Josephson Series Array Potentiometer

  • J. Niemeyer


A Josephson tunnel junction which is operated at nonzero voltages produces an alternating supercurrent the frequency f of which is related to the dc voltage V across the junction by the simple equation:
$$V = (h/2e)f$$

h is Planck’s constant and e the elementary charge. (A detailed description of the Josephson effects is given in [1,2]). The validity of Eq. (1.1) is experimentally proved with extreme accuracy [3]. This makes a Josephson junction to be an ideal frequency to voltage converter.


Critical Current Critical Current Density Reference Voltage Single Junction Lead Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Barone, G. Paterno, Physics and Application of the Josephson Effect, John Wiley & Sons, New York, 1982CrossRefGoogle Scholar
  2. [2]
    K.K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York, P.O. Box 786, 1984Google Scholar
  3. [3]
    J.S. Tsai, A.K. Jain, J.E. Lukens, Phys. Rev. Lett. 51 (1983) p. 316CrossRefGoogle Scholar
  4. [4]
    S. Shapiro, A.R. Janus, S. Holly, Rev. Mod. Phys. 36 (1964) p. 223CrossRefGoogle Scholar
  5. [5]
    V. Kose, IEEE Trans. Instrum. & Meas. IM-25 (1976) p. 483Google Scholar
  6. [6]
    T.F. Finnegan, A. Denenstein, D.N. Langenberg, Phys. Rev. B4 (1971) p. 1487Google Scholar
  7. [7]
    T. Endo, M. Koyanagi, A. Nakamura, IEEE Trans. Instrum. Meas. IM-32 (1983) p. 267CrossRefGoogle Scholar
  8. [8]
    M.T. Levinsen, R.V. Chiao, M.J. Feldmann, B.A. Tucker, Appl. Phys. Lett. 31 (1977) p. 776CrossRefGoogle Scholar
  9. [9]
    R.L. Kautz, J. Appl. Phys. 52 (1981) p. 6241CrossRefGoogle Scholar
  10. [10]
    J. Niemeyer, J.H. Hinken, R.L. Kautz, Appl. Phys. Lett. 45 (1984) p. 478CrossRefGoogle Scholar
  11. [11]
    C.A. Hamilton, R.C. Kautz, F.L. Lloyd, R.L. Steiner, B.F. Field, IEEE Trans. Instr. Measm. IM-36 (1987) p. 258Google Scholar
  12. [12]
    J. Niemeyer, Y. Sakamoto, E. Vollmer, J.H. Hinken, A. Shoji, H. Nagagawa, S. Takada, S. Kosaka, Jap. J. Appl. Phys. 25 (1986) L 343CrossRefGoogle Scholar
  13. [13]
    Y. Sakamoto, T. Endo, Y. Muragama, T. Sakuraba, M. Nakanishi, M. Koyanagi, M. Aoyaki, 1987, Int. Superconductivity Electronics Conference ( ISEC ), 84Google Scholar
  14. [14]
    E. Vollmer, Diploma work, Institut für Hochfrequenztechnik der TU Braunschweig (1984)Google Scholar
  15. [15]
    C.A. Hamilton, R.L. Kautz, R.L. Steiner, F.L. Lloyd, IEEE Electr. Dev. Lett. EDL-6 (1985) p. 623CrossRefGoogle Scholar
  16. [16]
    J.H. Hinken, Supraleiter Elektronik, Springer Verlag, Berlin, Heidelberg New York (1988) ISBN 3-540-18720-0Google Scholar
  17. [17]
    J. Niemeyer, L. Grimm, W. Meier, J.H. Hinken, E. Vollmer, Appl. Phys. Lett. 47 (1985) p. 1222CrossRefGoogle Scholar
  18. [18]
    L. Lloyd. C.A. Hamilton, J.A. Beall, D. Go, R.H. Ono, E. Harris, IEEE Elec. Dev. Lett. EDL-8 (1987) p. 449 and C.A. Hamilton, F.L.Lloyd, K. Chieh, W. Goeke, CPEM 88, to be published.CrossRefGoogle Scholar
  19. [19]
    The Nb/Al2O3/Nb circuits have been fabricated in cooperation with the Josephson computer group and the quantum metrology group of the Electrotechnical Laboratory, Tsukuba, Japan.Google Scholar
  20. [20]
    J.H. Greiner et al., IBM J. Res. & Dev. 24 (1980). p. 195CrossRefGoogle Scholar
  21. [21]
    H. Nakagawa, K. Nakaya, I. Kurosawa, S. Takada, H. Hayakawa, Jpn. J. Appl. Phys. 25 (1986) L 70CrossRefGoogle Scholar
  22. [22]
    A. Shoji, M. Aoyagi, S. Kosaka, F. Shinoki, H. Hayakawa, Appl. Phys. Lett 46 (1985) p. 1098CrossRefGoogle Scholar
  23. [23]
    S. Naito, J. J. Appl. Phys. 24 (1985) p. 449 and C. Vanneste, C.C. Chi, W. J. Gallagher, A.W. Kleinsasser, S.I. Raider, R.L. Sandstrom, to be publishedGoogle Scholar
  24. [24]
    S. Shibayama, S. Hasno, T. Yamaoka, Appl. Phys. Lett. 47 (1985) p. 429CrossRefGoogle Scholar
  25. [25]
    J. Niemeyer, L. Grimm, C.A. Hamilton, R.L. Steiner, IEEE Electron. Device Lett. EDL-7 (1986) p. 44CrossRefGoogle Scholar
  26. [26]
    J.M. Jaycox, M.B. Ketchen, IEEE Trans. Magn. MAG-17 (1981) p. 400CrossRefGoogle Scholar
  27. [27]
    M.W. Cromar, P. Carelli, Appl. Phys. Lett. 38 (1981) p. 723CrossRefGoogle Scholar
  28. [28]
    B. Muhlfelder, W. Johnson, M.W. Cromar, IEEE Trans. MAG-19 (1983) p. 303Google Scholar
  29. [29]
    J.G. Bednorz, K.A. Müller, Z. Phys. B 64 (1986) p. 189CrossRefGoogle Scholar
  30. [30]
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hör, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58 (1987) p. 908CrossRefGoogle Scholar
  31. [31]
    S.N. Song, S.J. Hwu, K. Poeppelmeier, T.O. Mason, J.B. Ketterson, J.J. Appl. Phys. S26 (1987) p. 1039Google Scholar
  32. [32]
    J. S. Tsai, Y. Kubo, J. Tabuchi, Jpn. Appl. Phys 26 (1987) C 701CrossRefGoogle Scholar
  33. [33]
    J. Niemeyer, N.D. Kataria, M.R. Dietrich, C. Politis, H. Koch, R. Schöllhorn, H. Eickenbusch, Z. Phys. B-Cond. Matt. 69 (1987) p. 1CrossRefGoogle Scholar
  34. [34]
    R.H. Koch, C.P. Umbach, G.J. Clark, P. Chaudari, R.B. Laibowitz, Appl. Phys. Lett. 51 (1987) p. 200CrossRefGoogle Scholar
  35. [35]
    H. Akoh, F. Shinoki, M. Takahashi, S. Takada, to be published in J. J. Appl. Phys. (1988)Google Scholar
  36. [36]
    A.J. Panson, A.I. Braginski, J.R. Gavaler, J.K. Hulm, M.A. Janocko, H.C. Pohl, A.M.M. Stewart, J. Talvacchio, G. R. Wagner, Phys. Rev. B 32 (1987) p. 8774Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. Niemeyer
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations