Devil’s Gearworks

  • G. Mantica
Conference paper
Part of the Beiträge zur Graphischen Datenverarbeitung book series (GRAPHISCHEN)

Abstract

Cylinders rolling on each other without friction, and at the same time filling the space between parallel planes show interesting fractal structures. These structures can be understood with the aid of suitable discrete subgroups of SL(2,C), the group of Möbius transformations.

Keywords

Porosity Geophysical Science Sulem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BAT]
    G.K. Batchelor, Theory of homogeneous turbulence (Cambridge Univ. Press, 1982).Google Scholar
  2. [BED]
    D. Bessis, and S. Demko, Comm. Math. Phys. 134 293 (1990).MathSciNetMATHCrossRefGoogle Scholar
  3. [FSN]
    U. Frisch, P.L. Sulem, M. Nelkin, J. Fluid Mech. 87, 719–736, 1978.MATHCrossRefGoogle Scholar
  4. [HMB]
    H..J. Herrmann, G. Mantica, and D. Bessis, Phys. Rev. Lett. 65 3223 (1990).MathSciNetMATHCrossRefGoogle Scholar
  5. [MAN]
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).Google Scholar
  6. [MCC]
    W. McCann, S. Nishenko, L. Sykes and J. Krause, Pageoph 117, 1082 (1979); C. Lomnitz, Bull. Seism. Soc. Am. 72, 1441 (1982).CrossRefGoogle Scholar
  7. [SAM]
    C. Sammis and G. King and R. Biegel, Pageoph 125, 777 (1987).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • G. Mantica
    • 1
  1. 1.Service de Physique TheoriqueFrance

Personalised recommendations