Quantitative CT of the Lung with Spirometrically Controlled Respiratory Status and Automated Evaluation Procedures

  • W. A. Kalender
  • R. Rienmüller
  • J. Behr
  • W. Seissler
  • H. Fichte
  • M. Welke


Quantitative determination of lung density and structure by CT can be of high clinical value, but suitable procedures are needed to ensure reproducibility and objectivity. We present a newly developed, complete protocol for this task which addresses CT measurement as well as image evaluation.

A microcomputer-controlled pocket spirometer is employed to measure vital capacity, to control the level of inspiration during the CT examination and to trigger the scan at a user-selected respiratory level. Evaluation is based on semi-automated algorithms which isolate lung parenchyma by fast contour tracing and define subregions by shrinking and radial and anteroposterior subdividing of the left and the right lung. Global and regional mean density values and histogram parameters are extracted.

Lung density changes by more than a factor of 2 were found in clinical studies as a function of inspirational status. This is a clear indication that tight control of respiratory status is absolutely necessary for reproducible lung density measurements. The evaluation software also improves reproducibility, but above all supports the investigator in his work and provides the possibilities for an extended analysis.


Attenuation Respiration Lution Sarcoidosis Hyde 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zerhouni EA, Naidich DP, Stitik FP, Khouri NF, Siegelman SS (1985) Computed tomography of the pulmonary parenchyma. II. Interstitial disease. J Thorac Imaging 1: 54–64Google Scholar
  2. 2.
    Mayo JR, Webb WR, Gould R et al. (1987) High-resolution CT of the lungs: An optimal approach. Radiology 163: 507–510PubMedGoogle Scholar
  3. 3.
    Munk PL, Müller NL, Miller RR, Ostrow DN (1988) Pulmonary lymphangitis carcinomatosis: CT and pathologic findings. Radiology 166: 705–709PubMedGoogle Scholar
  4. 4.
    Mathieson JR, Mayo JR, Staples CA, Mueller NL (1989) Chronic diffuse infiltrative lung disease: Comparison of diagnostic accuracy of CT and chest radiography. Radiology 171: 111–116PubMedGoogle Scholar
  5. 5.
    Goddard PR, Nicholson EM, Laszlo G, Watt I (1982) Computed tomography in pulmonary emphysema. Clinical Radiology 33: 379–387PubMedCrossRefGoogle Scholar
  6. 6.
    Hayhurst MD, MacNee W, Flenley DC et al. (1984) Diagnosis of pulmonary emphysema by computerised tomography. Lancet 8: 320–322CrossRefGoogle Scholar
  7. 7.
    Bergin C, Müller N, Nichols DM et al. (1986) The diagnosis of emphysema. A computed tomographic-pathologic correlation. Am Rev Respir Dis 133: 541–546PubMedGoogle Scholar
  8. 8.
    Sanders C, Nath PH, Bailey WC (1988) Detection of emphysema with computed tomography. Correlation with pulmonary function tests and chest radiography. Invest Radiology 23: 262–266CrossRefGoogle Scholar
  9. 9.
    Mueller NL, Staples CA, Miller RR, Abboud RT (1988) An objective method to quantitate emphysema using computed tomography. Chest 94: 782–787CrossRefGoogle Scholar
  10. 10.
    Gould GA, MacNee W, McLean A et al. (1988) CT measurements of lung density in life can quantitate distal airspace enlargement — an essential defining feature of human emphysema. Am Rev Respir Dis 137: 380–392PubMedGoogle Scholar
  11. 11.
    Gilman MJ, Laurens RG, Somogyi JW, Honig EG (1983) CT attenuation values of lung density in sarcoidosis. J Comp Ass Tomogr 7: 407–410CrossRefGoogle Scholar
  12. 12.
    Murata K, Itoh H, Senda M et al. (1989) Stratified impairment of pulmonary ventilation in ‘diffuse panbronchiolitis’: PET and CT studies. J Comp Ass Tomogr 13: 48–53CrossRefGoogle Scholar
  13. 13.
    Rienmüller R, Schätzl M, Kalender W, Krombach F, Fiehl E (1988) Quantitative CT-Untersu-chungen der Lunge am tierexperimentellen Modell der Silikose. Fortschr Röntgenstr 148: 347–486CrossRefGoogle Scholar
  14. 14.
    Van Dyk J, Hill RP (1983) Post irradiation lung density changes as measured by computerised tomography. Int J Radiation Oncology Biol Phys 9: 847–852CrossRefGoogle Scholar
  15. 15.
    Bellamy EA, Husband JE, Blaquiere RU, Law MR (1985) Bleomycin-related lung damage: CT evidence. Radiology 156:155–158PubMedGoogle Scholar
  16. 16.
    Rimmer MJ, Dixon AK, Flower CDR, Sikora K (1985) Bleomycin lung: computed tomo-graphic observations. British J Radiology 58: 1041–1045CrossRefGoogle Scholar
  17. 17.
    Bellamy EA, Nocholas D, Husband JE (1987) Quantitative assessment of lung damage due to bleomycin using computed tomography. British J Radiology 60:1205–1209CrossRefGoogle Scholar
  18. 18.
    Wollmer P, Albrechtsson U, Brauer K et al. (1986) Measurement of pulmonary density by means of X-ray computerized tomography. Relation to pulmonary mechanics in normal subjects. Chest 90: 387–391Google Scholar
  19. 19.
    Wegener OH, Koeppe P, Oeser H (1978) Measurement of lung density by computed tomography. J Comp Ass Tomogr 2: 263CrossRefGoogle Scholar
  20. 20.
    Robinson PJ, Kreel L (1979) Pulmonary tissue attenuation with computed tomography: Comparison of inspiration and expiration scans. J Comp Ass Tomogr 3: 740Google Scholar
  21. 21.
    Doehring W, Linke G (1979) Die Grundlagen der quantitativen pulmonalen Computertomographie. Fortschr Roentgenstr 130:133–143CrossRefGoogle Scholar
  22. 22.
    Rosenblum LJ, Mauceri RA, Wellenstein DE et al. (1980) Density patterns in the normal lung as determined by computed tomography. Radiology 137: 409–416PubMedGoogle Scholar
  23. 23.
    Rhodes CG, Wollmer P, Fazio F, Jones T (1981) Quantitative measurement of regional extra-vascular lung density using positron emission and transmission tomography. J Comp Ass Tomogr 5: 783–791CrossRefGoogle Scholar
  24. 24.
    Keller JM, Edwards FM, Rundle R (1981) Automatic outlining of regions on CT scans. J Comp Ass Tomogr 5: 240–245CrossRefGoogle Scholar
  25. 25.
    Hedlund LW, Anderson RF, Goulding PL, Beck JW, Effmann EL, Putman CE (1982) Two methods for isolating the lung area of a CT scan for density information. Radiology 144: 353–357PubMedGoogle Scholar
  26. 26.
    Hedlund LW, Vock P, Effmann EL (1983) Evaluating lung density by computed tomography. Seminars in Respiratory Medicine 5: 76–87CrossRefGoogle Scholar
  27. 27.
    Wandtke JC, Hyde RW, Fahey JP et al. (1986) Measurement of lung gas volume and regional density by computed tomography in dogs. Invest Radiol 21:108–117PubMedCrossRefGoogle Scholar
  28. 28.
    Vock P, Malanowski D, Tschaeppeler H, Kirks DR, Hedlund LW, Effmann EL (1987) Computed tomographic lung density in children. Invest Radiol 22: 627–631PubMedCrossRefGoogle Scholar
  29. 29.
    Reiss KH, Schuster W (1972) Quantitative measurements of lung function in children by means of compton backscatter. Radiology 102: 613–617PubMedGoogle Scholar
  30. 30.
    Kalender W, Rienmüller R, Seissler W, Behr J, Welke M, Fichte H (1990) Spirometric gating for measuring pulmonary parenchymal density by quantitative computed tomography. Radiology 175: 265–268PubMedGoogle Scholar
  31. 31.
    Kalender W, Rienmüller R, Welke M (1988) Algorithm for automated evaluation of high-resolution CT images of the lung. Radiology 169 (P)Google Scholar
  32. 32.
    Kalender W, Fichte H, Bautz W (1990) Semi-automatic evaluation procedures for quantitative CT of the lung. Submitted to J Comp Ass TomogrGoogle Scholar
  33. 33.
    Behr J, Merin M, Rienmüller R, Kalender W, Fruhmann G (1989) Quantitative analysis of interstitial lung disease with spirometrically standardized high resolution tomography. Europ Respiratory J 2(8): 672Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • W. A. Kalender
  • R. Rienmüller
  • J. Behr
  • W. Seissler
  • H. Fichte
  • M. Welke

There are no affiliations available

Personalised recommendations