Anatomical and physiological bases of the main electroencephalographic rhythms

  • B. Garreau

Abstract

The electroencephalogram (EEG), described for the first time by Berger (1929), was for a long time the only method available for functional exploration of the brain and was thus used for diagnostic purposes. At first, few workers considered the anatomical and physiological bases of the main EEG rhythms (Adrian and Matthews, 1934). In the early 1980s, quantitative methods of EEG analysis appeared and were found to be of value in neuropsychiatry, giving rise to a large volume of work on the anatomical and physiological basis of EEG rhythms.

Keywords

Permeability Coherence Neurol Tral Dium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian ED, Matthews BHC (1934) The Berger Rhythm: potential changes from the occipital lobes in man. Brain 57: 355–385CrossRefGoogle Scholar
  2. Allison T, Wood CC, McCarthy G (1986) The central nervous system. In: Coles MC, Donchin E, Porges SW (eds): Psychoneurobiology. Guilford Press, New York, p 5–25Google Scholar
  3. Arnolds DEAT, Lopes da Silva FH, Aitink JW, Kamp A, Boejinga P (1980) The spectral properties of hippocam-pal EEG related to behaviour in man. Electroencephalogr Clin Neurophysiol, 50: 324–328PubMedCrossRefGoogle Scholar
  4. Bell MA (1997) The ontogeny of the EEG during infancy and childhood: implications for cognitive development. In: Garreau B (ed) Neuroimaging in child psychiatric disorders. Springer, ParisGoogle Scholar
  5. Berger H (1929) Ober das Elektroenkephalogramm des menshen. Arch Psychiat Nervenk 87: 527–570CrossRefGoogle Scholar
  6. Bremer F, Stoupel N (1959) Facilitation et inhibition des potentiels évoqués corticaux dans l’éveil cérébral. Arch Internat Physiol Pharmacodyn, 67: 240–275CrossRefGoogle Scholar
  7. Bullock TH, McClune MC, Achimowicz JZ, Iragui-Madoz VJ, Duckrow RB, Spencer SS (1995) Temporal fluctuations in coherence of brain waves. Proc Nat Acad Sci, 92, 25: 11568–11572PubMedCrossRefGoogle Scholar
  8. Curro Dossi R, Paré D, Steriade M (1991) Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. J Neurophysiol, 65: 393–406PubMedGoogle Scholar
  9. Dumont S, Dell P (1960) Facilitation réticulaire des mécanismes visuels corticaux. Electroencephalogr Clin Neurophysiol, 12: 769–796PubMedCrossRefGoogle Scholar
  10. Garreau B, Debiais E (1997) Electroencephalographic Study in man during an object permanence task. Submitted to Electroencephalogr Clin Neurophysiol.Google Scholar
  11. Gevins A, Le J, Martin NK, Brickett P, Desmond J, Reutter B (1994) High resolution EEG-124 channel recording, spatial deblurring and MRI integration methods. Electroencephalogr Clin Neurophysiol, 90, 5: 337–358PubMedCrossRefGoogle Scholar
  12. Green JD, Arduini A (1954) Hippocampal electrical activity in arousal. Neurophysiol 17: 533–537Google Scholar
  13. Halgren E, Smith ME, Stapelton JM (1985) Hippocampal field potentials evoked by repeated vs non repeated words. In: Buzsaki G, Van Derwolf CH (eds), Electrical activity of the achicortex. Akademiai Kiado, Budapest, P 67–81Google Scholar
  14. Hu B, Steriade M, Deschénes M (1989) The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockage of spindle waves. Neurosci 31: 1–12CrossRefGoogle Scholar
  15. International Federation of Societies of Electroencephalography and Clinical Neurophysiology (1974) A glossary of terms commonly used by clinical electroencephalog-raphers, Electroencephalogr Clin Neurophysiol 37: 538–548CrossRefGoogle Scholar
  16. Ingvar DH, Sjölund B, Ardo A (1976) Correlation between ECG frequency, cerebral oxygen uptake and blood flow. Electroencephalogr Clin Neurophysiol 41: 268–276PubMedCrossRefGoogle Scholar
  17. Jasper HH, Andrews HL (1938) Electroencephalography. III: Normal differentiation of occipital and precentral regions in man. Arch Neurol Psychiat, 39: 96–115Google Scholar
  18. Jones EG (1985) The thalamus. Plenum Press, New YorkGoogle Scholar
  19. Jouvet M (1965) Paradoxical sleep: a study of its nature and mechanisms. In: Akert K, Bally C, Schadé JP (eds) Progress in Brain Research, Vol 18, Sleep mechanisms. Elsevier, Amsterdam, p 20–57Google Scholar
