BeAl2O4 (Chrysoberyl, Cr:BeAl2O4 = Alexandrite)

  • Clyde Arthur Morrison


Alexandrite Laser Czochralski Growth High Repetition Frequency Tunable Solid State Laser Aluminum Oxide Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography and References

  1. 1.
    G. V. Bukin, S. Yu. Volkov, V. N. Matrosov, B. K. Sevast’yanov, and M. I. Timosheshkin, Stimulated Emission from Alexandrite (BeAl 2 O 4.Cr 3+ ), Sov. J. Quantum Electron. 8 (1978), 671.CrossRefGoogle Scholar
  2. 2.
    Y. Chiba, K. Yamagishi, and H. Ohkura, ESR of Ti 3+ Ions in Laser-Quality Chrysoberyl, Jpn. J. Appl. Phys. 27 (1988), L1929.CrossRefGoogle Scholar
  3. 3.
    C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, Physical Properties of BeAl 2 O 3 Single Crystals, J. Mater. Sci. 14 (1979), 941.Google Scholar
  4. 4.
    A. P. Dudka, B. K. Sevast’yanov, and V. I. Simonov, Refinement of Atomic Structure of Alexandrite, Sov. Phys. Crystallogr. 30 (1985), 277.Google Scholar
  5. 5.
    C. E. Forbes, Analysis of the Spin-Hamiltonian Parameters for Cr 3+ in Mirror and Inversion Symmetry Sites of Alexandrite (Al 2−x Cr x BeO 4 ). Determination of the Relative Site Occupancy by EPR, J. Chem. Phys. 79 (1983), 2590.CrossRefGoogle Scholar
  6. 6.
    S. K. Gayen, W. B. Wang, V. Petricevic, and R. R. Alfano, Picosecond Time Resolved Studies of Nonradiative Relaxation in Ruby and Alexandrite, AIP Conf. Proc. 146 (1986), 206.CrossRefGoogle Scholar
  7. 7.
    A. M. Ghazzawi, J. K. Tyminski, R. C. Powell, and J. C. Walling, Four-Wave Mixing in Alexandrite Crystals, Phys. Rev. B30 (1984), 7182.Google Scholar
  8. 8.
    Xiangan Guo, Bangxing Zhang, Lu-Sheng Wu, and Mei-Ling Chen, Czochralski Growth and Laser Performance of Alexandrite Crystals, AIP Conf. Proc. 146, New York (1986), p 249.CrossRefGoogle Scholar
  9. 9.
    Guo Xingan, Chen Meiling, Li Nairen, Qin Qinghai, Huang Mingfang, Fei Jingwei, Wen Shulin, Li Zongquan, and Qin Yong, Czochralski Growth of Alexandrite Crystals and Investigation of their Effect, J. Cryst. Growth 83 (1987), 311.CrossRefGoogle Scholar
  10. 10.
    F. Hasen and A. El-Rakhawy, Chromium III Centers in Synthetic Alexandrite, Amer. Minerol. 59 (1974), 159.Google Scholar
  11. 11.
    L. A. Harris and H. L. Yakel, Synthesis and X-Ray Study of Single-Crystal 3Al 2 O sBeO, J. Amer. Ceramic Soc. (June 1970), 359.Google Scholar
  12. 12.
    D. F. Heller and J. C. Walling, High-Power Performance of Alexandrite Lasers, Cleo ’84 (20 June 1984), p 101.Google Scholar
  13. 13.
    A. M. Hofmeister, T. C. Hoering, and D. Virgo, Vibrational Spectroscopy of Beryllium Aluminosilicates: Heat Capacity Calculations from Band Assignments, Phys. Chem. Miner. 14 (1987), 205.CrossRefGoogle Scholar
  14. 14.
    P. T. Kenyon, L. Andrews, B. McCollum, and A. Lempicki, Tunable Infrared S olid-State Laser Materials Based on Cr 3+ in Low Ligand Fields, IEEE J. Quantum Electron. QE-18 (1982), 1189.CrossRefGoogle Scholar
  15. 15.
