prentice Memorial Lecture: is the animal model for stimulus deprivation amblyopia in children valid or useful? Am J Optom Physiol Optics 59: 451–464

    CAS  Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34: 213–215

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1969) The growth of dendrites in the mammalian brain. Z Anat Entwicklungsges 128: 290–317

    Article  CAS  Google Scholar 

  • Nudo RJ, Masterton RB (1986) Stimulation-induced 14C2-deoxyglucose labeling of synaptic activity in the central auditory system. J Comp Neurol 245: 553–565

    Article  PubMed  CAS  Google Scholar 

  • Parmelee AH, Sigman MD (1983) Perinatal brain development and behavior. In: Haith M, Campos J (eds.), Biology and infancy, vol II. Wiley, New York, p 95–115

    Google Scholar 

  • Pettigrew JD (1974). The effect of visual experience on the development of stimulus specificity by kitten cortical neurones. J Physiol 237: 49–74

    PubMed  CAS  Google Scholar 

  • Rabinowicz T (1979) The differentiated maturation of the human cerebral cortex. In: Falkner F, Tanner JM (eds), Human growth, Neurobiology and nutrition Vol 3. Plenum Press, New York, 97–123

    Google Scholar 

  • Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Gold-man-Rakic PS (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral Cortex. Science 232: 232–235

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP, Hahn S (1987) Ketamine-xylazine anaesthesia blocks consolidation of ocular dominance changes in kitten visual cortex. Nature. 326 (6109): 183–185

    Article  Google Scholar 

  • Rauschecker JP, Marler P (1987) What signals are responsible for synaptic changes in visual cortical plasticity? In: Rauschecker J, Marler P (eds.), Imprinting and Cortical Plasticity Wiley, New York, p 193–220

    Google Scholar 

  • Schade JP, van Groenigen WB (1961) Structural organization of the human cerebral cortex. Acta Anat 47: 74–111

    Article  PubMed  CAS  Google Scholar 

  • Schwartz TL, Linberg JV, Tillman W, Odom JV (1987) Monocular depth and vernier acuities: a comparison of binocular and uniocular subjects. Invest Ophthalmol Vis Sci 28(SuppL): 304

    Google Scholar 

  • Sherman SM, Spear PD (1982) Organization of visual pathways in normal and visually deprived cats. Physiol Rev 62: 738–855

    PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916

    Article  PubMed  CAS  Google Scholar 

  • Spinelli DN, Hirsch HVB, Phelps RW, Metzler J (1972) Visual experience as a determinant of the response characteristics of cortical receptive fields in cats. Exp Brain Res 15: 289–304

    Article  PubMed  CAS  Google Scholar 

  • Timney B (1983) The effects of early and late monocular deprivation on binocular depth perception in cats. Dev Brain Res 7: 235–243

    Article  Google Scholar 

  • Tyler DB, van Harreveld A (1942) The respiration of the developing brain. Am J Physiol 136: 600–603

    CAS  Google Scholar 

  • Vaegan E, Taylor D (1979) Critical period for deprivation amblyopia in children. Trans Ophthalmol Soc U K 99: 432–439

    PubMed  CAS  Google Scholar 

  • Voeller L, Pappas GD, Purpura DP (1963) Electron microscope study of development of cat superficial neocortex. Exp Neurol 7: 107–130

    Article  PubMed  CAS  Google Scholar 

  • Von Hofsten C (1982) Eye-hand coordination in the newborn. Dev Psychol 18: 450–461

    Article  Google Scholar 

  • Winfield DA (1981) The postnatal development of synapses in the visual cortex of the cat and the effects of eyelid suture. Brain Res 206: 166–171

    Article  PubMed  CAS  Google Scholar 

  • Winfield DA (1983) The postnatal development of synapses in different laminae of the visual cortex in the normal kitten and in kittens with eyelid suture. Dev Brain Res 9: 155–169

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chugani, H.T. (1998). The ontogeny of cerebral metabolism. In: Neuroimaging in child neuropsychiatric disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95848-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95848-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95850-2

  • Online ISBN: 978-3-642-95848-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics