Genetic Variation of the Normal Human EEG

  • F. Vogel
Conference paper


Since the EEG plays a key role in the diagnosis and classification of epilepsies, and since it shows an appreciable variability in the “normal” range, the question as to the causes of this “normal” variability might be of interest for our understanding of epilepsy. It is well-known that external influences (such as sensory input), changes in the chemical parameters of the blood (such as decrease of CO2 level, hypoglycemia, or altered metabolite levels due to malfunction of the liver) may lead to transitory or even long lasting modifications of the EEG (see [2]). Here, the EEG indicates an abnormal state of brain function. But even under normal conditions in individuals who are awake, relaxed, and resting with closed eyes, there is still appreciable interindividual variability, whereas the EEG of the same individual remains practically constant even over long time periods. Characteristic changes occur both during childhood and youth, and with adults of advancing age. This interindividual variability of the resting EEG in the normal range is largely genetically determined, as has been shown by studies on monozygotic (MZ) twins (for the older literature see [16]; for reviews see [19, 20]:
  1. 1.

    Resting EEGs of healthy MZ twins are as similar as consecutive EEG records from the same individual under constant conditions (Fig. 1). This impression is corroborated by computerized quantitative EEG analysis [15].

  2. 2.

    Even MZ twins separated in infancy or childhood show very similar [7] or practically identical [9] EEG records.

  3. 3.

    Speed of EEG maturation during childhood and youth also shows genetic variability, as indicated by the EEG similarity in MZ twins in contrast to otherwise considerable interindividual variability.

  4. 4.

    Of the well-known EEG changes in advanced age, slowing of the alpha rhythm, decrease in amplitude, or increase in theta activity in the anterior leads are concordant in MZ twins. On the other hand, discordances in mild anomalies, such as temporal focal abnormalities or short bursts of bilaterally synchronous theta waves, are common [6].

  5. 5.

    Discordance in neurotic symptoms of MZ twins does not lead to a discordant EEG [23].

  6. 6.

    EEG changes under controlled external and experimental conditions, such as during nocturnal sleep [16, 26], EEG synchronization under hyperventilation, and alcohol ingestion [12], are under genetic control.

  7. 7.

    High concordance in MZ twins has also been described for visually and auditory-evoked EEG potentials [3, 1] (Fig. 2).



