Josephson Series Array Potentiometer

  • J. Niemeyer


A Josephson tunnel junction which is operated at nonzero voltages produces an alternating supercurrent the frequency f of which is related to the dc voltage V across the junction by the simple equation:
$$V = (h/2e)f$$

h is Planck’s constant and e the elementary charge. (A detailed description of the Josephson effects is given in [1,2]). The validity of Eq. (1.1) is experimentally proved with extreme accuracy [3]. This makes a Josephson junction to be an ideal frequency to voltage converter.


Permeability Microwave Attenuation Helium Coherence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Barone, G. Paterno, Physics and Application of the Josephson Effect, John Wiley & Sons, New York, 1982CrossRefGoogle Scholar
  2. [2]
    K.K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York, P.O. Box 786, 1984Google Scholar
  3. [3]
    J.S. Tsai, A.K. Jain, J.E. Lukens, Phys. Rev. Lett. 51 (1983) p. 316CrossRefGoogle Scholar
  4. [4]
    S. Shapiro, A.R. Janus, S. Holly, Rev. Mod. Phys. 36 (1964) p. 223CrossRefGoogle Scholar
  5. [5]
    V. Kose, IEEE Trans. Instrum. & Meas. IM-25 (1976) p. 483Google Scholar
  6. [6]
    T.F. Finnegan, A. Denenstein, D.N. Langenberg, Phys. Rev. B4 (1971) p. 1487Google Scholar
  7. [7]
    T. Endo, M. Koyanagi, A. Nakamura, IEEE Trans. Instrum. Meas. IM-32 (1983) p. 267CrossRefGoogle Scholar
  8. [8]
    M.T. Levinsen, R.V. Chiao, M.J. Feldmann, B.A. Tucker, Appl. Phys. Lett. 31 (1977) p. 776CrossRefGoogle Scholar
  9. [9]
    R.L. Kautz, J. Appl. Phys. 52 (1981) p. 6241CrossRefGoogle Scholar
  10. [10]
    J. Niemeyer, J.H. Hinken, R.L. Kautz, Appl. Phys. Lett. 45 (1984) p. 478CrossRefGoogle Scholar
  11. [11]
    C.A. Hamilton, R.C. Kautz, F.L. Lloyd, R.L. Steiner, B.F. Field, IEEE Trans. Instr. Measm. IM-36 (1987) p. 258Google Scholar
  12. [12]
    J. Niemeyer, Y. Sakamoto, E. Vollmer, J.H. Hinken, A. Shoji, H. Nagagawa, S. Takada, S. Kosaka, Jap. J. Appl. Phys. 25 (1986) L 343CrossRefGoogle Scholar
  13. [13]
    Y. Sakamoto, T. Endo, Y. Muragama, T. Sakuraba, M. Nakanishi, M. Koyanagi, M. Aoyaki, 1987, Int. Superconductivity Electronics Conference ( ISEC ), 84Google Scholar
  14. [14]
    E. Vollmer, Diploma work, Institut für Hochfrequenztechnik der TU Braunschweig (1984)Google Scholar
  15. [15]
    C.A. Hamilton, R.L. Kautz, R.L. Steiner, F.L. Lloyd, IEEE Electr. Dev. Lett. EDL-6 (1985) p. 623CrossRefGoogle Scholar
  16. [16]
    J.H. Hinken, Supraleiter Elektronik, Springer Verlag, Berlin, Heidelberg New York (1988) ISBN 3-540-18720-0Google Scholar
  17. [17]
    J. Niemeyer, L. Grimm, W. Meier, J.H. Hinken, E. Vollmer, Appl. Phys. Lett. 47 (1985) p. 1222CrossRefGoogle Scholar
  18. [18]
    L. Lloyd. C.A. Hamilton, J.A. Beall, D. Go, R.H. Ono, E. Harris, IEEE Elec. Dev. Lett. EDL-8 (1987) p. 449 and C.A. Hamilton, F.L.Lloyd, K. Chieh, W. Goeke, CPEM 88, to be published.CrossRefGoogle Scholar
  19. [19]
    The Nb/Al2O3/Nb circuits have been fabricated in cooperation with the Josephson computer group and the quantum metrology group of the Electrotechnical Laboratory, Tsukuba, Japan.Google Scholar
  20. [20]
    J.H. Greiner et al., IBM J. Res. & Dev. 24 (1980). p. 195CrossRefGoogle Scholar
  21. [21]
    H. Nakagawa, K. Nakaya, I. Kurosawa, S. Takada, H. Hayakawa, Jpn. J. Appl. Phys. 25 (1986) L 70CrossRefGoogle Scholar
  22. [22]
    A. Shoji, M. Aoyagi, S. Kosaka, F. Shinoki, H. Hayakawa, Appl. Phys. Lett 46 (1985) p. 1098CrossRefGoogle Scholar
  23. [23]
    S. Naito, J. J. Appl. Phys. 24 (1985) p. 449 and C. Vanneste, C.C. Chi, W. J. Gallagher, A.W. Kleinsasser, S.I. Raider, R.L. Sandstrom, to be publishedGoogle Scholar
  24. [24]
    S. Shibayama, S. Hasno, T. Yamaoka, Appl. Phys. Lett. 47 (1985) p. 429CrossRefGoogle Scholar
  25. [25]
    J. Niemeyer, L. Grimm, C.A. Hamilton, R.L. Steiner, IEEE Electron. Device Lett. EDL-7 (1986) p. 44CrossRefGoogle Scholar
  26. [26]
    J.M. Jaycox, M.B. Ketchen, IEEE Trans. Magn. MAG-17 (1981) p. 400CrossRefGoogle Scholar
  27. [27]
    M.W. Cromar, P. Carelli, Appl. Phys. Lett. 38 (1981) p. 723CrossRefGoogle Scholar
  28. [28]
    B. Muhlfelder, W. Johnson, M.W. Cromar, IEEE Trans. MAG-19 (1983) p. 303Google Scholar
  29. [29]
    J.G. Bednorz, K.A. Müller, Z. Phys. B 64 (1986) p. 189CrossRefGoogle Scholar
  30. [30]
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hör, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58 (1987) p. 908CrossRefGoogle Scholar
  31. [31]
    S.N. Song, S.J. Hwu, K. Poeppelmeier, T.O. Mason, J.B. Ketterson, J.J. Appl. Phys. S26 (1987) p. 1039Google Scholar
  32. [32]
    J. S. Tsai, Y. Kubo, J. Tabuchi, Jpn. Appl. Phys 26 (1987) C 701CrossRefGoogle Scholar
  33. [33]
    J. Niemeyer, N.D. Kataria, M.R. Dietrich, C. Politis, H. Koch, R. Schöllhorn, H. Eickenbusch, Z. Phys. B-Cond. Matt. 69 (1987) p. 1CrossRefGoogle Scholar
  34. [34]
    R.H. Koch, C.P. Umbach, G.J. Clark, P. Chaudari, R.B. Laibowitz, Appl. Phys. Lett. 51 (1987) p. 200CrossRefGoogle Scholar
  35. [35]
    H. Akoh, F. Shinoki, M. Takahashi, S. Takada, to be published in J. J. Appl. Phys. (1988)Google Scholar
  36. [36]
    A.J. Panson, A.I. Braginski, J.R. Gavaler, J.K. Hulm, M.A. Janocko, H.C. Pohl, A.M.M. Stewart, J. Talvacchio, G. R. Wagner, Phys. Rev. B 32 (1987) p. 8774Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. Niemeyer
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations