Four Lectures on Numerical Relativity

  • Carles Bona


The first lecture is devoted to the causal structure of Einstein’s evo lution equations. They are written as a first-order system of balance laws, which is shown to be hyperbolic when the time coordinate is chosen in an invariant algebraic way (maximal slicing is recovered as a limiting case). The second lecture deals with first-order flux-conservative systems. The propagation of characteristic fields in an inhomogeneous background is also considered, with a view on relativity applications.

In the third lecture, explicit finite-difference numerical methods are reviewed, with an accent on flux-conservative second-order methods. Stability conditions are derived in each case. Finally, in the last lecture, total-variation-diminishing (TVD) methods are considered. The case of an inhomogeneous characteristic speed is illustrated with the evolution of a spherically symmetric (1D) black hole.


Propa Explosive Advection Lution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lichnerowicz, A. (1944): L’intégration des équations de la gravitation relativiste et le problème des N corps. J. Math. Pures Appl. 23, 37–63MathSciNetMATHGoogle Scholar
  2. 2.
    Choquet-Bruhat, Y. (1962): The Cauchy problem. In Witten, L. (ed.): Gravitation: An Introduction to Current Research ,pp. 130–168. Wiley, New YorkGoogle Scholar
  3. 3.
    Arnowitt, R., Deser, S., Misner, C.W. (1962): The dynamics of general relativity. In Witten, L. (ed.): Gravitation: An Introduction to Current Research ,pp. 227–265. Wiley, New YorkGoogle Scholar
  4. 4.
    Bona, C, Massó, J., Seidel, E., Stela, J. (1995): New formalisms for numerical relativity. Phys. Rev. Lett. 75, 600–603ADSCrossRefGoogle Scholar
  5. 5.
    York Jr., J.W. (1972): Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett. 28, 1082–1085ADSCrossRefGoogle Scholar
  6. 6.
    Choquet-Bruhat, Y., Ruggeri, T. (1983): Hyperbolicity of 3 + 1 Einstein equations. Comm. Math. Phys. 89, 269–275MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Bona, C, Massó, J. (1988): Harmonic synchronisations of spacetime. Phys. Rev. D38, 2419–2422ADSGoogle Scholar
  8. 8.
    Bernstein, D. (1993): A numerical study of the black hole plus Brill wave space-time. PhD thesis, University of Illinois Urbana-Champaign.Google Scholar
  9. 9.
    Bona, C., Massó, J. (1992): Hyperbolic evlution system for numerical relativity. Phys. Rev. Lett. 68, 1097–1099MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Li Ta-tsien (1994): Global classical solutions for quasilinear hyperbolic systems. Wiley, ChichesterMATHGoogle Scholar
  11. 11.
    LeVeque, R.J. (1992): Numerical methods for conservation laws. Birkhäuser, BaselMATHCrossRefGoogle Scholar
  12. 12.
    Richtmeyer, R.D., Morton, K.W. (1967): Difference methods for initial value problems. (2nd edition). Wiley-Interscience, New YorkGoogle Scholar
  13. 13.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1992): Numerical recipes (2nd edition). Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Sweby, P.K. (1984): High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Num. Anal. 5, 995–1011MathSciNetCrossRefGoogle Scholar
  15. 15.
    Harten, A., Hymann, J.M. (1983): Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comp. Phys. 50, 235–269ADSMATHCrossRefGoogle Scholar
  16. 16.
    Bernstein, D., Hobill, D., Smarr, L. (1989): Black hole spacetimes: Testing numerical relativity. In Evans, C, Finn, L., Hobill, D. (eds.): Frontiers in Numerical Relativity ,pp. 57–73. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Carles Bona
    • 1
  1. 1.Departament de FisicaUniversitat de les Illes BalearsSpain

Personalised recommendations