Advertisement

Keywords

Electron Spin Resonance Quantum Electron Ring Laser Master Oscillator Power Amplifier Linear Stark Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography and References

  1. 1.
    R. L. Aggarwal, A. Sanchez, M. M. Stuppi, R. E. Fahey, A. J. Strauss, W. R. Rapoport, and C. P. Khattak, Residual Infrared Absorption in As-Grown and Annealed Crystals of Ti:Al 2 O 3, IEEE J. Quantum Electron. QE-24 (1988), 1003.CrossRefGoogle Scholar
  2. 2.
    J. O. Artman and J. C. Murphy, Lattice Sum Evaluations of Ruby Spectral Parameters, Bull. Am. Phys. Soc. 8 (1963), 323. Also, Phys. Rev. 135 (1964), 1622.Google Scholar
  3. 3.
    C. H. Bair, P. Brockman, R. V. Hess, and E. A. Modlin, Demonstration of Frequency Control and CW Diode Laser Injection Control of a Titanium-Doped Sapphire Ring Laser with No Internal Optical Elements, IEEE J. Quantum Electron. QE-24 (1988), 1045.CrossRefGoogle Scholar
  4. 4.
    P. Ballmer, H. Blum, W. J. Borer, K. Eigenmann, and Hs. H. Günthard, Solid State Reactions and Defects in Verneuil Laser Rubies II, Helv. Phys. Acta 43 (1970), 829.Google Scholar
  5. 5.
    A. S. Barker, Infrared Lattice Vibrations and Dielectric Dispersion in Corundum, Phys. Rev. 132 (1963), 1474.CrossRefGoogle Scholar
  6. 6.
    J. C. Barnes, N. P. Barnes, and G. E. Miller, Master Oscillator Power Amplifier Performance of Ti:Al 2 O 3, IEEE J. Quantum Electron. QE-24 (1988), 1029.CrossRefGoogle Scholar
  7. 7.
    N. P. Barnes, J. A. Williams, J. C. Barnes, and G. E. Lockard, A Self-Injection Locked, Q-Switched, Line-Narrowed Ti:Al 2 O 3 Laser, IEEE J. Quantum Electron. QE-24 (1988), 1021.CrossRefGoogle Scholar
  8. 8.
    S. A. Basun, A. A. Kaplyanskii, V. K. Sevast’yanov, L. S. Starostina, S. P. Feofilov, and A. A. Chernyshev, Optical Investigations of Al 2 O 3 :Ti 3+ Crystals in an Electric Field: Detection of Two-Stage Photo-Ionization of Ti 3+ Atoms and of the Linear Stark Effect in Their Spectra, Sov. Phys. Solid State 32 (1990), 1109.Google Scholar
  9. 9.
    S. A. Batishche, A. A. Demidovich, V. G. Koptev, V. P. Mikhailov, V. A. Mostorvnikov, V. P. Orekhova, B. K. Sevast’yanov, G. A. Skripko, L. S. Starostina, G. A. Tatura, A. P. Shkadarevich, K. F. Chirkina, and A. P. Chirkin, Generation of Subnanosecond Pulses in Ti 3+ :Al 2 O 3 Crystals, Sov. Phys. Dokl. 34 (1989), 231.Google Scholar
  10. 10.
    W. E. Blumberg, J. Eisinger, and S. Geschwind, Cu 3+ Ion in Corundum, Phys. Rev. 130 (1963), 900.CrossRefGoogle Scholar
  11. 11.
    O. N. Boksha, T. M. Varina, and A. A. Popova, Optical Spectra of Cr and Mn in Synthetic MgO-Al 2 O 3 Spinels, Sov. Phys. Crystallogr. 17 (1973), 940.Google Scholar
  12. 12.
    O. N. Boksha, T. M. Varina, A. A. Popova, and E. F. Smirnova, Conditions for the Synthesis and the Optical Spectra of Crystals Containing Transition Elements: II.—Corundum Containing Ti, Sov. Phys. Crystallogr. 17 (1973), 1089.Google Scholar
  13. 13.
    W. J. Borer, Hs. H. Günthard, and P. Ballmer, Solid State Reactions and Defects in Verneuil Laser Rubies, Helv. Phys. Acta 43 (1970), 74.Google Scholar
  14. 14.
    G. Burns, E. A. Geiss, B. A. Jenkins, and M. I. Nathan, Cr 3+ Fluorescence in Garnets and Other Crystals, Phys. Rev. 139 (1965), A1687.CrossRefGoogle Scholar
  15. 15.
    L. D. Calvert, E. J. Gabe, and Y. Le Page, Ruby Spheres for Aligning Single-Crystal Diffractometers, Acta Crystallogr. A37 (1981), C314.Google Scholar
  16. 16.
    R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C.G.B. Garret, and W. Kaiser, Coherence, Narrowing, Directionality, and Relaxation Oscillations in the Light Emission from Ruby, Phys. Rev. Lett. 5 (1960), 303.CrossRefGoogle Scholar
  17. 17.
    D. E. Cox, A. R. Moodenbaugh, A. W. Sleight, and H.-Y. Chen, Structural Refinement of Neutron and X-ray Data by the Rietveld Method: Application to Al 2 O 3 and BiVO 4, National Bureau Standards (U.S.) Spec. Publ. No. 567 (1980), p 189.Google Scholar
  18. 18.
    J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, Characteristics and Kinetics of Laser-Pumped Ti:Sapphire Oscillators, IEEE J. Quantum Electron. QE-24 (1988), p 1009.CrossRefGoogle Scholar
  19. 19.
    K. Eigenmann, K. Kurtz, and Hs. H. Günthard, Solid State Reactions and Defects in Doped Verneuil Sapphire III. Systems α-AL 2 O 3 :Fe, α-Al 2 O 3 :Ti and α-Al 2 O 3 :(Fe, Ti), Helv. Phys. Acta 45 (1972), 452.Google Scholar
  20. 20.
    M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, Excited-State Absorption in Ruby, Emerald, and MgO:Cr 3+, Phys. Rev. B11 (1975), 60.Google Scholar
  21. 21.
    J. Ferguson and D. L. Wood, Crystal Field Spectra of d 3,7 Ions: VI.—The Weak Field Formalism and Covalency, Aust. J. Chem. 23 (1970), 861.CrossRefGoogle Scholar
  22. 22.
    B. F. Gächter and J. A. Koningstein, Zero Phonon Transitions and Interacting Jahn-Teller Phonon Energies from the Fluorescence Spectrum of α-Al 2 O 3 :Ti 3+, J. Chem. Phys. 60 (1974), 2003.CrossRefGoogle Scholar
  23. 23.
    S. Geschwind, P. Kisleuk, M. P. Klein, J. P. Remeika, and D. L. Wood, Sharp-Line Fluorescence, Electron Paramagnetic Resource, and Thermoluminescence of Mn 4+ in α-Al 2 O 3, Phys. Rev. 126 (1962), 1684.CrossRefGoogle Scholar
  24. 24.
    S. Geschwind and J. P. Remeika, Spin Resonance of Transition Metal Ions in Corundum, J. Appl. Phys. Suppl. 33 (1962), 370.CrossRefGoogle Scholar
  25. 25.
    U. Hochli and K. A. Muller, Observations of the Jahn-Teller Splitting of Three-Valent d 7 Ions Via Orbach Relaxation, Phys. Rev. Lett. 12 (1964), 730.CrossRefGoogle Scholar
  26. 26.
    N. S. Hush and J. M. Hobbs, Absorption Spectra of Crystals Containing Transition Metal Ions, Prog. Inorgan. Chem. 10 (1968), 259–486.CrossRefGoogle Scholar
  27. 27.
    Yu. Zh. Isaenko, V. P. Puzikova, L. N. Raiskaya, and E. M. Spitsyn, Laser with a Titanium-Activated Corundum Active Element and Acoustooptic Tuning of the Radiation Wavelength, Sov. J. Quantum Electron. 18 (1989), 1258.CrossRefGoogle Scholar
  28. 28.
    R. R. Joyce and P. L. Richards, Far-Infrared Spectra of Al 2 O 3 Doped with Ti, V, and Cr, Phys. Rev. 179 (1969), 375.CrossRefGoogle Scholar
  29. 29.
    W. Kaiser, S. Sugano, and D. L. Wood, Splitting of the Emission Lines of Ruby by an External Electric Field, Phys. Rev. Lett. 6 (1961), 605.CrossRefGoogle Scholar
  30. 30.
    T. Kushida, Absorption Spectrum of Optically Pumped Ruby: I.— Experimental Studies of Spectrum of Excited States, J. Phys. Soc. Jpn. 21 (1966), 1331.CrossRefGoogle Scholar
  31. 31.
    P. Lacovara and L. Esterowitz, Growth, Spectroscopy and Easing of Titanium-Doped Sapphire, IEEE J. Quantum Electron. QE-21 (1985), 1614.CrossRefGoogle Scholar
  32. 32.
    R. Lacroix, U. Hochli, and K. A. Muller, Strong Field G-Value Calculation for d 7 Ions in Octahedral Surroundings, Helv. Phys. Acta 37 (1964), 627.Google Scholar
  33. 33.
    W. Low and E. L. Offenbacher, Electron Spin Resonance of Magnetic Ions in Complex Oxides, Review of ESR Results in Rutile, Perovskite, Spinel, and Garnet Structures, Solid State Physics 17 (1965), 135.CrossRefGoogle Scholar
  34. 34.
    A. D. Liehr, The Three Electron (or Hole) Cubic Ligand Field Spectrum, J. Phys. Chem. 67 (1963), 1314.CrossRefGoogle Scholar
  35. 35.
    A. Linz, Jr., and R. E. Newnham, Ultraviolet Absorption Spectra in Ruby, Phys. Rev. 123 (1961), 500.CrossRefGoogle Scholar
  36. 36.
    R. Louat and E. Duval, Temperature Dependence of the 1 A 11 E( 1 T 1 ) Zero-Phonon Transition of Co 3+ in a-Al 2 O 3, Phys. Status Solidi 42 (1970), K93.CrossRefGoogle Scholar
  37. 37.
    A. Lupei, V. Lupei, C. Ionescu, H. G. Tang, and M. L. Chen, Spectroscopy of Ti 3+-Al 2 O 3, Optics Commun. 59 (1986), 36.CrossRefGoogle Scholar
  38. 38.
    R. M. Macfarlane, Perturbation Methods in the Calculation of Zeeman Interactions and Magnetic Dipole Line Strengths for d 3 Trigonal-Crystal Spectra, Phys. Rev. B1 (1970), 989.Google Scholar
  39. 39.
    R. M. Macfarlane, On the Ground-State Splitting in Ruby, J. Chem. Phys. 42 (1965), 442.CrossRefGoogle Scholar
  40. 40.
    R. M. Macfarlane, Optical and Magnetic Properties of Trivalent Vanadium Complexes, J. Chem. Phys. 40 (1964), 373.Google Scholar
  41. 41.
    R. M. Macfarlane, Analysis of the Spectrum of d 3 Ions in Trigonal Crystal Fields, J. Chem. Phys. 39 (1963), 3118.CrossRefGoogle Scholar
  42. 42.
    R. M. Macfarlane, J. Y. Wong, and M. D. Sturge, Dynamic Jahn-Teller Effect in Octahedrally Coordinated d 1 Impurity Systems, Phys. Rev. 166 (1968), 250.CrossRefGoogle Scholar
  43. 43.
    T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature 187 (1960), 493.CrossRefGoogle Scholar
  44. 44.
    T. H. Maiman, Optical Maser Action in Ruby, Br. Commun. Electron. 7 (1960), 674.Google Scholar
  45. 45.
    R. Marshall, S. S. Mitra, P. J. Gielisse, J. N. Plendl, and L. C. Mansur, Infrared Lattice Spectra of α-Al 2 O 3 and Cr 2 O 3, J. Chem. Phys. 43 (1965), 2893.CrossRefGoogle Scholar
  46. 46.
    Z. G. Mazurak, M. B. Czaja, J. Hanuza, and B. Jezowska-Trzebiatowska, The Spectroscopy of Cr 3+ Doped Natural Garnets and Emerald as Well as Synthetic Alexandrite and Corundum, in Proc. First Int. School on Excited States of Transition Elements, B. Jezowska-Trzebiatowska, J. Legendziewicz, and W. Strek, eds., World Scientific (1989), p 331.Google Scholar
  47. 47.
    F. J. McClung, S. E. Schwarz, and F. J. Meyers, R 2 Line Optical Maser Action in Ruby, J. Appl. Phys. 33 (1962), 3139.CrossRefGoogle Scholar
  48. 48.
    D. S. McClure, Optical Spectra of Transition-Metal Ions in Corundum, J. Chem. Phys. 36 (1962), 2757.CrossRefGoogle Scholar
  49. 49.
    D. S. McClure, Progress in Solid State Physics, Academic Press, New York (1959), Vol. 9.Google Scholar
  50. 50.
    R. Moncorge, G. Boulon, D. Vivien, A. M. Lejus, R. Collongues, V. Djevahirdjian, K. Djevahirdjian, and R. Cagnard, Optical Properties and Tunable Laser Action of Verneuil-Grown Single Crystals of Al 2 O 3:Ti 3+, IEEE J. Quantum Electron. QE-24 (1988), 1049.CrossRefGoogle Scholar
  51. 51.
    K. Moorjani and N. McAvoy, Optical Spectra of Trivalent Iron in Trigonal Fields, Phys. Rev. 132 (1963), 504.CrossRefGoogle Scholar
  52. 52.
    P. F. Moulton, Tunable Solid-State Lasers Targeted for a Variety of Applications, Laser Focus 23 (1987), 56.Google Scholar
  53. 53.
    F. Moulton, Spectroscopic and Laser Characteristics of Ti 3+ :Al 2 O 3, J. Opt. Soc. Am. B3 (1986), 125.Google Scholar
  54. 54.
    E. D. Nelson, J. Y. Wong, and A. L. Schawlow, Far Infrared Spectra of Al 2 O 3 :Cr 3+ and Al 2 O 3.Ti 3+, Phys. Rev. 156 (1967), 298.CrossRefGoogle Scholar
  55. 55.
    E. D. Nelson, J. Y. Wong, and A. L. Schawlow, Far Infrared Spectra of Al 2 O 3 :Cr 3+ and Al 2 O 3:Ti 3+ in Optical Properties of Ions in Crystals, H. M. Crosswhite and H. W. Moos, eds., Interscience, New York (1967), p 375.Google Scholar
  56. 56.
    R. E. Newnham and Y. M. de Haan, Refinement of the αAl 2 O 3, Ti 2 O 3, V 2 O 3, and Cr 2 O 3 Structures, Z. Kristallogr. Krystallgeom. Krystallphys. Kristallenem. 117 (1962), 235.Google Scholar
  57. 57.
    A. Pinto, Doubled Titanium Sapphire as Tunable Visible Laser, Laser Focus 23 (1987), 58.Google Scholar
  58. 58.
    M.H.L. Pryce and W. A. Runciman, The Absorption Spectrum of Vanadium Corundum, Discuss. Faraday Soc. 26 (1958), 34.CrossRefGoogle Scholar
  59. 59.
    C. Reber and H. U. Güdel, Near-Infrared Luminescence Spectroscopy of Al 2 O 3:V 3+ and YP 3 O 9:V 3+, Chem. Phys. Lett. 154 (1989), 425.CrossRefGoogle Scholar
  60. 60.
    S. Sakatsume and I. Tsujikawa, Sharp Absorption Lines of V 3+-Al 2 O 3 in the Near Infrared Region, J. Phys. Soc. Jpn. 19 (1964), 1080.CrossRefGoogle Scholar
  61. 61.
    A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, Crystal Growth, Spectroscopy, and Laser Characteristics of Ti:Al 2 O 3, IEEE J. Quantum Electron. QE-24 (1988), 995.CrossRefGoogle Scholar
  62. 62.
    A. L. Schawlow and G. E. Devlin, Simultaneous Optical Maser Action in Two Satellite Lines, Phys. Rev. Lett. 6 (1961), 96.CrossRefGoogle Scholar
  63. 63.
    P. A. Schulz, Single-Frequency Ti:Al 2 O 3 Ring Laser, IEEE J. Quantum Electron. QE-24 (1988), 1039.CrossRefGoogle Scholar
  64. 64.
    B. K. Sevastyanov, Kh. S. Bagdasavov, E. A. Fedorov, V. B. Semenov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, and A. N. Kolerov, Spectral and Lasing Characteristics of Corundum Crystals Activated by Ti 3+ (Al 2 O 3:Ti 3+) Ions, Sov. Phys. Dokl. 30 (1986), 508.Google Scholar
  65. 65.
    B. K. Sevastyanov, Kh. S. Bagdasavov, E. A. Fedorov, V. B. Semenov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, and A. N. Vratskii, Tunable Laser Based on Al 2 O 3 :Ti 3+ Crystal, Sov. Phys. Crystallogr. 29 (1984), 566.Google Scholar
  66. 66.
    R. R. Sharma and T. P. Das, Crystalline Fields in Corundum-Type Lattices, J. Chem. Phys. 41 (1964), 3581.CrossRefGoogle Scholar
  67. 67.
    M. D. Sturge, F. R. Merritt, L. F. Johnson, H. J. Guggenheim, and J. P. van der Ziel, Optical and Microwave Studies of Divalent Vanadium in Octahedral Fluoride Coordination, J. Chem. Phys. 54 (1971), 405.CrossRefGoogle Scholar
  68. 68.
    S. Sugano and M. Peter, Effect of Configuration Mixing and Covalency on the Energy Spectrum of Ruby, Phys. Rev. 122 (1961), 381.CrossRefGoogle Scholar
  69. 69.
    S. Sugano and M. Shinada, Theoretical Analysis of Absorption Spectrum of Optically Pumped Ruby, in Optical Properties of Ions in Crystals, H. M. Crosswhite and H. W. Moos, eds., Interscience, New York (1967), p 187.Google Scholar
  70. 70.
    S. Sugano and Y. Tanabe, The Line Spectra of Cr 3+ Ion in Crystals, Discuss. Faraday Soc. 26 (1958), 43.CrossRefGoogle Scholar
  71. 71.
    D. T. Sviridov, R. K. Sviridova, N. I. Kulik, and V. B. Glasko, Optical Spectra of the Isoelectronic Ions V 2+, Cr 2+, and Mn 4+ in an Octahedral Coordination, J. Appl. Spectrosc. 30 (1979), 334.CrossRefGoogle Scholar
  72. 72.
    T. Tatsukawa, M. Inoue, and H. Yagi, Fine Structure Constant at V-Band Region of Cr 3+ in Ruby Crystal, J. Phys. Soc. Jpn. 36 (1974), 908.CrossRefGoogle Scholar
  73. 73.
    P. Thompson, D. E. Cox, and J. B. Hastings, Rietveld Refinement of Debye-Scherrer Synchrotron X-Ray Data from Al 2 O 3, J. Appl. Crystallogr. 20 (1987), 79.CrossRefGoogle Scholar
  74. 74.
    H. H. Tippins, Charge-Transfer Spectra of Transition-Metal Ions in Corundum, Phys. Rev. B1 (1970), 126.Google Scholar
  75. 75.
    A. van Die, A. Leenaers, W. van der Weg, and G. Blasse, A Search for Luminescence of the Trivalent Manganese Ion in Solid Aluminate, Mater. Res. Bull. 22 (1987), 781.CrossRefGoogle Scholar
  76. 76.
    K. F. Wall, R. L. Aggarwal, R. E. Fahey, and A. J. Strauss, Small-Signal Gain Measurements in a Ti:Al 2 O 3 Amplifier, IEEE J. Quantum Electron. QE-24 (1988), 1016.CrossRefGoogle Scholar
  77. 77.
    A. Wasiela, D. Block, and Y. M. D’Aubigne, Chromium-Gallium Complexes in Al 2 O 3: II.—Energy Transfer, J. Lumin. 36 (1986), 23.CrossRefGoogle Scholar
  78. 78.
    A. Wasiela, Y. M. D’Aubigne, and D. Block, Chromium-Gallium Complexes inAl 2 O 3: I.—Luminescence, J. Lumin. 36 (1986), 11.CrossRefGoogle Scholar
  79. 79.
    J. Y. Wong, M. J. Berggren, and A. L. Schawlow, Far-Infrared Spectrum of Al 2 O 3:V 4+, J. Chem. Phys. 49 (1968), 835.CrossRefGoogle Scholar
  80. 80.
    E. J. Woodbury and W. K. Ng, Ruby Laser Operation in the Near I.R., Proc. IRE 50 (1962), 2367.Google Scholar
  81. 81.
    Y. Y. Yeung and D. J. Newman, Superposition-Model Analysis for the OR 3+ 4 A 2 Ground State, Phys. Rev. B34 (1986), 2258.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Clyde Arthur Morrison
    • 1
  1. 1.Harry Diamond LaboratoriesAdelphiUSA

Personalised recommendations