Advertisement

Neurobiologische Befunde bei Opioidabhängigen

  • M. Otto
  • H. Rommelspacher
  • L. G. Schmidt
Conference paper
Part of the Suchtproblematik book series (SUCHT)

Zusammenfassung

Der Definition von zwanghaftem Suchtverhalten sollte ein interdisziplinäres Verständnis zugrunde liegen, bei dem die Persönhchkeit des Süchtigen, biochemische Auswirkungen und soziale Bedingungen berücksichtigt werden (Milkman u. Sunderwirth 1984). Neurobiologische Auswirkungen der Opioidabhängigkeit auf das zentrale Nervensystem lassen sich auf folgenden Untersuchungsebenen erfassen:
  1. 1.

    molekulare Ebene mit Neurotransmittern und Rezeptoren,

     
  2. 2.

    zelluläre Ebene mit den spezifischen Neuronen,

     
  3. 3.

    physiologisch-anatomische Ebene, Reward-System genannt,

     
  4. 4.

    Verhaltensebene, durch Verhaltensverstärkung gekennzeichnet.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Barnes DM (1988) The biological tangle of drug addiction. Science 214:415–417CrossRefGoogle Scholar
  2. Carboni E, Imperato A, Perezzani L, Dichiara G (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28:653–661PubMedCrossRefGoogle Scholar
  3. Emrich HM, Nusselt L, Gramsch C, John S (1983) Heroin addiction: Beta endorphine immunoreactivity in plasma increases during withdrawal. Pharmacopsychiatria 16:93–96PubMedCrossRefGoogle Scholar
  4. Engel J, Oreland L, Ingvar DH, Pernow B, Rössner S, Pellborn LA (eds) (1987) Brain reward systems and abuse. Raven Press, New YorkGoogle Scholar
  5. Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Research 348:201–203PubMedCrossRefGoogle Scholar
  6. Goldstein A (1977) Future research on opioid peptides (endorphines): A preview. In: Blum K (ed) Alcohol and opiates. Academic Press, New York, pp 397–403Google Scholar
  7. Havemann U, Kuschinsky K (1985) Opiatrezeptoren: Zur Frage der Trennung der analgenetischen und suchterzeugenden Wirkungen. In: Keup W (Hrsg) Biologie der Sucht. Springer, Berlin Heidelberg New York Tokyo, S 178–185CrossRefGoogle Scholar
  8. Herz A (1985) Biologische Mechanismen der Opiatsucht. In: Keup W (Hrsg) Biologie der Sucht. Springer, Berlin Heidelberg New York Tokyo, S 168–177CrossRefGoogle Scholar
  9. Ho WKK, Wen HL, Ling N (1980) Beta-endorphine-like immunoactivity in the plasma of heroin addicts and normal subjects. Neuropharmacology 19:117–120PubMedCrossRefGoogle Scholar
  10. Holaday JW, Hitzemann RJ, Curell J, Tortella FC, Belenky LG (1982) Repeated electroconvulsive shock or chronic morphine treatment increases the number of 3H-D-ALA2, D-LEU5-enkephalin binding sites in rat brain membranes. Life Sci 31:2359–2362PubMedCrossRefGoogle Scholar
  11. Holaday J, Porreca F, Rothman R (1989) Opioid receptor types. TIPS 10Google Scholar
  12. Holmstrand J, Günne LM, Wahlström A, Terenius L (1981) CSF-endorphins in heroin addicts during methadone maintenance and during withdrawal. Pharmacopsychiatria 14:126–128PubMedCrossRefGoogle Scholar
  13. Koob GF, Bloom F (1988) Cellular and molecular mechanism of drug dependence. Science 242:715–722PubMedCrossRefGoogle Scholar
  14. Kosten TR, Kreek MJ, Ragunath J, Kleber HB (1986) Cortisol levels during chronic naltrexone maintenance treatment in ex-opiate addicts. Biol Psychiat 21:217–220PubMedCrossRefGoogle Scholar
  15. Kosten TR, Kreek MJ, Ragunath J, Kleber HB (1986) A preliminary study of beta-endorphine during chronic naltrexone maintenance treatment in ex-opiate addicts. Life Sci 39:55–59PubMedCrossRefGoogle Scholar
  16. Kosten TR, Kreek MJ, Swift C, Carney MK, Ferdinands L (1987) Beta endorphin levels in CSF during methadone maintenance. Life Sci 41:1071–1076PubMedCrossRefGoogle Scholar
  17. Kreek MJ (1987) Multiple drug abuse patterns and medical consequences. In: Meitzer HY (ed) The third generation of progress. Raven Press, New York, p 1597Google Scholar
  18. Mendelson JH, Ellingboe J, Kuehnle JC, MeUo NK (1980) Heroin and naltrexone effects on pituitary-gonadal hormones in man: Interaction of steroid feedback effects, tolerance, and supersensitivity. J Pharmacol Exp Ther 214:503–506PubMedGoogle Scholar
  19. Milkman H, Sunderwirth S (1984) Warum werden wir süchtig? Psychologie heute: 34–40Google Scholar
  20. O’Brien CP, Terenius LY, Nyberg F, McLeUan AT, Erikson I (1988) Endogenous opioids in cerebrospinal fluid of opioid-dependent humans. Biol Psychiatry 24:649–662PubMedCrossRefGoogle Scholar
  21. Perry DC, Rosenbaum JS, Sadee W (1982) In-vivo binding of 3H-etorphine in morphine-dependent rats. Life Sci 1405–1408Google Scholar
  22. Phillips AG, LePiane FG (1980) Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmac Biochem Behav 12:965–968CrossRefGoogle Scholar
  23. Schmidt RF, Thews G (Hrsg) (1980) Physiologie des Menschen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. Spagnolli W, Torboh P, Mattarei M, DeVenuto G, Marcolla A, Miori R (1987) Calcitonin and prolactin serum levels in heroin addicts: Study on a methadone treated group. Drug Alcohol Depend 20:143–148PubMedCrossRefGoogle Scholar
  25. Topel H (1987) Alkohol, Endorphine und Opiatvorläufer: Kritische Fragen der Alkoholforschung. Suchtgefahren 33:1–15Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. Otto
  • H. Rommelspacher
  • L. G. Schmidt

There are no affiliations available

Personalised recommendations