Devil’s Gearworks

  • G. Mantica
Conference paper
Part of the Beiträge zur Graphischen Datenverarbeitung book series (GRAPHISCHEN)


Cylinders rolling on each other without friction, and at the same time filling the space between parallel planes show interesting fractal structures. These structures can be understood with the aid of suitable discrete subgroups of SL(2,C), the group of Möbius transformations.


Fractal Dimension Discrete Subgroup Linear Fractional Transformation Circle Packing Basic Circle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BAT]
    G.K. Batchelor, Theory of homogeneous turbulence (Cambridge Univ. Press, 1982).Google Scholar
  2. [BED]
    D. Bessis, and S. Demko, Comm. Math. Phys. 134 293 (1990).MathSciNetMATHCrossRefGoogle Scholar
  3. [FSN]
    U. Frisch, P.L. Sulem, M. Nelkin, J. Fluid Mech. 87, 719–736, 1978.MATHCrossRefGoogle Scholar
  4. [HMB]
    H..J. Herrmann, G. Mantica, and D. Bessis, Phys. Rev. Lett. 65 3223 (1990).MathSciNetMATHCrossRefGoogle Scholar
  5. [MAN]
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).Google Scholar
  6. [MCC]
    W. McCann, S. Nishenko, L. Sykes and J. Krause, Pageoph 117, 1082 (1979); C. Lomnitz, Bull. Seism. Soc. Am. 72, 1441 (1982).CrossRefGoogle Scholar
  7. [SAM]
    C. Sammis and G. King and R. Biegel, Pageoph 125, 777 (1987).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • G. Mantica
    • 1
  1. 1.Service de Physique TheoriqueFrance

Personalised recommendations