Beta Activity Alpha Rhythm Alpha Wave Autosomal Dominant Mode Beta Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buchsbaum MS (1974) Average evoked response and stimulus intensity in identical and fraternal twins. Physiol Psychol 2: 365–370Google Scholar
  2. 2.
    Christian W (1975) Klinische Elektroenzephalographie, 2. Aufl. Thieme, StuttgartGoogle Scholar
  3. 3.
    Dustman RE, Beck EC (1965) The visually evoked potential in twins. Electroenceph Clin Neurophysiol 19: 570–575PubMedCrossRefGoogle Scholar
  4. 4.
    Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Oliver & Boyd, Edinburgh LondonGoogle Scholar
  5. 5.
    Heintel H, Schalt E, Vogel F (1986) The 4–5 c/s rhythm—changes in time. Eur Arch Psychiatr Neurol Sci 235: 299–300CrossRefGoogle Scholar
  6. 6.
    Heuschert D (1963) EEG-Untersuchungen an eineiigen Zwillingen im höheren Lebensalter. Z menschl Vererb Konstitutionslehre 37: 128–172Google Scholar
  7. 7.
    Juel-Nielsen N, Harvald B (1958) The electroencephalogram in monovular twins brought up apart. Acta Genet 9: 57–64Google Scholar
  8. 8.
    Kuhlo W, Heintel H, Vogel F (1969) The 4–5 c/s rhythm. Electroenceph Clin Neurophysiol 26: 613–619PubMedCrossRefGoogle Scholar
  9. 9.
    Lykken DT, Bouchard TJ (1983/84) Genetische Aspekte menschlicher Individualität. Mannheimer Forum 1983/84:79–117. Boehringer, MannheimGoogle Scholar
  10. 10.
    Müller-Köppers M, Vogel F (1965) Über die Persönlichkeitsstruktur von Trägern einer seltenen erblichen EEG-Variante. Jahrbuch Psychol Psychother Med Anthropol 12: 75–101Google Scholar
  11. 11.
    Neundörfer B (1970) Über die 4–5 c/s EEG-Grundrhythmusvariante. Nervenarzt 41: 321–326PubMedGoogle Scholar
  12. 12.
    Propping P (1977) Genetic control of ethanol action on the central nervous system. Hum Genet 33: 309–334CrossRefGoogle Scholar
  13. 13.
    Propping P (1984) Genetische Einflüsse bei der Wirkung von Alkohol auf das Gehirn, besonders das EEG, beim Menschen. In: Zang K (ed) Klinische Genetik des Alkoholismus. Kohlhammer, Stuttgart, pp 47–64Google Scholar
  14. 14.
    Propping P, Krüger J, Mark N (1981) Genetic disposition to alcoholism. An EEG study in alcoholics and their relatives. Hum Genet 59: 51–59Google Scholar
  15. 15.
    Stassen HH, Lykken DT, Propping P, Bomben G (1988) Genetic determination of the human EEG. Survey of recent results on twins reared together and apart. Hum Genet 80: 165–176Google Scholar
  16. 16.
    Vogel F (1958) Über die Erblichkeit des normalen Elektroenzephalogramms. Thieme, StuttgartGoogle Scholar
  17. 17.
    Vogel F (1962a) Ergänzende Untersuchungen zur Genetik des menschlichen Niederspannungs-EEG. Dtsch Z Nervenheilk 184: 101–111Google Scholar
  18. 18.
    Vogel F (1962b) Untersuchungen zur Genetik der /3-Wellen des Menschen. Dtsch Z Nervenheilk 184: 137–173Google Scholar
  19. 19.
    Vogel F (1970) The genetic basis of the normal human electroencephalogram (EEG). Humangenetik 10: 91–114PubMedCrossRefGoogle Scholar
  20. 20.
    Vogel F (1986) Grundlagen und Bedeutung genetisch bedingter Variabilität des normalen menschlichen EEG. Z EEG-EMG 17: 173–188Google Scholar
  21. 21.
    Vogel F, Fujiya (1969) The incidence of some inherited EEG variants in normal Japanese and German males. Humangenetik 7: 28–42Google Scholar
  22. 22.
    Vogel F, Götze W (1959) Familienuntersuchungen zur Genetik des normalen Elektroenzephalogramms. Dtsch Z Nervenheilk 178: 668–700CrossRefGoogle Scholar
  23. 23.
    Vogel F, Krüger J, Schalt E, Schepank H, Kansteiner V (1980) EEG differences in neurotic as compared with normal twin pairs. Hum Genet 54: 327–334PubMedCrossRefGoogle Scholar
  24. 24.
    Vogel F, Krüger J, Höpp HP, Schalt E, Schnobel R (1986) Visually and auditory evoked EEG potentials in carriers of four hereditary EEG variants. Hum Neurobiol 5: 49–58PubMedGoogle Scholar
  25. 25.
    Wolpert E, Neundörfer B, Dompf D, Braun J (1979) Untersuchungen zur Psychopathologie bei Merkmalsträgern der 4–5/s-EEG-Grundrhythmusvariante. Arch Psychiat Nervenkr 226: 269–282PubMedCrossRefGoogle Scholar
  26. 26.
    Zung W, Wilson WP (1967) Sleep and dream patterns in twins: Markow analysis of a genetic trait. Recent Adv Biol Psychiatr 9: 119–130Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • F. Vogel
    • 1
  1. 1.Institut für Humangenetik und AnthropologieUniversität HeidelbergHeidelbergGermany

Personalised recommendations