Algebraic Programming in the Hamiltonian Version of General Relativity

  • Dumitru N. Vulcanov


This contribution presents procedures in Reduce using the Excalc package for algebraic programming in the Hamiltonian formulation of general relativity (ADM formalism). The procedures calculate the dynamic and the constraint equations. In addition, we have extended the procedures obtained in order to perform a complete ADM reductional procedure. Several versions of the procedures have been realised for the canonical treatment of pure gravity, gravity in interaction with material fields, inflationary models (based on a scalar field nonminimally coupled with gravity), and theories with higher-order Lagrangians.


Scalar Field Constraint Equation Canonical Variable Inflationary Model Pure Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnowitt, R., Deser, S., Misner, C.W. (1962): The dynamics of general relativity. In Witten, L. (ed.): Gravitation: An Introduction to Current Research ,pp. 227–265. Wiley, New YorkGoogle Scholar
  2. 2.
    Misner, C.W., Thorne, K.S., Wheeler, J.A. (1973): Gravitation. Freeman, San FranciscoGoogle Scholar
  3. 3.
    Seidel, E. (1996): Numerical relativity and black-hole collisions. In this book, pp. 25–68. Springer, BerlinGoogle Scholar
  4. 4.
    Bona, C. (1996): Four lectures on numerical relativity. In this book, pp. 69–87. Springer, BerlinGoogle Scholar
  5. 5.
    MacCallum, M.A.H. (1979): Anisotropic and inhomogeneous relativistic cosmologies. In Hawking, S.W., Israel W. (eds.): General Relativity: An Einstein Centenary ,pp. 533–580. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Moussiaux, A., Tombal, P., Demaret, J. (1983): Algebraic programming of the Hamiltonian formalism in general relativity: Application to inhomogeneous spacetimes. Gen. Rel. Grav. 15, 209–225MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Vulcanov, D. (1992): New results in algebraic programming of canonical formalism of general relativity. Preprint UTFT No. 7, University of Timisoara, RomaniaGoogle Scholar
  8. 8.
    Vulcanov, D. (1995): Hamiltonian treatment of some spacetime models of cosmological and astrophysical interest. Rom. Astronomical Journ. 4. In pressGoogle Scholar
  9. 9.
    Vulcanov, D. (1994): ADM formalism applied to some spacetime models using Excalc algebraic programming. Int. J. Mod. Phys. C: Phys. Comput. 5, 973–985ADSCrossRefGoogle Scholar
  10. 10.
    Vulcanov, D. (1995): Algebraic programming in the Hamiltonian treatment of an inflationary model. Int. J. Mod. Phys. C: Phys. Comput. 6, 317–326ADSCrossRefGoogle Scholar
  11. 11.
    Vulcanov, D., Babeti, S. (1995): Algebraic programming for the canonical treatment of gravity with higher-order Lagrangians. In Proceedings of the V-th National Conference on General Relativity, Gravitation and Theoretical Physics, Bistriia, Romania. In pressGoogle Scholar
  12. 12.
    Berger, B.K., Chitre, D.M., Moncrief, V.E., Nutku, V. (1972): Hamiltonian formulation of spherically symmetric gravitational fields. Phys. Rev. D 5, 2467– 2470ADSCrossRefGoogle Scholar
  13. 13.
    Lund, F. (1973): Hamiltonian treatment of the complete vacuum Schwarzschild geometry, Phys. Rev. D 8, 3247–3252MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Lund, F. (1973): Canonical quantization of relativistic balls of dust. Phys. Rev. D 8, 3253–3259MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Komar, A. (1983): Generalized constraint structure for gravitation theory. Phys. Rev. D 27, 2277–2281MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Silveira, V.L.R. (1984): Homogeneous and isotropic solutions of a gravitational theory with scalar fields. Gen. Rel. Grav. 16, 527–534MathSciNetADSGoogle Scholar
  17. 17.
    Madsen, M.S. (1988): Scalar fields in curved spacetimes. Class. Quantum Grav. 5, 627–639MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Schrüfer, E. (1986): Excalc A system for doing calculations in the Calculus of modern differential geometry. User’s manual. Rand Corporation, Santa MonicaGoogle Scholar
  19. 19.
    Safko, J.L., Eiston, F. (1976): Lagrange multipliers and gravitational theory. J. Math. Phys. 17, 1531–1537ADSCrossRefGoogle Scholar
  20. 20.
    Ryan, M. (1972): Hamiltonian cosmology. Lecture Notes in Physics 13. Springer, BerlinGoogle Scholar
  21. 21.
    Misner, C.W. (1973): A minisuperspace example: The Gowdy T3 cosmology. Phys. Rev. D 8, 3271–3285ADSCrossRefGoogle Scholar
  22. 22.
    Lapedes, A.S. (1977): Applications of ADM quantization of some metrics with at-least-two-parameter isometry groups. Phys. Rev. D 15, 946–956ADSCrossRefGoogle Scholar
  23. 23.
    Kuchar, K. (1971): Canonical quantization of cylindrical gravitational waves. Phys. Rev. D 4, 955–986ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Dumitru N. Vulcanov
    • 1
  1. 1.Theoretical and Computational Physics DepartmentThe West University of TimişoaraRomânia

Personalised recommendations