Skip to main content

High-Tc Josephson Contacts and Devices

  • Chapter
  • 224 Accesses

Abstract

Ever since the discovery of the Josephson effect there has been the challenge to produce Josephson contacts using materials with high transition temperature Tc. There are among others the following reasons:

  1. i)

    A more widespread use of Josephson devices can be expected if their operating temperature is raised well above liquid helium temperatures,

  2. ii)

    A better performance can be expected from devices that are operated well below their transition temperature, at least if we are dealing with tunnel junctions as Josephson contacts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.G. Bednorz, and K.A. Müller, Z. Phys. 64 (1977) p. 189

    Article  Google Scholar 

  2. M.R. Beasley, C.J. Kircher, in “Superconductor Materials Science. Metallurgy, Fabrication, and Application” S. Foner and B.B. Schwartz, Eds., Plenum Press, N.Y. (1981) p. 605

    Google Scholar 

  3. H.-J. Hedbabny, H. Rogalla, J. Appl. Phys 63 (1988) p. 6

    Article  Google Scholar 

  4. J.R. Gavaler, M.A. Janocko, C.K. Jones, J. Appl. Phys. 45 (1974) p. 3009

    Article  Google Scholar 

  5. R. Somekh, Proc. 7th Int. Conf. on Vacuum Metallurgy 1982 in Tokio, The Iron and Steel Institut of Japan, Tokyo, 17 (1982)

    Google Scholar 

  6. J.R. Gavaler, M. Ashkin, A.I. Braginski, A.T. Santhanam, Appl. Phys. Lett. 33 (1978) p. 359

    Article  Google Scholar 

  7. H.F. Braun, PhD Thesis, Justus-Liebig-Universität, Giessen (1977)

    Google Scholar 

  8. B. David, PhD Thesis, Justus-Liebig-Universität, Giessen (1986)

    Google Scholar 

  9. G.K. Welmer, G.S. Anderson, “Handbook of Thin Film Technology”, Chapt. 3, Ed. L.I. Maissel and R. Glang, McGraw-Hill Book Company (1970)

    Google Scholar 

  10. F.J. Cadieu, N. Chencinski, IEEE Trans. Mag. MAG-11 (1975) p. 227

    Article  Google Scholar 

  11. C. Csepregi, K. Kühl, R. Nießl, H. Seidel, Forschungsberichte BMFT-FB-T 84-209 und BMFT-FB-T 83-089 des Bundesministeriums für Forschung und Technologie (1984)

    Google Scholar 

  12. L.R. Testardi, R.L. Meek, J.M. Poate, W.A. Royer, A.R. Storm, J.H. Wernick, Phys. Rev. B11 (1975) p. 4303

    Google Scholar 

  13. P.G. de Gennes, “Superconductivity of Metals and Alloys”, W.A. Benjamin Inc., New York (1966)

    MATH  Google Scholar 

  14. Y.B. Kim, C.F. Hempstead, A.R. Strnad, Phys. Rev. 131 (1963) p. 2486

    Article  Google Scholar 

  15. W.H. Henkels, C.J. Kircher, IEEE Trans. Mag. MAG-13 (1977) p. 63

    Article  Google Scholar 

  16. J.C. Swihart, J. Appl. Phys. 13 (1961) p. 461

    Article  Google Scholar 

  17. T.P. Chow, A.N. Saxena, L.M. Ephrath, R.S. Bennett, “Dry Etching for Microelectronics”, Ed. R.A. Powell, North-Holland Physics Publishing, Chapt. 2 (1984) p. 72

    Google Scholar 

  18. D’Ans, E. Lax, “Taschenbuch für Chemiker und Physiker”, Springer-Verlag, 1 (1967) p. 347

    Google Scholar 

  19. C. Nölscher, H. Adrian, R. Müller, W. Schauer, F. Wüchner, G. Saemann-Ischenko, Proc. LT17 Karlsruhe, Elsevier Science Publishers, part I (1984) p. 491

    Google Scholar 

  20. Y. Kato, B. David, H. Rogalla, Jpn. J. Appl. Phys. 23 (1984) p. 1881

    Google Scholar 

  21. H.-J. Hedbabny, H. Rogalla, Proceedings of the ASC’ 88, San Francisco, IEEE Trans. Mag., to be published

    Google Scholar 

  22. M. Mück, H.-J. Hedbabny, H. Rogalla, IEEE Trans. Mag., MAG-23 (1987) p. 1493

    Article  Google Scholar 

  23. K.K. Likharev, Sov. Phys. JETP 34 (1972) p. 906

    Google Scholar 

  24. T. Goto, H. Tanihara, J. Appl. Phys. 54 (1983) p. 3291

    Article  Google Scholar 

  25. A. de Lozanne, M.S. Di Iorio, M.R. Beasley, Appl. Phys. Lett. 42 (1983) p. 541

    Article  Google Scholar 

  26. A. de Lozanne, “High Critical Temperature SNS Josephson Microbridges”, Promotional Thesis, Stanford University (1982)

