Dynamical Structures: Formation, Symmetry, Stability

  • H. Thomas


The subject of this lecture is the formation of dynamic structures in physical systems under the influence of external forces which drive currents through the system. It is a common feature of such “driven” systems that the driving force keeps them far from thermodynamic equilibrium, and that dissipation gives rise to the production of heat which has to be carried away by coupling the system to a heat sink (Fig. 1).


Lyapunov Exponent Hopf Bifurcation Maximal Subgroup Bifurcation Analysis Goldstone Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marsden, J., McCracken, M.: The Hopf Bifurcation and Its Applications. Applied Mathematical Sciences 19, Springer, Berlin, Heidelberg 1976CrossRefGoogle Scholar
  2. 2.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Applied Mathematical Sciences 42, Springer, Berlin, Heidelberg 1980Google Scholar
  3. 3.
    Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, Vol. I. Applied Mathematical Sciences 51, Springer, Berlin, Heidelberg 1985Google Scholar
  4. 4.
    Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, Vol. II. Applied Mathematical Sciences 69, Springer, Berlin, Heidelberg 1988CrossRefGoogle Scholar
  5. 5.
    Ihrig, E., Golubitsky, M.: Pattern selection with O(3) symmetry. Physica 13D (1984) 1–33MathSciNetADSGoogle Scholar
  6. 6.
    Golubitsky, M., Stewart, I.N.: Hopf bifurcation in the presence of symmetry. Arch.Rat. Mech.Anal. 87 (1985) 107–165MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Knobloch, E.: On the degenerate Hopf bifurcation with O(2) symmetry. In: Multiparameter Bifurcation Theory, Contemporary Mathematics Vol.56, pp. 193-201. Am.Math.Soc. 1986Google Scholar
  8. 8.
    Höck, K.-H., Jordan, P., Thomas, H.: Symmetry aspects of instabilities in driven systems. J.Phys.C: Solid State Physics 20 (1987) 895–916ADSCrossRefGoogle Scholar
  9. 9.
    Höck, K.-H., Hackenbracht, D., Jordan, P., Thomas, H.: Degenerate Hopf bifurcation in the presence of symmetry. Physica 27D (1987) 338–356ADSGoogle Scholar
  10. 10.
    Cigogna, G., Gaeta, G.: Bifurcations, symmetries and maximal isotropy subgroups. Nuova Cimento 102 (1988) 451–479ADSCrossRefGoogle Scholar
  11. 11.
    Crawford, J.D., Knobloch, E.: Classification and unfolding of degenerate Hopf bifurcations with O(2) symmetry: No distinguished parameter. Physica D31 (1988) 1–48MathSciNetADSGoogle Scholar
  12. 12.
    Crawford, J.D., Knobloch, E.: Period-doubling mode interactions with circular symmetry. Physica D44 (1990) 340–396MathSciNetADSGoogle Scholar
  13. 13.
    Crawford, J.D., Knobloch, E.: Symmetry and symmetry-breaking bifurcations in fluid dynamics. Annu.Rev.Fluid Mech. 23 (1991) 341–387MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Büttiker, M., Thomas, H.: Bifurcation and stability of families of waves in uniformly driven spatially extended systems. Phys.Rev. A24 (1981) 2635–48ADSGoogle Scholar
  15. 15.
    Renardy, M., Haken, H.: Bifurcations of solutions of the laser equation. Physica 8 (1983) 57–89MathSciNetGoogle Scholar
  16. 16.
    Livshits, M.A.: Chemical waves as a result of instability in reaction-diffusion systems. Z.Phys.B — Condensed Matter 53 (1983) 83–88MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Malomed, B.A.: Nonlinear waves in nonequilibrium systems of the oscillatory type, Part I. Z. Phys. B — Condensed Matter 55 (1984) 241–248MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Thiesen, S., Thomas, H.: Bifurcation, stability and symmetry of nonlinear waves. Z.Phy.B — Condensed Matter 65 (1987) 397–408MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Thomas, H.: Bifurcation of transverse waves in a polarization-symmetric medium. Physicalia Magazine (Gent, Belgium) 12 Suppl (1999) 247–263Google Scholar
  20. 20.
    Fang, Q.T., Glicksman, M.E., Coriell, S.R., McFadden, G.B., Boisvert, R.F.: Convective influence on the stability of a cylindrical solid-liquid interface. J.Fluid Mech. 151 (1985) 121–140ADSCrossRefGoogle Scholar
  21. 21.
    Graham, R.: Order parameter fluctuations of a laser with polarization symmetry. Phys.Letters 103A (1984) 255–258ADSGoogle Scholar
  22. 22.
    Grossmann, S., Krauth, W.: Laser with large correlation times. Phys.Rev. A35 (1987) 2523–2531ADSGoogle Scholar
  23. 23.
    Krauth, W., Grossmann, S.: Linewidths of lasers with broken polarization symmetry. Phys.Rev. A35 (1987) 4192–4199ADSGoogle Scholar
  24. 24.
    Grossmann, S., Krauth, W.: The polarization symmetric laser. In: Lasers and Synergetics, ed. by R. Graham, A. Wunderlich, pp. 1–10. Springer Proc. Phys., Springer, Berlin, Heidelberg 1987Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H. Thomas
    • 1
  1. 1.Institut für PhysikUniversität BaselBaselSwitzerland

Personalised recommendations