Advertisement

High-Tc Josephson Contacts and Devices

  • H. Rogalla
  • C. Heiden

Abstract

Ever since the discovery of the Josephson effect there has been the challenge to produce Josephson contacts using materials with high transition temperature Tc. There are among others the following reasons:
  1. i)

    A more widespread use of Josephson devices can be expected if their operating temperature is raised well above liquid helium temperatures,

     
  2. ii)

    A better performance can be expected from devices that are operated well below their transition temperature, at least if we are dealing with tunnel junctions as Josephson contacts.

     

Keywords

Critical Current Critical Current Density Modulation Depth Tunnel Junction Vortex Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.G. Bednorz, and K.A. Müller, Z. Phys. 64 (1977) p. 189CrossRefGoogle Scholar
  2. [2]
    M.R. Beasley, C.J. Kircher, in “Superconductor Materials Science. Metallurgy, Fabrication, and Application” S. Foner and B.B. Schwartz, Eds., Plenum Press, N.Y. (1981) p. 605Google Scholar
  3. [3]
    H.-J. Hedbabny, H. Rogalla, J. Appl. Phys 63 (1988) p. 6CrossRefGoogle Scholar
  4. [4]
    J.R. Gavaler, M.A. Janocko, C.K. Jones, J. Appl. Phys. 45 (1974) p. 3009CrossRefGoogle Scholar
  5. [5]
    R. Somekh, Proc. 7th Int. Conf. on Vacuum Metallurgy 1982 in Tokio, The Iron and Steel Institut of Japan, Tokyo, 17 (1982)Google Scholar
  6. [6]
    J.R. Gavaler, M. Ashkin, A.I. Braginski, A.T. Santhanam, Appl. Phys. Lett. 33 (1978) p. 359CrossRefGoogle Scholar
  7. [7]
    H.F. Braun, PhD Thesis, Justus-Liebig-Universität, Giessen (1977)Google Scholar
  8. [8]
    B. David, PhD Thesis, Justus-Liebig-Universität, Giessen (1986)Google Scholar
  9. [9]
    G.K. Welmer, G.S. Anderson, “Handbook of Thin Film Technology”, Chapt. 3, Ed. L.I. Maissel and R. Glang, McGraw-Hill Book Company (1970)Google Scholar
  10. [10]
    F.J. Cadieu, N. Chencinski, IEEE Trans. Mag. MAG-11 (1975) p. 227CrossRefGoogle Scholar
  11. [11]
    C. Csepregi, K. Kühl, R. Nießl, H. Seidel, Forschungsberichte BMFT-FB-T 84-209 und BMFT-FB-T 83-089 des Bundesministeriums für Forschung und Technologie (1984)Google Scholar
  12. [12]
    L.R. Testardi, R.L. Meek, J.M. Poate, W.A. Royer, A.R. Storm, J.H. Wernick, Phys. Rev. B11 (1975) p. 4303Google Scholar
  13. [13]
    P.G. de Gennes, “Superconductivity of Metals and Alloys”, W.A. Benjamin Inc., New York (1966)MATHGoogle Scholar
  14. [14]
    Y.B. Kim, C.F. Hempstead, A.R. Strnad, Phys. Rev. 131 (1963) p. 2486CrossRefGoogle Scholar
  15. [15]
    W.H. Henkels, C.J. Kircher, IEEE Trans. Mag. MAG-13 (1977) p. 63CrossRefGoogle Scholar
  16. [16]
    J.C. Swihart, J. Appl. Phys. 13 (1961) p. 461CrossRefGoogle Scholar
  17. [17]
    T.P. Chow, A.N. Saxena, L.M. Ephrath, R.S. Bennett, “Dry Etching for Microelectronics”, Ed. R.A. Powell, North-Holland Physics Publishing, Chapt. 2 (1984) p. 72Google Scholar
  18. [18]
    D’Ans, E. Lax, “Taschenbuch für Chemiker und Physiker”, Springer-Verlag, 1 (1967) p. 347Google Scholar
  19. [19]
    C. Nölscher, H. Adrian, R. Müller, W. Schauer, F. Wüchner, G. Saemann-Ischenko, Proc. LT17 Karlsruhe, Elsevier Science Publishers, part I (1984) p. 491Google Scholar
  20. [20]
    Y. Kato, B. David, H. Rogalla, Jpn. J. Appl. Phys. 23 (1984) p. 1881Google Scholar
  21. [21]
    H.-J. Hedbabny, H. Rogalla, Proceedings of the ASC’ 88, San Francisco, IEEE Trans. Mag., to be publishedGoogle Scholar
  22. [22]
    M. Mück, H.-J. Hedbabny, H. Rogalla, IEEE Trans. Mag., MAG-23 (1987) p. 1493CrossRefGoogle Scholar
  23. [23]
    K.K. Likharev, Sov. Phys. JETP 34 (1972) p. 906Google Scholar
  24. [24]
    T. Goto, H. Tanihara, J. Appl. Phys. 54 (1983) p. 3291CrossRefGoogle Scholar
  25. [25]
    A. de Lozanne, M.S. Di Iorio, M.R. Beasley, Appl. Phys. Lett. 42 (1983) p. 541CrossRefGoogle Scholar
  26. [26]
    A. de Lozanne, “High Critical Temperature SNS Josephson Microbridges”, Promotional Thesis, Stanford University (1982)Google Scholar
  27. [27]
    K.K. Likharev, Sov. Phys. JETP 34 (1972) p. 906Google Scholar
  28. [28]
    L.G. Aslamazov, A.I. Larkin, Sov. Phys.-JETP 41 (1975) p. 381Google Scholar
  29. [29]
    E. Fehlberg, ZAMM 44 (1964) p. T17MathSciNetMATHGoogle Scholar
  30. [30]
    S. Kuriki, A. Yoshida, H. Konishi, J. Low Temp. Phys. 51 (1983) p. 149CrossRefGoogle Scholar
  31. [31]
    M. Mück, H. Rogalla, B. David, Phys. Stat. Sol. 87 (1985) p. K105CrossRefGoogle Scholar
  32. [32]
    S. Kuriki, A. Yoshida, H. Konishi, J. Low Temp. Phys. 51 (1983) p. 149CrossRefGoogle Scholar
  33. [33]
    H. Rogalla, B. David, J. Rühl, J. Appl. Phys. 55 (1984) p. 3441CrossRefGoogle Scholar
  34. [34]
    M. Mück, H. Rogalla, B. David, Phys. Stat. Sol. (a) 87 (1985) p. K105CrossRefGoogle Scholar
  35. [35]
    W.C. Stewart, Appl. Phys. Lett. 12 (1968) p. 227CrossRefGoogle Scholar
  36. [36]
    C. Tesche, J. Clarke, J. Low. Temp. Phys. 29 (1977) p. 301CrossRefGoogle Scholar
  37. [37]
    H. Rogalla, B. David, M. Mück, SQUID’85 “Superconducting Quantum Interference Devices and their Applications”, H.D. Hahlbohm and H. Lübbig, Eds., W. de Gruyter, Berlin 1985, p. 671Google Scholar
  38. [38]
    J. Clarke, W.H. Goubeau, M.B. Ketchen, J. Low. Temp. Phys. 25 (1976) p. 99CrossRefGoogle Scholar
  39. [39]
    H. Rogalla, B. David, M. Mück, Y. Kato, IEEE Trans. Mag. MAG-21 (1985) p. 536CrossRefGoogle Scholar
  40. [40]
    B. David, M. Mück, H. Rogalla, “Advances in Cryogenic Engineering” 32 (1986) p. 543Google Scholar
  41. [41]
    L. Holland, in “Vacuum Deposition of Thin Films”, Chapman and Hall LTD., London (1958) pp. 438–491Google Scholar
  42. [42]
    A. Müller, Zeitschrift für Metallkunde 71 (1980) p. 507Google Scholar
  43. [43]
    M. Mück, H. Rogalla, B. David, C. Heiden, Z. Phys. B 61 (1985) p. 81CrossRefGoogle Scholar
  44. [44]
    K.K. Likharev, Sov. Phys. JETP 34 (1972) p. 906Google Scholar
  45. [45]
    A.I. Golovaskin and A.N. Lykov, Sov. Phys. JETP 47 (1978) p. 110Google Scholar
  46. [46]
    M. Mück, H.J. Hedbabny, H. Rogalla, IEEE Trans. Mag. MAG-23 (1987) p. 1493CrossRefGoogle Scholar
  47. [47]
    Relaxation oscillators using Josephson contacts habe been reported in the literature, see e.g.: J.E. Zimmerman, A.H. Silver, Phys. Rev. Lett. 19 (1967) p. 14 F.L. Vernon, R.J. Pedersen, J. Appl. Phys. 39 (1968) p. 2661 Y. Taur, P.L. Richards, J. Appl. Phys. 46 (1975) p. 1793 N. Calander, T. Claeson, S. Rudner, Appl. Phys. Lett. 39 (1981) p. 504CrossRefGoogle Scholar
  48. [48]
    P. Gutmann, in “SQUID, Superconducting Interference Devices and their Applications”, H.D. Hahlbohm and H. Lübbig, Eds., W. de Gruyter, Berlin 1976, p. 501Google Scholar
  49. [49]
    P. Gutmann, Electronic Lett. 15 (1979) p. 373CrossRefGoogle Scholar
  50. [50]
    M. Mück, C. Heiden, IEEE Trans. Mag. MAG-25 (1989)Google Scholar
  51. [51]
    J. Clarke, Nature 333 (1988) p. 47CrossRefGoogle Scholar
  52. [52]
    C.E. Gough et al., Nature 326 (1987) p. 885Google Scholar
  53. [53]
    R.R. Koch et al., Appl. Phys. Lett. 51 (1987) p. 200CrossRefGoogle Scholar
  54. [54]
    H. Nakane et al., Jap. Journ. Appl. Phys. 26 (1987) p. L1925CrossRefGoogle Scholar
  55. [55]
    C.X. Fan, et al., Physica C 153-155 (1988) p. 1413CrossRefGoogle Scholar
  56. [56]
    B. Häuser, M. Diegel, H. Rogalla, Appl. Phys. Lett. 52 (1988) p. 844CrossRefGoogle Scholar
  57. [57]
    J.E. Zimmerman et al., Appl. Phys. Lett. 51 (1987) p. 617CrossRefGoogle Scholar
  58. [58]
    S. Harrop et al., Supercond. Sci. Technol. 1 (1988) p. 68CrossRefGoogle Scholar
  59. [59]
    N.V. Zavaritsky, V.N. Zavaritsky, Physica C 153-155 (1988) p. 1405CrossRefGoogle Scholar
  60. [60]
    Y. Zhang, M. Diegel, C. Heiden, IEEE Trans. Mag. MAG-25 (1989)Google Scholar
  61. [61]
    D.H.A. Blank, H. Kruidhof, J. Flokstra, J. Phys. D21 (1988) p. 226Google Scholar
  62. [62]
    R.H. Koch et al., (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • H. Rogalla
    • 1
  • C. Heiden
    • 2
  1. 1.Universität TwenteAE EnschedeNetherlands
  2. 2.Universität GießenInstitut für Angewandte PhysikGießenGermany

Personalised recommendations