    T. Kottke and F. Williams, Pressure Dependence of the Alexandrite Emission Spectrum, Phys. Rev. B28 (1983), 1923.Google Scholar
  16. 16.
    S. Majetich, D. Boye, J. E. Rives, and R. S. Meitzer, Spectroscopy of the 2 E Excited State of Cr 3+ in Alexandrite, J. Lumin. 40,41 (1988), 207.CrossRefGoogle Scholar
  17. 17.
    Z. G. Mazurak, M. B. Czaja, J. Hanuza, and B. Jezowski-Trzebiotowska, The Spectroscopy of Cr 3+ Doped Natural Garnets and Emerald as well as Synthetic Alexandrite and Corundum, Proc. First International School on Excited States of Transition Elements, B. Jezowski-Trzebiatowska, J.Legendziewicz, and W. Strek, eds., World Scientific, New Jersey (1989), p 331.Google Scholar
  18. 18.
    R. E. Newnham, J. J. Kramer, W. A. Schulze, and L. E. Cross, Magnetoferroelectricity in Cr 2 BeO 4, J. Appl. Phys. 49 (1978), 6088.CrossRefGoogle Scholar
  19. 19.
    S. A. Payne and L. L. Chase, Excited State Absorption of V 3+ and Cr 3+ Ions in Crystal Hosts, J. Lumin. 38 (1987), 187.CrossRefGoogle Scholar
  20. 20.
    E. V. Pestryakov, V. I. Trunov, and A. I. Alimpiev, Induced Emission from Iron-Group Ions in Chrysoberyl, Izv. Akad. Nauk SSSR Ser. Fiz. 52 (1988), 1184.Google Scholar
  21. 21.
    E. V. Pestryokov, V. I. Trunov, and A. I. Alimpiev, Generation of Tunable Radiation in a BeAl 2 O 4 :Ti 3+ Laser Subjected to Pulsed Coherent Pumping at a High Repetition Frequency, Sov. J. Quantum Electron. 17 (1987), 585.CrossRefGoogle Scholar
  22. 22.
    R. C. Powell, Lin Xi, Xu Garg, G. J. Quarles, and J. C. Walling, Spectroscopic Properties of Alexandrite Crystals, Phys. Rev. B32 (1985), 2788.Google Scholar
  23. 23.
    R. C. Sam, W. R. Rapport, and S. Matthews, New Developments in High-Power High Repetition Rate Injection-Locked Alexandrite Lasers, Cleo ’84 (20 June 1984), p 101.Google Scholar
  24. 24.
    H. Samelson and D. J. Harter, High-Pressure Arc Lamp Excited cw Alexandrite Lasers, Cleo ’84 (20 June 1984), p 101.Google Scholar
  25. 25.
    K. L. Schepler, Fluorescence of Inversion Site Cr 3+ Ions in Alexandrite, J. Appl. Phys. 56 (1984), 1314.CrossRefGoogle Scholar
  26. 26.
    P. Schmidt, A. Weiss, and T. P. Das, Effect of Crystal Fields and Self-Consistency on Dipole and Quadrupole Polarizabilities of Closed-Shell Ions, Phys. Rev. B19 (1979), 5525.Google Scholar
  27. 27.
    Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, and Y. Yamaguchi, Optical Properties and Easing of Ti 3+ Doped BeAl 2 O 4, Topical Meeting on Tunable Solid State Lasers, vol 26–28 (October 1987), p 154.Google Scholar
  28. 28.
    Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, and Y. Yamaguchi, Optical Properties and Easing of Ti 3+ Doped BeAl 2 O 4, Jpn. J. Appl. Phys. 26 (1987), L291.CrossRefGoogle Scholar
  29. 29.
    B. K. Sevast’yanov, Y. L. Remigailo, V. P. Orekhova, V. P. Matrozov, E. G. Tsvetkov, and G. V. Bukin, Spectroscopic and Easing Characteristics of an Alexandrite (Chromium +3) Doped Beryllium Aluminum Oxide Laser, Dokl. Akad. Nauk SSSR 256 (1981), 373–376; Sov. Phys. Dokl. 26, No. 1 (January 1981) 62–64.Google Scholar
  30. 30.
    M. L. Shand and H. P. Jenssen, Energy Kinetics in Alexandrite, Proc. Int. Conf. Lasers (1983), p 559.Google Scholar
  31. 31.
    M. L. Shand, J. C. Walling, and R. C. Morris, Excited State Absorption in the Pump Region of Alexandrite, J. Appl. Phys. 52 (1981), 953.CrossRefGoogle Scholar
  32. 32.
    Ma Shiaoshan, Lu Jiajin, Qian Zhenying, Hou Yinchun, Wang Siting, Shen Yajang, and Jing Zonru, The Growth Habits of Alexandrite Crystal, Chin. J. Phys. Peking Engl. Transl. 4 (1984), 771.Google Scholar
  33. 33.
    A. Sugimoto, Y. Segawa, P. H. Kim, and S. Namba, Spectroscopic Properties of Ti 3+-Doped BeAl 2 O 4, J. Opt. Soc. Am. B6 (1989), 2334.Google Scholar
  34. 34.
    G. J. Troup, A. Edgar, D. R. Hutton, and P. P. Phakey, 8mm Wavelength EPR Spectrum of Cr 3+ in Laser-Quality Alexandrite, Phys. Status Solidi (a)71(1982), K29.Google Scholar
  35. 35.
    J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, Tunable-Laser Performance in BeAl 2 O 4 :Cr 3+, Opt. Lett. 4 (1979), 182.CrossRefGoogle Scholar
  36. 36.
    J. C. Walling and O. G. Peterson, High Gain Laser Performance in Alexandrite, IEEE J. Quantum Electron. QE-16 (1980), 119.CrossRefGoogle Scholar
  37. 37.
    J. C. Walling and O. G. Peterson, High Gain Laser Performance in Alexandrite, IEEE OSA Conf. on Laser Engineering and Applications (1979), p 86D.Google Scholar
  38. 38.
    J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, Tunable Alexandrite Lasers, IEEE J. Quantum Electron. QE-16 (1980), 1302.CrossRefGoogle Scholar
  39. 39.
    J. C. Walling, O. G. Peterson, and R. C. Morris, Tunable CW Alexandrite Laser, IEEE J. Quantum Electron. QE-16 (1980), 120.CrossRefGoogle Scholar
  40. 40.
    S. C. Weaver and S. A. Payne, Determination of Excited-State Polarizabilities of Cr 3+-Doped Materials by Degenerate Four-Wave Mixing, Phys. Rev. B40 (1989), 10,727.Google Scholar
  41. 41.
    Wu Guang-Zhao and Zhang Xiu-rong, Crystal-Field Energy Levels of BeAl 2 O 4 :Cr 3+, Acta Phys. Sin. 32 (1983), 64–70 (translation, Chin. J. Phys. Peking Engl. Transi. 3 (1983), 570).Google Scholar
  42. 42.
    R.W.G. Wyckoff, Crystal Structures, vol 3 (1965), p 91, and vol 4 (1968), p 159.Google Scholar
  43. 43.
    Xu Jian, Xiong Guangnan, and Xu Xurong, Properties of the Excited States of Cr 3+ in Alexandrite Crystal, Chin. Sci. Bull. 34 (1989), 199.Google Scholar
  44. 44.
    Zhang Shoudu and Zhang Kemin, Experiment on Laser Performance of Alexandrite Crystals, Chin. J. Lasers 11 (1984), 44–46 (translation, Chin. J. Phys. Peking Engl. Transl. 4 (1984), 667).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Clyde Arthur Morrison
    • 1
  1. 1.Harry Diamond LaboratoriesAdelphiUSA

Personalised recommendations