  20. Kandel ER, Schwartz JH, Jessell TH (1991) Principles of neural sciences. Elsevier, AmsterdamGoogle Scholar
  21. Lindström S, Wrobel A (1990) Frequency dependent corti-cofugal excitation of principal cells in cat’s dorsal lateral geniculate nucleus. Exp Brain Res 79: 313–318PubMedCrossRefGoogle Scholar
  22. Llinàs RR (1990) Intrinsic electrical properties of mammalian neurons and CNS functions. In: Fidia Research Foundation Neuroscience Award Lectures. Raven Press, New York, p 175–194Google Scholar
  23. Llinàs RR, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10 to 50 Hz frequency range. Proc Nat Acad Sci, 88: 897–901PubMedCrossRefGoogle Scholar
  24. Lopes da Silva FH, Storm van Leeuwen W (1977) The cortical source of alpha rhythm. Neurosci Lett, 6: 237–341CrossRefGoogle Scholar
  25. Lopes da Silva FH, Van Lierop THMT, Schrijer CFM, Storm van Leeuwen W (1973) Organization of thalamic and cortical alpha rhythm: spectra and coherences. Electroencephalogr Clin Neurophysiol, 35: 627–639CrossRefGoogle Scholar
  26. Lorente de Nô R (1947 a) Action potentials of the motoneurons of the hypoglossus nucleus. J Cell Comp Physiol 29: 207–289CrossRefGoogle Scholar
  27. Lorente de Nô R (1947 b) A study of nerve physiology. In: Studies of the Rockfeller Institute, 16: 132Google Scholar
  28. Morison RS, Bassett DL (1945) Electrical activity of the thalamus and basal ganglia. J Neurophysiol 8: 309–314Google Scholar
  29. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol, 1: 455–473PubMedGoogle Scholar
  30. Mulholland T (1969) The concept of attention and the electroencephalographic alpha rhythm. In: Evans CR, Mulholland TB (eds) Attention in neurophysiology. Butter-worth, London, p 100–127Google Scholar
  31. Murthy VN, Fetz EE (1992) Coherent 25-35 Hz oscillations in the sensorimotor cortex of the awake behaving monkey. Proc Nat Acad Sci 89: 5670–5674PubMedCrossRefGoogle Scholar
  32. Niedermeyer E, Koshino Y (1975) Mù-Rhythmus: Vorkommen und klinische Bedeutung. Z. EEG-EMG 6: 69–78Google Scholar
  33. Pfurtscheller G, Neuper C (1992) Simultaneous EEG 10 Hz desynchronizationand 40 Hz synchronization during finger movements. NeuroreportGoogle Scholar
  34. Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, AmsterdamGoogle Scholar
  35. Saltzberg B, Burton WD, Burch NR, Fletcher J, Michaels R (1986) Electrophysiological measures of regional neural interactive coupling: linear and non-linear dependence relationships among multiple channel electroencephalographic recordings. Internat J Biomed Comput 18: 77–87CrossRefGoogle Scholar
  36. Schlag J (1973) Generation of brain potentials. In: Thompson RF, Patterson MM (eds) Bioelectric recording techniques: Part A. Cellular Processes and brain potentials. Academic Press, New York, p 33–65Google Scholar
  37. Sheer D (1984) Focused arousal 40 Hz and dysfunction. In: Ebert (ed), Seifregulation of the brain and behavior. Springer, Berlin, p 64–84CrossRefGoogle Scholar
  38. Steriade M (1993). Cellular substrates of brain rhythms. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications, and related fields. Williams and Wilkins, Baltimore, p 27–62Google Scholar
  39. Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum Press, New YorkGoogle Scholar
  40. Steriade M, Curro Dossi R, Paré D, Oakson G (1991) Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Nat Acad Sci, 88: 4396–4400PubMedCrossRefGoogle Scholar
  41. Thatcher RW (1994) Cyclic cortical reorganization: origins of human cognitive development. In: Dawson G, Fisher KW (eds) Human behavior and the developing brain. Guilford, New York, p 232Google Scholar
  42. Traub RD, Miles R, Wong RK, Schulman LS, Schneider-man JH (1987) Models of synchronized hippocampal bursts in the presence of inhibition. II Ongoing spontaneous population events. J Neurophysiol, 58: 752–764PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • B. Garreau

There are no affiliations available

Personalised recommendations