Classical Dynamics of Josephson Tunnelling and Its Quantum Limitations

  • H. Lübbig

Abstract

In the dynamics of Josephson tunnel junctions the quantum phase shift of the superconducting order parameter is the important degree of freedom. The highly non-linear stationary response to external excitations and the resistivity associated with the transport of superconducting current carriers through the junction under non-stationary conditions make the Josephson junction a favoured object for fundamental physical questions and for important quantum electronic applications as well. This article is intended to present a comprehensive description of the classical dynamics of the quantum phase shift occurring in superconducting Josephson tunnel junctions in the framework of linear response theory. This description is equivalent to the Kubo formalism known from irreversible thermodynamics. Firstly, it allows the dynamical properties of all kinds of superconductors to be emphasized, connected by tunnel junctions. Secondly, it permits an equivalent circuit of the junction to be set up. This quantum network description turns out to be extremely useful for modelling, simulating, and designing superconducting electronic circuits (cf. article by G. BRUNK). The quantum limitations of the classical Josephson effect will be discussed and the present state of macroscopic quantum phenomena will be indicated.

Keywords

Microwave Enthalpy Torque Coherence Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York, 1975; W. Buckel, Supraleitung, Physik-Verlag, Weinheim, 1984Google Scholar
  2. [2]
    S. Tanaka, Proc. LT-18 (1987) pp. 2005–2010, and references thereinGoogle Scholar
  3. [3]
    A. Barone, G. Paterno, Physics and Applications of the Josephson Effect, John Wiley and Sons, New York, 1982CrossRefGoogle Scholar
  4. [4]
    K.K. Likharev, Dynamics of Josephson junctions and circuits, Gordon and Breach, New York, 1986Google Scholar
  5. [5]
    D. Rainer, J.A Sauls, Proc. LT-18 (1987) pp. 1804–1808Google Scholar
  6. [6]
    B.D. Josephson, Phys. Lett. 1 (1962), pp. 251–253MATHCrossRefGoogle Scholar
  7. [7]
    N.R. Werthamer, Phys. Rev. 147 (1966) pp. 255–263; A.I Larkin, Yu.N. Ovchinnikov, Sov. Phys. JETP 24 (1967) pp. 1035-1040CrossRefGoogle Scholar
  8. [8]
    A. Leggett, Prog. Theor. Phys. Suppl. 69 (1980) pp. 80–100MathSciNetCrossRefGoogle Scholar
  9. [9]
    G. Brunk, H. Lübbig, J. Low Temp. Phys. 47 (1982) pp. 13–26CrossRefGoogle Scholar
  10. [10]
    M. Abramowitz, I.A. Stegun, (eds.), Hdb. Math. Functs., Dover Publ., New York, 1972Google Scholar
  11. [11]
    H. Lübbig, Proc. IC SQUID’ 80, (1980) pp. 1–28Google Scholar
  12. [12]
    V. Ambegaokar, A. Baratoff, Phys. Rev. Lett. 10 (1963) pp. 486–489; E:11, 104CrossRefGoogle Scholar
  13. [13]
    E. Burstein, S. Lundquist, (eds.) Tunneling Phenomena in Solids, Plenum Press, New York, 1969Google Scholar
  14. [14]
    G. Brunk, J. Non-Equilib. Thermodyn. 5 (1980) pp. 339–360; G. Brunk, H. Lübbig, J.Low Temp. Phys. 42 (1981) pp. 179-185; G. Brunk, Ch. Zurbrügg, H. Lübbig, IEEE Trans. Magn. MAG-25 (1989) pp. 1420-1423CrossRefGoogle Scholar
  15. [15]
    D. Jablonski, J. Appl. Phys. 53 (1982) pp. 7458–7463; G, Brunk, Proc. IC SQUID’ 85 (1985) pp. 77-82; H. Kratz, W. Jutzi, IEEE Trans. Magn. MAG-23 (1987) pp. 731-734; W. Jutzi, E. Crocoll, J. Marz, Jap. J. Appl. Phys. 26, Suppl. 26-3 (1987) pp. 1589-1590; W. Jutzi, E. Crocoll, D. Drung, G. Krämer, IEEE Trans. Magn. MAG-25 (1989) pp. 1046-1049CrossRefGoogle Scholar
  16. [16]
    W.A. Schlup, J. Phys. C: Solid State Phys. 7 (1974) pp. 736–748; W.A. Schlup, J. Phys. (Paris) 39 (Suppl.) (1979) pp. 567-568; G. Brunk, Ch. Zurbrügg, H. Lübbig, Proc. IC SQUID’ 85 (1985) pp. 83-88CrossRefGoogle Scholar
  17. [17]
    D. Rogovin, D.J. Scalapino, Annals of Phys. 86 (1974) pp. 1–90; G. Schön, Proc. IC SQUID’ 85 (1985) pp. 251-287CrossRefGoogle Scholar
  18. [18]
    J. Kurkijärvi, Proc. IC SQUID’ 85 (1985) pp. 377–407Google Scholar
  19. [19]
    R.L. Kautz, J. Appl. Phys. 58 (1985) pp. 424–440CrossRefGoogle Scholar
  20. [20]
    S.N Erné, H. Lübbig, unpublishedGoogle Scholar
  21. [21]
    J.R. Tucker, IEEE QE-15 (1979) pp. 1234–1258Google Scholar
  22. [22]
    R.E. Harris, Phys. Rev. 11 (1975) pp. 3329–3333CrossRefGoogle Scholar
  23. [23]
    H. Grabert, Proc. IC SQUID’85 (1985) pp. 289–315; U. Eckern, G. Schön, V. Ambegaokar, Phys. Rev. B30 (1984) pp. 6419-6431; V. Ambegaokar, U. Eckern, Z. Phys. B69 (1987) pp. 399-407Google Scholar
  24. [24]
    F. Guinea, G. Schön, J. Low Temp. Phys. 69 (1987) pp. 219–243; K.K. Likharev, A.B. Zorin, J. Low Temp. Phys. 59 (1984) pp. 347-382CrossRefGoogle Scholar
  25. [25]
    R. De Bruyn Ouboter, Proc. Int. Symp. Foundations of Quantum Mechanics, Tokyo (1983) pp. 83–93; D.B. Schwartz, B. Sen, C.N. Archie, J.E. Lukens, Phys. Rev. Lett. 55 (1985) pp. 1547-1550Google Scholar
  26. [26]
    R.F. Voss. R.A. Webb, Phys. Rev. Lett. 47 (1981) pp. 265–268; J.M. Martinis, M.H. Devoret, J. Clarke, Phys. Rev. B35 (1987) pp. 4682-4698CrossRefGoogle Scholar
  27. [27]
    A.O. Caldeira, A. Leggett, Phys. Rev. Lett. 46 (1981) 211–214CrossRefGoogle Scholar
  28. [28]
    H. Grabert, U. Weiss, Phys. Rev. Lett. 53 (1984) pp. 1787–1790MathSciNetCrossRefGoogle Scholar
  29. [29]
    J. Lambe, R.C. Jaklivic, Phys. Rev. Lett. 22 (1969) pp. 1371–1375CrossRefGoogle Scholar
  30. [30]
    M. Iansiti, A.T. Johnson, C.J. Lobb, M. Tinkham, Phys. Rev. Lett. 60 (1988) 2414–2417CrossRefGoogle Scholar
  31. [31]
    D.V. Averin, K.K. Likharev, Proc. IC SQUID85 Proc. (1985) pp.197–202; E. Ben-Jacob, Y. Gefen, K. Mullen, Z. Schuss, Proc. IC SQUID’85 (1985) pp. 203-218.Google Scholar
  32. [32]
    L.S. Kuz’min, K.K. Likharev, JETP Lett. 45 (1987) pp. 495–497; K.K. Likharev, IBM J. Res. Develop. 32 (1988) pp. 144-158 D.V. Averin, K.K. Likharev, in: Quantum Effects in Small Disordered Systems, B.L. Altshuler, P.A. Lee, R.A. Webb (eds.) Elsevier, Amsterdam, to be publishedGoogle Scholar
  33. [33]
    M. Büttiker, Phys. Rev. B36 (1987) pp. 3548–3555Google Scholar
  34. [34]
    R. Holm, W. Meißner, Z. Phys. 74 (1932) pp. 715–735CrossRefGoogle Scholar
  35. [35]
    P.W. Anderson, in: Lectures on the Many Body Problem, E.R. Canianiello (ed.) Academic Press 2 (1964) p. 113; A. Widom, J. Low Temp. Phys. 37 (1979) pp. 449-460; A.P. Long, R.J. Prance, T.D. Clark, A. Widom, J.E. Mutton, J. Sacco, M.W. Potts, G. Megaloudis, Proc. IC SQUID’80 (1980) pp. 599-602Google Scholar

Special Abbreviations

  1. Proc. LT-18: Jpn. J. Appl. Phys 26, Suppl. 3 Google Scholar
  2. Proc. IC SQUID: Superconducting Quantum Interference Devices and their Applications, De Gruyter, Berlin, New York, H.-D. Hahlbohm, and H. Lübbig (eds.).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • H. Lübbig
    • 1
  1. 1.Physikalisch-Technische BundesanstaltInstitut BerlinBerlinGermany

Personalised recommendations