    Google Scholar 

  27. K.K. Likharev, Sov. Phys. JETP 34 (1972) p. 906

    Google Scholar 

  28. L.G. Aslamazov, A.I. Larkin, Sov. Phys.-JETP 41 (1975) p. 381

    Google Scholar 

  29. E. Fehlberg, ZAMM 44 (1964) p. T17

    MathSciNet  MATH  Google Scholar 

  30. S. Kuriki, A. Yoshida, H. Konishi, J. Low Temp. Phys. 51 (1983) p. 149

    Article  Google Scholar 

  31. M. Mück, H. Rogalla, B. David, Phys. Stat. Sol. 87 (1985) p. K105

    Article  Google Scholar 

  32. S. Kuriki, A. Yoshida, H. Konishi, J. Low Temp. Phys. 51 (1983) p. 149

    Article  Google Scholar 

  33. H. Rogalla, B. David, J. Rühl, J. Appl. Phys. 55 (1984) p. 3441

    Article  Google Scholar 

  34. M. Mück, H. Rogalla, B. David, Phys. Stat. Sol. (a) 87 (1985) p. K105

    Article  Google Scholar 

  35. W.C. Stewart, Appl. Phys. Lett. 12 (1968) p. 227

    Article  Google Scholar 

  36. C. Tesche, J. Clarke, J. Low. Temp. Phys. 29 (1977) p. 301

    Article  Google Scholar 

  37. H. Rogalla, B. David, M. Mück, SQUID’85 “Superconducting Quantum Interference Devices and their Applications”, H.D. Hahlbohm and H. Lübbig, Eds., W. de Gruyter, Berlin 1985, p. 671

    Google Scholar 

  38. J. Clarke, W.H. Goubeau, M.B. Ketchen, J. Low. Temp. Phys. 25 (1976) p. 99

    Article  Google Scholar 

  39. H. Rogalla, B. David, M. Mück, Y. Kato, IEEE Trans. Mag. MAG-21 (1985) p. 536

    Article  Google Scholar 

  40. B. David, M. Mück, H. Rogalla, “Advances in Cryogenic Engineering” 32 (1986) p. 543

    Google Scholar 

  41. L. Holland, in “Vacuum Deposition of Thin Films”, Chapman and Hall LTD., London (1958) pp. 438–491

    Google Scholar 

  42. A. Müller, Zeitschrift für Metallkunde 71 (1980) p. 507

    Google Scholar 

  43. M. Mück, H. Rogalla, B. David, C. Heiden, Z. Phys. B 61 (1985) p. 81

    Article  Google Scholar 

  44. K.K. Likharev, Sov. Phys. JETP 34 (1972) p. 906

    Google Scholar 

  45. A.I. Golovaskin and A.N. Lykov, Sov. Phys. JETP 47 (1978) p. 110

    Google Scholar 

  46. M. Mück, H.J. Hedbabny, H. Rogalla, IEEE Trans. Mag. MAG-23 (1987) p. 1493

    Article  Google Scholar 

  47. Relaxation oscillators using Josephson contacts habe been reported in the literature, see e.g.: J.E. Zimmerman, A.H. Silver, Phys. Rev. Lett. 19 (1967) p. 14 F.L. Vernon, R.J. Pedersen, J. Appl. Phys. 39 (1968) p. 2661 Y. Taur, P.L. Richards, J. Appl. Phys. 46 (1975) p. 1793 N. Calander, T. Claeson, S. Rudner, Appl. Phys. Lett. 39 (1981) p. 504

    Article  Google Scholar 

  48. P. Gutmann, in “SQUID, Superconducting Interference Devices and their Applications”, H.D. Hahlbohm and H. Lübbig, Eds., W. de Gruyter, Berlin 1976, p. 501

    Google Scholar 

  49. P. Gutmann, Electronic Lett. 15 (1979) p. 373

    Article  Google Scholar 

  50. M. Mück, C. Heiden, IEEE Trans. Mag. MAG-25 (1989)

    Google Scholar 

  51. J. Clarke, Nature 333 (1988) p. 47

    Article  Google Scholar 

  52. C.E. Gough et al., Nature 326 (1987) p. 885

    Google Scholar 

  53. R.R. Koch et al., Appl. Phys. Lett. 51 (1987) p. 200

    Article  Google Scholar 

  54. H. Nakane et al., Jap. Journ. Appl. Phys. 26 (1987) p. L1925

    Article  Google Scholar 

  55. C.X. Fan, et al., Physica C 153-155 (1988) p. 1413

    Article  Google Scholar 

  56. B. Häuser, M. Diegel, H. Rogalla, Appl. Phys. Lett. 52 (1988) p. 844

    Article  Google Scholar 

  57. J.E. Zimmerman et al., Appl. Phys. Lett. 51 (1987) p. 617

    Article  Google Scholar 

  58. S. Harrop et al., Supercond. Sci. Technol. 1 (1988) p. 68

    Article  Google Scholar 

  59. N.V. Zavaritsky, V.N. Zavaritsky, Physica C 153-155 (1988) p. 1405

    Article  Google Scholar 

  60. Y. Zhang, M. Diegel, C. Heiden, IEEE Trans. Mag. MAG-25 (1989)

    Google Scholar 

  61. D.H.A. Blank, H. Kruidhof, J. Flokstra, J. Phys. D21 (1988) p. 226

    Google Scholar 

  62. R.H. Koch et al., (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rogalla, H., Heiden, C. (1989). High-Tc Josephson Contacts and Devices. In: Kose, V. (eds) Superconducting Quantum Electronics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95592-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95592-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95594-5

  • Online ISBN: 978-3-642-95592-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics