Skip to main content
  • 51 Accesses

Zusammenfassung

Ein grundsätzliches Problem ist die ungleichmäßige Verteilung der Sehschärfe über das Gesichtsfeld des menschlichen Auges gegenüber der gleichmäßigen Verteilung der Bildpunkte bei den meisten Anzeigegeräten. Nur ein enger Bereich der Netzhaut (die Fovea centralis) hat die maximale Sehschärfe. Wenn wir einen Gegenstand genau sehen wollen, drehen wir das Auge so, daß der Gegenstand auf die Fovea centralis projiziert wird. In diesem Bereich können wir noch zwei Linien unterscheiden, die einen Abstand von einer Winkelminute haben (in 20 cm Entfernung betrachtet, ein Abstand von einem zwanzigstel Millimeter). Außerhalb der Fovea centralis nimmt die Sehschärfe rasch ab. Man kann insgesamt etwa 600 000 Bildpunkte unterscheiden (Bild 5.1–1). Diese 600 000 Bildpunkte entsprechen etwa auch der Zahl der Bildpunkte auf dem Fernsehschirm. Da diese Punkte jedoch gleichmäßig über die Bildfläche verteilt sind, ist die Auflösung im fixierten Bildteil schlecht, im nicht fixierten Bildteil zu gut. Vorschläge, auf dem Bildschirm nur den vom Auge fixierten Bereich scharf darzustellen, haben bislang keine Verwirklichung gefunden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

5.1 Übersicht, Beurteilung, wirtschaftliche Gesichtspunkte

  1. R. Allan, “Display technologies offer rich lode for designers”. Electronics 53, No. 6, 1980, S. 127

    MathSciNet  Google Scholar 

  2. K. Ando, et al, “A flicker-free 2448 x 2048 dots color CRT display”. SID Symp. Digest, Vol. 16, 1985, S. 338

    Google Scholar 

  3. S.H. Bartley, “The psychophysiology of vision”. Handbook of experimental psychology, John Weely Son, 1951, S. 921

    Google Scholar 

  4. G. Bauer, “Die Candela”. PTB Mitteilungen, Vol. 85, 1975

    Google Scholar 

  5. K. Bischoff, “Die Realisierung der SI-Basiseinheit Candela (cd) nach ihrer Neudefinition 1979”. PTB-Mitteilungen, Vol. 90, No. 1, 1980, S. 20

    Google Scholar 

  6. S. Bolger et al., “A second-generation chip set for driving El panels”. SID Symp. Digest, Vol. 16, 1985, S. 229

    Google Scholar 

  7. J.A. Castellano, “Current US and world markets for electronic displays”. SID Symp. Digest, Vol. 13, 1982, S. 24

    Google Scholar 

  8. I.F. Chang, “Recent advances in display technologies”. Proc. SID, Vol. 21, No. 2, 1980, S. 45

    Google Scholar 

  9. Dataquest, 1986

    Google Scholar 

  10. DIN 5033, Farbmessung, 1978

    Google Scholar 

  11. A. Fischer, “Flache Fernsehbildschirme”. ntz, Vol 33, No. 3, 1980, S. 162

    Google Scholar 

  12. Knoll, Displays. Hüthig, 1986

    Google Scholar 

  13. E. Luder et al., “Photolithographical processed TFT-addressed LC displays”. SID Symp. Digest, Vol. 13, 1982, S. 186

    Google Scholar 

  14. F. Luo, D. Hoesly, “Hybrid processed TFT matrix circuits for flat display panels”. SID Symp. Digest, Vol. 13, 1982, S. 46

    Google Scholar 

  15. M. Richter, Einführung in die Farbmetrik. de Gruyter, 1980

    Google Scholar 

  16. M. Schiekel, “Moderne Anzeigetechniken”. ntz, Vol. 28, No. 6, 1975, S. 189

    Google Scholar 

  17. S. Sherr, Electronic displays. Wiley, 1979

    Google Scholar 

  18. J. Spencer, “The high voltage IC and its future”. SID Symp. Digest, Vol. 13, 1982, S. 256

    Google Scholar 

  19. L.E. Tannas, Flat panel displays and CRT’s. Van Nostrand Reinhold, 1985

    Google Scholar 

  20. Texas Instruments, Deutschland, Das Opto-Kochbuch: Theorie und Praxis der Optoelektronik.

    Google Scholar 

  21. T. Unagami, B. Tsujiyama, “High-voltage polycrystalline Si-TFT for addressing electroluminescent devices”. SID Symp Digest, Vol. 14, 1983, S. 154

    Google Scholar 

  22. G. Wyszecki, W.S. Stiles, Color Science. Wiley, 1982

    Google Scholar 

5.2 Glühfadenanzeigen

  1. P.M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display”. IEEE Trans. Electron Devices, Vol. ED-20, No. 11, Nov. 1973, S. 1006

    Google Scholar 

  2. F. Hochberg et al., “A thin-film integrated incandescent display” IEEE Trans. Electron Devices, Vol. ED-20, No. 11, Nov. 1973, S. 1002

    Google Scholar 

5.3 Kathodenstrahlröhren, 5.3.1 Fernseh-Schwarzweiß- und -Farbröhren

  1. M. van Alphen, J: van den Berg, “Quadropole post-focusing shadowmask CRT”. SID Symp. Digest, Vol. 11, 1980, S. 46

    Google Scholar 

  2. K. Ando, et al., “A beam-index color display system”. SID Symp. Digest, Vol. 14, 1983, S. 74

    Google Scholar 

  3. E.E. Gritz, “High-brightness high-resolution miniature CRT’s”. SID Symp. Digest, Vol. 15, 1984, S. 340

    Google Scholar 

  4. E.W. Herold, “History and development of the color picture tube”. SID Symp. Digest, Vol. 5, 1974, S. 9

    Google Scholar 

  5. E.W. Herold, “A history of color television displays”. Proc. IEEE, Vol. 64, No. 9, Sept. 1976, S. 1331

    Google Scholar 

  6. E.F. Hockings et al., “A dipole-quadrupole focus mask for color picture tubes”. SID Symp. Digest, Vol. 13, 1982, S. 52

    Google Scholar 

  7. J. Kaster, M. Musing, “A TV-based multi-screen display system”. SID Symp. Digest, Vol. 14, 1983, S. 88

    Google Scholar 

  8. B. Kazan, M. Knoll, Electronic image storage. Academic Press, New York, 1968

    Google Scholar 

  9. F. Manz, “Zur Technik großer Fernseh-Bildröhren”. Bericht: Jahrestagung der Fernseh-und Kinotechnischen Gesellschaft (FKTG) Trier, 1978, S. 210

    Google Scholar 

  10. Mitsubishi, “The outline of color display system”, Firmenschrift, 1980

    Google Scholar 

  11. A.M. Morell et al., Color television picture tubes. Academic Press, 1974

    Google Scholar 

  12. A. Ohkoshi, “Ultra-large-screen color display”. SID Symp. Digest, Vol. 16, 1985, S. 18

    Google Scholar 

  13. H. Schönfelder, Fernsehtechnik. J. von Liebig Verlag, Darmstadt, 1972

    Google Scholar 

  14. J. W. Schwartz, “Twenty-five years without panel TV”. SID Symp. Digest, Vol. 7, 1976, S. 124

    Google Scholar 

  15. P. Seats, “The cathode-ray tube: A review of current technology and future trends”. IEEE Trans. Electron Devices, Vol. ED-18, Sep. 1971, S. 679

    Google Scholar 

  16. H. Seifert, “Elektronenstrahlröhren”. Techn. Akademie Esslingen, Lehrgang 8975 /74. 075, Nov. 1986

    Google Scholar 

  17. L.E. Tannas, W.F. Goede, “Flat-panel displays: A critique”. IEEE Spectrum, Jul. 1978, S. 26

    Google Scholar 

  18. J. Verweel, “Magnetic focusing for CTV tube masks”. SID Symp. Digest, Vol. 13, 1982, S. 54

    Google Scholar 

  19. A. Woodhead, “The channel electron multipler CRT: Concept, design and performance”. SID Symp. Digest, Vol. 13, 1982, S. 206

    Google Scholar 

  20. S. Yoshida, A. Ohkoshi, “The Trinitron: a new color tube”. IEEE Trans. Broadcast Telev. Receivers, Vol. BTR-14, Jul. 1968, S. 19

    Google Scholar 

5.3.2 Penetron

  1. C.T. Burilla et al., “Penetration and cathodoluminescent properties of a La2O2S penetration phosphor”. SID Symp. Digest, Vol. 10, 1979, S. 70

    Google Scholar 

  2. A.J. Mayle, “Driving beam penetration color CRTs”. Proc. SID, May/Jun. 1973, S. 6

    Google Scholar 

5.3.3 Speicherröhre

  1. T.B. Cheek, “Improving the performance of DVST systems”. SID Symp. Digest, Vol. 6. 1975, S. 60

    Google Scholar 

  2. C. Curtin, “Recent advances in direct-view storage tubes”. SID Symp. Digest, Vol. 8, 1977, S. 132

    Google Scholar 

  3. B. Devey, ‘Large screen direct-view storage monitor“. SID Symp. Digest, Vol. 9, 1978, S. 116

    Google Scholar 

  4. Tektronix, Firmenschrift

    Google Scholar 

  5. C.N. Winningstad, “The simplified direct-view bistable storage tube in computer-ostput applications”. SID Symp. Digest, 1967, S. 129

    Google Scholar 

  6. T. Woody, “Improved phosphor life in direct-view storage CRTs”. SID Symp. Digest, Vol. 9, 1978, S. 118

    Google Scholar 

5.3.4 Flache Bildschirme, Vakuumfluoreszenzanzeige

  1. R.T. Gallagher, “Flat-panel display built that could compete with CRTs”. Electronics, Vol$159, No. 24, Jun 16, 1986, S. 18

    Google Scholar 

  2. S. Ge, “Grid-control matrix fluorescent display panel”. SID Symp. Digest, Vol. 13, 1982, S. 216

    Google Scholar 

  3. W.F. Goede, “A digitally addressed flat-panel CRT”. IEEE Trans. Electron Devices, Vol. ED-20, 1973, S. 1052

    Google Scholar 

  4. M. Iwade et al., “Vacuum fluorescent display for TV video images”. SID Symp. Digest, Vol. 12, 1981, S. 136

    Google Scholar 

  5. R.N. Jackson, “Flat television display”. Phys. in Technology 11, No. 6. Nov. 1980, S. 224

    Google Scholar 

  6. K. Kasano et al., “A 240-character vacuum fluorescent display and its drive circuitry”. Proc. SID, Vol. 21, No. 2, 1980, S. 107

    Google Scholar 

  7. P. Marten, Untersuchungen zur Realisierung eines flachen Bildschirms mit adressierbarem Elektronenstrahl“. ntz 31, 1978, S. 818

    Google Scholar 

  8. T.L. Pykosz et al., “Color graphic front luminous VFD”. SID Symp. Digest, Vol. 16, 1985, S. 366

    Google Scholar 

  9. K. Smith, “CRT slims down for pocket and projection TVs”. Electronics, Jul. 19, 1979, S. 67

    Google Scholar 

  10. M. Uchiyama et al., “High resolution vacuum fluorescent display with 256 x 256 dot matrix”. SID Symp. Digest, Vol. 13, 1982, S. 212

    Google Scholar 

  11. S. Uemura, K.Kiyozumi, “Flat VFD TV display incorporating MOS-FET switching array”. 1980 Biennial Display Research Conference, IEEE, S. 126

    Google Scholar 

  12. H. Watanabe, R.A. West, “A 640 x 400 graphic front luminous VFD”. SID Symp. Digest, Vol. 17, 1986, S. 407

    Google Scholar 

5.4 Lichtemittierende Diode (LED)

  1. W. Bauer, H.H. Wagener, Bauelemente and Grundschaltungen der Elektronik, Band 1. Hanser, 1977

    Google Scholar 

  2. K.T. Burnette, W. Melnick, “Multi-mode matrix LED display program”. SID Symp. Digest, Vol. 10, 1979, S. 62

    Google Scholar 

  3. H.D. Edmonds, W.E. Mutter, “A monolithic light-emitting-diode display”. IEEE Trans. Electron Devices, Vol. ED-20, 1973, S. 1068

    Google Scholar 

  4. B.L. Frescura, ‘limitations on the size of monolithic xy addressable LED arrays“. SID Symp. Digest, Vol. 7, 1976, S. 54

    Google Scholar 

  5. K. Gillessen et al., “A survey of interconnection methods which reduce the number of external connections for LED displays”. Proc. SID, Vol. 22, 1981, S. 181

    Google Scholar 

  6. R.L. Harris, “Modular flat panel displays using light emitting diodes”. IEEE/ SID Biennial Display Conf. Record, Vol. 20, 1978, S. 20

    Google Scholar 

  7. O. Ichikawa et al., “Large-size multi-color LED flat panel display”. Proc. Japan Display ‘83, 1983, S. 246

    Google Scholar 

  8. P.K. Kimber et al., “High-resolution LED matrix displays”. SID Symp. Digest, Vol. 15, 1984, S. 37

    Google Scholar 

  9. K. Lehovec et al., “Injected light emission of SiC crystals”. Phys. Rev., Vol. 83

    Google Scholar 

  10. O. Lossev, “Oscillating crystals”. Wireless World, Vol. 15, 1924, S. 93

    Google Scholar 

  11. M.H. Pilkuhn, “Light emitting diodes”. C. Hilsum (ed.), Handbook on Semiconductors, Vol. 4, North Holland, 1981, S. 539

    Google Scholar 

  12. H.J. Queisser, “Luminescence, review and survey”. J. Lumin., Vol. 24, 1981, S. 3

    Google Scholar 

  13. H.J. Round, “A note on Carborundum”. Electron. World, Vol. 149, 1907, S. 308

    Google Scholar 

  14. H. Welker, “Über neue halbleitende Verbindungen”. Z. Naturforsch., Vol. 7a, 1952, S. 744 und Vol. 8a, 1953, S. 248

    Google Scholar 

  15. D.K. Wickenden, “Solid state electroluminescent displays”. Physics in Technology, Vol. 11, No. 6, Nov. 1980, S. 211

    Google Scholar 

  16. G. Winstel, C. Weyrích, Optoelektronik I: Lumineszenz-u. Laserdioden. Springer, 1981

    Google Scholar 

5.5 Elektrolumineszenz — Anzeigen

  1. M.I. Abdalla, J.A. Thomas, “Low voltage D.C. electroluminescence in ZnS, (Mn Cu) thin films”. Proc. SID, Vol. 19, No. 3, 1978, S. 91

    Google Scholar 

  2. M.I. Abdalla et al., “Large-area A.C. thin-film EL displays”. SID Symp. Digest, Vol. 15, 1984, S. 245

    MathSciNet  Google Scholar 

  3. P.M. Alt, “Thin-film electroluminescent displays: Device characteristics and performance”. Proc. SID, Vol. 25, No. 2, 1984, S. 123

    Google Scholar 

  4. W.A. Barrow et al, “Multicolor TFEL display and exerciser”. SID Symp. Digest, Vol. 17, 1986, S. 25

    MathSciNet  Google Scholar 

  5. S. Chandha, A. Vecht, “Stabilization of DCEL in ZnS:Mn thin films” SID Symp. Digest, Vol. 15, 1984, S. 25

    Google Scholar 

  6. S. Chen et al., “Characteristics of pulse excited electroluminescence from ZnS films containing rare earth fluoride”. Proc. IEEE, Vol. 58, 1970, S. 184

    Google Scholar 

  7. G.Destriau, “Recherches sur les scintillations des sulfures de zinc aux rayons a”. J. Ch. Phys., Vol. 33, 1936, S. 587

    Google Scholar 

  8. J. Dunker, “A large information board using TFEL devices”. SID Symp. Digest, Vol. 14, 1983, S. 42

    Google Scholar 

  9. A.G. Fischer, “White-emitting, high-contrast low-voltage, AC-electroluminescent, multi-element display panels”. Appl. Phys., Vol. 9, 1976, S. 277

    Google Scholar 

  10. Y. Fujita et al., “Large scale A.C. thin-film electroluminescent display panel”. Proc. Japan Display ‘83, 1983, S. 76

    Google Scholar 

  11. M.H. Higton, “High-contrast thin-film/powder composite DCEL devices”. SID Symp. Digest, Vol. 15, 1984, S. 29

    Google Scholar 

  12. W.E. Howard, “Electroluminescent display technologies and their characteristics”. Proc. SID, Vol. 22, No. 1, 1981, S. 47

    Google Scholar 

  13. T. Inoguchi et al., “Stable high-brightness thin-film electroluminescence panels”. SID Symp. Digest, Vol. 5, 1974, S. 84

    Google Scholar 

  14. H.F. Ivey, “Eeectroluminescence and related effects”. Adv. in Electronics and Electron Phys. Supplement I. Academic Press, New York, 1963

    Google Scholar 

  15. J. Kirton, ‘Panel electroluminescence the second time around, a successful display in the 1980s ?“. Proc. EURODISPLAY ‘81, VDE Verlag, 1981, S. 144

    Google Scholar 

  16. I. Linden, et al., “A 256 x 512 graphic EL display module”. SID Symp. Digest, Vol. 15, 1984, S. 238

    Google Scholar 

  17. J.W. Mayo et al., “A 2000 character DCEL display’. SID Symp. Digest, Vol. 15, 1984, S. 22

    Google Scholar 

  18. S. Mito et al., “TV imaging system using electroluminescent panels”. SID Symp Digest, Vol. 5, 1974, S. 86

    Google Scholar 

  19. S. Mito, “New horizons for electroluminescence in display devices”. SID Symp. Digest, Vol. 8, 1977, S. 86

    Google Scholar 

  20. D.J. Robbins et al., “A new low-voltage Si-compatible electroluminescent device”. IEEE ED-Newsletter, Vol. EDL-3, No. 6, Jun. 1982, S. 148

    Google Scholar 

  21. P.J.F. Smith, N.J. Werring, “Progress in DC electroluminescent displays and systems”. Eurodisplay ‘81, VDE Verlag, 1981, S. 149

    Google Scholar 

  22. C. Suzuki, “’Optical writing on a thin-film EL panel with inherent memory”. SID Symp. Digest, Vol. 7, 1976, S. 52

    Google Scholar 

  23. C. Suzuki et al., “Character display using thin-film EL panel with inherent memory”. SID Symp. Digest, Vol. 7, 1976, S. 50

    Google Scholar 

  24. C. Suzuki et al., “Optical writing and erasing on thin film EL graphic display”. SID Symp. Digest, Vol. 8, 1977, S. 90

    Google Scholar 

  25. C. Suzuki et al., “Direct electrical readout from thin-film EL panels”. SID Symp. Digest, Vol. 9, 1978, S. 134

    Google Scholar 

  26. A. Vecht et al., “High efficiency DC electroluminescence in ZnS (MnCu)”. Brit. J. Appl. Phys. (J. Phy. D), Vol. 1, 1968, S. 134

    Google Scholar 

  27. A. Vecht et al., ‘Direct-current electroluminescence in zinc-sulphide: State of the art“. Proc. IEEE, Vol. 61, July 1973, S. 902

    Google Scholar 

  28. D.K. Wickenden, “Solid state electroluminescent displays”. Physics in Technology, Vol. 11, No. 6, Nov. 1980, S. 211

    Google Scholar 

  29. Y. Yamauchi et al., “Inherent memory effects in ZnS: Mn thin-film EL devices”. Int’l Electron Devices Mtg., Digest, Dec. 1974, S. 348

    Google Scholar 

5.6 Plasma-Anzeigetafel

  1. B.M. Arora et al., “The plasma display panel: A new device for information display and storage”. SID 8th National Symp. Digest, 1967, S. 1

    Google Scholar 

  2. J. Dosse, G. Mierdel, Der elektrische Strom im Hochvakuum and in Gasen. Hirzel, Leipzig, 1945

    Google Scholar 

  3. H.G. Slottow, “Plasma display”. IEEE Trans. Electron Devices, Vol. ED-23, 1976, S. 760

    Google Scholar 

  4. A. Sobel, “Electronic Numbers”. Scientific American, 1973, S. 65

    Google Scholar 

  5. G.F. Weston, “Gas discharge displays”. Phys. in Technology 11, No. 6, Nov. 1980, ‘Display Devices“, S. 218

    Google Scholar 

5.6.1 Plasma-Anzeigetafel für Gleichspannungsbetrieb

  1. Y. Amano et al., “A high-resolution DC plasma display panel”. SID Symp. Digest, Vol. 13, 1982, S. 160

    Google Scholar 

  2. M. Fukushima et al., “Color-TV design using a flat gas-discharge panel”. SID Symp. Digest, Vol. 5, 1974, S. 120

    Google Scholar 

  3. G.E. Holz, “The primed gas discharge cell: a cost and capability improvement for gas discharge matrix displays”. Proc. SID, Vol. 13, 1972, S. 2

    Google Scholar 

  4. G. Holz et al., “ A 2000 character self-scan memory plasma display”. SID Symp. Digest, Vol. 14, 1983, S. 130

    Google Scholar 

  5. S. Mikoshiba, S. Shinada, “An 8 in.-diagonal high-efficiency Townsenddischarge memory panel color tv display”. SID Symp. Digest, Vol. 15, 1984, S. 91

    Google Scholar 

  6. D. Miller et al., “An improved performance self scan I panel design”. Proc. SID, Vol. 22, No. 3, 1981, S. 159

    Google Scholar 

  7. J. Smith, “A gas discharge display for compact desk-top word processors”. IEEE Trans. Electron Devices, Vol. ED-29, No. 2, Feb. 1982, S. 174

    Google Scholar 

5.6.2 Plasma-Anzeigetafel für Wechselspannungsbetrieb

  1. S. Andoh et al., “Self shift PDP with meander electrodes”. SID Symp. Digest, Vol. 8, 1977, S. 78

    Google Scholar 

  2. J. Beidl et al., “High resolution shift panel”. Proc. SID, 1979, Vol. 20, No. 3, S. 147

    Google Scholar 

  3. F.H. Brown, M. Tamm Zayac, “Multicolor gas-discharge display panel”. Proc. SID, Vol. 13, No. 1, First Quarter 1972, S. 52

    Google Scholar 

  4. W.E. Coleman, D.G. Craycraft, “A serial input plasma charge transfer display evice”. SID Symp. Digest, Vol. 6, 1975, S. 114

    Google Scholar 

  5. T.N. Criscimagna et al., “Write and erase waveforms for high resolution AC plasma display panels”. IEEE Trans. Electron Devices, Vol. ED-28, No. 6, 1981, S. 630

    Google Scholar 

  6. T.N. Criscimagna et al., “A 960 x 768 PEL AC plasma panel operating in video mode from an IBM personal computer”. SID Symp. Digest, Vol. 16, 1985, S. 354

    Google Scholar 

  7. T. N. Criscimagna et al., “Enhancement of write/erase speeds for AC plasma panels”. SID Symp. Digest, Vol. 17, 1986, S. 395

    Google Scholar 

  8. G.W. Dick, “Single substrate AC plasma display”. SID Symp. Digest, Vol. 5, 1974, S. 124

    Google Scholar 

  9. G.W. Dick, M.R. Bazzo, “A planar single-substrate AC plasma display with capacitive vias”. IEEE Trans. Electron Devices, Vol. ED-26, No. S, 1979, S. 116

    Google Scholar 

  10. R.E. Ernsthausen et al., “A megabit plasma display panel”. SID Symp. Digest, Vol. 4, 1973, S. 74

    Google Scholar 

  11. H.J. Hoehn, R.A. Martel, “Recent developments on threecolor plasma display panels”. IEEE Trans. Electron Devices, Vol. ED-20, Nov. 1973, S. 1078

    Google Scholar 

  12. B.G. Kleen et al., “The design of a versative gas panel subsystem”. Proc. SID, Vol. 20, 1979, S. 139

    Google Scholar 

  13. C. Lanza, O. Salmi, “Numerical calculation of the characteristics of an isolated AC gas discharge display panel cell”. IBM J. Res. Dev., Vol. 22, No. 6, Nov. 1978, S. 641

    Google Scholar 

  14. J. Lorenzen, design optimization of a 960 x 768 line AC plasma display panel“. International Display Research Conference, 1982

    Google Scholar 

  15. P. Ngo, ‘Light pen capability on a plasma display panel“. SID Symp. Digest, Vol. 5, 1974, S. 24

    Google Scholar 

  16. P. Pleshko, “AC plasma display device technology: An overview”. Proc. SID, Vol. 21, No. 2, 1980, S. 93

    Google Scholar 

  17. A. Reisman, K.C. Park, “AC gas discharge panels: Some general considerations”. IBM J. Res. Dev., Vol. 22, No. 6, Nov. 1978, S. 589. Dieses Heft ist mit allen Beiträgen dem Thema “Plasma-Anzeigetafel für Wechselspannungsbetrieb” gewidmet.

    Google Scholar 

  18. I.D. Schermerhorn, “Internal random access address decoding in AC plasma display panel”. SID Symp. Digest, Vol. 5, 1974, S. 22

    Google Scholar 

  19. T. Shinoda et al., “Surface discharge color AC-plasma display panels”. Biennial Display Research Conf., 1980

    Google Scholar 

  20. H.G. Slottow, “The voltage transfer curve and stability criteria in the theory of the AC plasma display”. IEEE Trans. Electron Devices, Vol. ED-24, No. 7, July 1977, S. 848

    Google Scholar 

  21. T.J. Soper et al., “High resolution meter-size display technology”. SID Symp. Digest, Vol. 13, 1982, S. 162

    Google Scholar 

  22. H. Uchiike et al., “Improved surface discharge AC-plasma display panels with new electrode structure”. Proc. Japan Display, 1983, S. 258

    Google Scholar 

  23. S. Umeda, T. Hirose, “Self-shift plasma display”. SID Symp. Digest, Vol. 3, 1972, S. 38

    Google Scholar 

  24. L.F. Weber, “Optical write-in for plasma display panel”. IEEE Trans. Electron Devices, Vol. ED-18, Sep. 1971, S. 664

    Google Scholar 

  25. L.F. Weber, R.L. Johnson, “Direct electrical readout from plasma display memory panels”. IEEE Trans. Electron Devices, Vol. ED-20, Nov. 1973, S. 1082

    Google Scholar 

  26. H. Yamaguchi et al., “High speed and high resolution self-shift plasma display”. International Display Research Conference, 1982

    Google Scholar 

5.7 Elektromechanische Anzeige

  1. Ferranti Packard, ‘Displays 7-bar readout“. Firmenschrift

    Google Scholar 

  2. C.N. Smith, “Lever operated display device”. US Patent: Nr. 3. 537. 197, 1969

    Google Scholar 

  3. W. Walter, “Digitale Anzeigevorrichtungen”. Taschenbuch der Informatik, Band II, K. Steinbuch, W. Weber ( Herausgeber ), Springer, 1974, S. 365

    Google Scholar 

5.8 Schlierenoptik-Proj ektionsanzeige

  1. E. Baumann, “The Fischer large screen projection system”. Journal SMPTE, Vol. 60, 1953, S. 344

    Google Scholar 

  2. H.J. Eichler, “Interferenz und Beugung”. Bergmann-Schaefer, Lehrbuch der Experimentalphysik. Band HI, Optik, H. Gobrecht ( Herausgeber ), De Gruyter, 1974, S. 29

    Google Scholar 

  3. G.W. Ellis, “Two channel simultaneous color projection systems”. US Patent: Nr. 3. 265. 811, 1963

    Google Scholar 

  4. W.E. Glenn, “Thermoplastic recording, a progress report”. Journal SMPTE, Vol. 74, Aug. 1965, S. 663

    Google Scholar 

  5. W.E. Glenn, “Principles of simultaneous color projection television using fluid deformation”. Journal SMPTE, Vol. 79, Sep. 1970, S. 788

    Google Scholar 

  6. W.E. Good, “A new approach to color television display and color selection using a sealed light valve”. IEEE Trans. Broadcast Telev. Receivers, Vol. BTR 15, Feb. 1969, S. 21

    Google Scholar 

  7. W.E. Good et al., “System concepts and recent advancements in light valve color TV projector”. SID Symp. Digest, Vol. 2, 1971, S. 21

    Google Scholar 

  8. E. Gretener, “Ein neuer Fernsehgroßprojektor”. Neue Zürcher Zeitung, Nr. 1169, Beilage “Technik”, 23. Apr. 1958

    Google Scholar 

  9. D.B. Hakewessell, “7000 Lumen color-TV projector development”. SID Symp. Digest, Vol. 5, 1974, S. 138

    Google Scholar 

  10. E. Labin, “The Eidophor method for theater television”. J. Society Motion Picture Television Eng., Apr. 1950, S. 393

    Google Scholar 

  11. A. I. Lakatos, R.F. Bergen, “Real time RUTICON projection display”. 1976 Biennial Display Conference, New York, Oct. 1976, S. 76

    Google Scholar 

  12. G. Mahler, “Wiedergabe von HDTV-Bildern mit Lichtventilprojektion”. FKT, Vol. 38, 1984, S. 11

    Google Scholar 

  13. J.C. Mol, “The Eidophor system of large screen television projection”. Photographic J., Vol. 102, Apr. 1962, S. 128

    Google Scholar 

  14. R.W. Pohl, Einführung in die Physik, Dritter Band, Optik und Atomphysik. Springer, 1963

    Google Scholar 

  15. B.J. Ross, E. T. Kozol, “Performance characteristics of the deformographic storage display tube (DSDT)”. 1973 IEEE International Convention, Vol. 5, Mar. 1973, S. 26

    Google Scholar 

  16. R. Tepe, “Beitrag zur Theorie der Oberflächendeformation von Lichtventilsteuerungen”. Archiv f. Elektrotech., Vol. 66, 1983, S. 335

    Google Scholar 

  17. R.E. Thoman. “Contemporary large screen displays”. SID Symp. Digest, Vol. 13, 1982, S. 106

    Google Scholar 

  18. T.T. True, W.E. Good, “Principles of dynamic color selection in a light valve color TV projector”. SID Symp. Digest, Vol. 2, 1971, S. 26

    Google Scholar 

  19. T.T. True, “Color television light valve projection systems”. IEEE. International Convention, Session 26, 1973, S. 1

    Google Scholar 

  20. T.T. True, “Recent advances in high-brightness and high resolution color light valve projectors”. SID Symp. Digest, Vol. 10, 1979, S. 20

    Google Scholar 

5.9 Kerr-Zellen-Projektionsanzeige

  1. M. von Ardenne, “Methoden und Anordnungen zur Speicherung beim Fernsehempfang”. TFT: Telegraphen-, Fernsprech-, Funk-und Fernsehtechnik, Bd. 27, 1938, S. 518

    Google Scholar 

  2. M. von Ardenne, “Ein neues Großflächen-Lichtrelais für Intensitäts-, Farb-oder Polarisationsebenen-Steuerung”. TFT: Telegraphen-, Fernsprech-, Funk-und Fernsehtechnik, Vol: 28, No. 6, 1939, S. 226

    Google Scholar 

  3. W. Kulcke et al., “A fast, digital-indexed light deflector”. IBM J. Res. Dec., Vol. 8, No. 1, Jan. 1964, S. 6

    Google Scholar 

  4. W. Kulcke et al., “Digital light deflectors”. Proc. IEEE, Vol. 54, No. 10, Oct. 1966, S. 1419

    Google Scholar 

  5. G. Marie, J. Donjon, “Single-crystal ferroelectrics and their application in light valve display devices”. Proc. IEEE, Vol. 61, No. 7, Jul. 1973, S. 942

    Google Scholar 

  6. U.J. Schmidt, “Anwendung und Stand der digitalen Lichtstrahlablenkung”. Elektronische Rundschau, Vol. 21, 1967 S. 165

    Google Scholar 

  7. U.J. Schmidt, W. Thust, “A 10-stage digital light beam deflector”. J. Optoelectronics, Vol. 1, 1969, S. 21

    Google Scholar 

  8. U.J. Schmidt, “Elektrooptische Ablenkung von Laserstrahlen”. Philips Tech. Rdsch., Vol 36, No. 6, 1976/77, S. 172

    Google Scholar 

  9. W. Thust, “Large screen display for air command and control system”. Nato Meeting, Brüssel, 14. Apr. 1981

    Google Scholar 

  10. W. Thust, “Laser air situation display”. Armada International, Vol. 1, 1982, S. 52

    Google Scholar 

  11. P. Vohl et al., “Real-time incoherent-to-coherent optical converter”. IEEE Trans. Electron Devices, Vol. ED-20, 1973, S. 1032

    Google Scholar 

5.10 Flüssigkristalle

  1. P.M. Alt, P. Pleshko, “Scanning limitations of liquid-crystal displays”. IEEE Trans. Electron Devices, Vol. ED-21, 1974, S. 146

    Google Scholar 

  2. D. Baraff et al., “Optimization of metal-insulator-metal nonlinear devices in multiplexed liquid crystal displays”. IEEE Trans. Electron Devices, Vol. ED-28, 1981, S. 736

    Google Scholar 

  3. P.J. Bos et al, “A liquid-crystal optical-switching device (in cell)”. SID Symp. Digest., Vol. 14, 1983, S. 30

    Google Scholar 

  4. T.P. Brody et al., “A 6 x 6 inch 20 lines-per inch liquid crystal display panel”. IEEE Trans. Electron Devices, Vol. ED-20, 1973, S. 995

    Google Scholar 

  5. J.R. Burns, G. W. Taylor, “Liquid crystal message center display”. SID Symp. Digest., Vol. 14, 1983, S. 40

    Google Scholar 

  6. M.G. Clark et al., “ Liquid crystal materials and devices”. Phys. in Technology, Vol. 11, No. 6, Nov. 1980, S. 232

    Google Scholar 

  7. A.G. Dewey et al., “A 2000 character thermally-addressed liquid crystal projection display”. SID Symp. Digest, Vol. 8, 1977, S. 108

    Google Scholar 

  8. A. G. Dewey, J.D. Crow, “The application of GaAs lasers to high-resolution liquid-crystal projection displays”. IBM J. Res. Dev., Vol. 26, No. 2, Mar. 1982, S. 177

    Google Scholar 

  9. A.G. Dewey et al., “A 4 Mpel liquid crystal projection display addressed by a GaAs laser array”. SID Symp. Digest, Vol. 13, 1982, S. 240

    Google Scholar 

  10. A.G. Dewey et al., “A 64-million PEL liquid crystal projection display”. SID Symp. Digest, Vol. 14, 1983, S. 36

    Google Scholar 

  11. K. Dreyfack, “LCD uses three molecular states to produce experimental TV picture”. Electronics, April 26, 1979, S. 70

    Google Scholar 

  12. P.G. de Gennes, The physics of liquid crystals. Clarendon, 1974

    Google Scholar 

  13. B. Hampel. W. Pauls, “Anwendungstechnische Eigenschaften heutiger TN-Anzeigen”. Techn. Akademie Esslingen, Lehrgang 8092 /72. 102, Nov. 1985

    Google Scholar 

  14. M. Hareng, S. LeBerre, “Liquid crystal flat display”. Int. Electron Devices Mtg., IEEE, Tech. Digest, Dec. 1978, S. 258

    Google Scholar 

  15. G.H. Heilmeier, L.A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electrooptic effect”. Appl. Phys. Letters, Vol. 13, No. 3, Aug. 1968, S. 91

    Google Scholar 

  16. K. Kasahara et al., “A liquid-crystal display panel using a MOS array with gate-bus drivers”. IEEE Trans. Electron Devices, Vol. ED-28, 1981, S. 744

    Google Scholar 

  17. A.R. Kmetz, F.K. von Willisen, Nonemissive electrooptic displays. Plenum Press, 1976

    Google Scholar 

  18. A.R. Kmetz, “Interconnection and addressing for LCD with reduced lead count”. SID Symp. Digest, Vol. 13, 1982, S. 182

    Google Scholar 

  19. A. Lagos, F. Gharadjedaghi, “A non-multiplexed LCD dot matrix”. SID Symp. Digest, Vol. 13, 1982, S. 184

    Google Scholar 

  20. S. Le Berre et al., “A flat smectic liquid crystal display”. SID Symp. Digest, Vol. 13, 1982, S. 252

    Google Scholar 

  21. L.T. Lipton, N.J. Koda, “Matrix-addressed liquid crystal panel display”. SID Symp. Digest, Vol. 4, 1973, S. 46

    Google Scholar 

  22. S. Lu et al., “Thermally-addressed pleochroic dye switching liquid crystal display”. SID Symp. Digest, Vol. 13, 1982, S. 238

    Google Scholar 

  23. S. Matsumoto et al., “Liquid crystal television display, material considerations”. Proc. EURODISPLAY’81, VDE Verlag, 1981, S. 17

    Google Scholar 

  24. G. Meier et al., Application of liquid crystals. Springer, 1975

    Google Scholar 

  25. Y. Okubo et al., “Large-scale LCDs addressed by a-Si TFT array”. SID Symp. Digest, Vol. 13, 1982, S. 40

    Google Scholar 

  26. L.T. Rees, “Three-line multipleing cuts pin count of complex LCD”. Electronics, Jul. 5, 1979, S. 141

    Google Scholar 

  27. K. Saweda, Y. Masuda, “Double-layered guest-host display with wide operating temperature range”. SID Symp. Digest, Vol. 13, 1982, S. 176

    Google Scholar 

  28. H. Schad, “Reflective-type LC matrix-display for high multiplexing rates”. SID Symp. Digest, Vol. 13, 1982, S. 244

    Google Scholar 

  29. I.A. Shanks, “Liquid crystal oscilloscope displays”. SID Symp. Digest, Vol. 9, 1978, S. 98

    Google Scholar 

  30. P. Smith, “Multiplexing liquid-crystal displays”. Electronics, May 25, 1978, S. 113

    Google Scholar 

  31. T. Uchida et al., “Bright dichroic guest-host LCDs without a polarizer”. SID Symp. Digest, Vol. 11, 1980, S. 192

    Google Scholar 

  32. Ugai et al., “A 7.23” in diagonal color LCD addressed by a-Si TFTs“. SID Symp. Digest, Vol. 15, 1984

    Google Scholar 

  33. D.L. White, G.N. Taylor, “New absorptive mode reflective liquid-crystal display device”. J. Appl. Phys., Vol. 45, Nov. 1974, S. 4718

    Google Scholar 

  34. W. Wiemer, K. Fahrenschon, “Large-area liquid-crystal displays for public information boards”. SID Symp. Digest, Vol. 15, 1984, S. 51

    Google Scholar 

5.11 Elektrophorese

  1. S. Beilin et al, “2 000 • character electrophoretic display”. SID Symp. Digest, Vol. 17, 1986, S. 136

    Google Scholar 

  2. A. Chiang, “Conduction mechanism of charge control agents used in electrophoretic display devices”. Proc. SID, Vol. 18, No. 3 /4, 1977, S. 275

    Google Scholar 

  3. A.L. Dalisa, R.A. Delano, “Recent progress in electrophoretic displays”. SID Symp. Digest, Vol. 5, 1974, S. 88

    Google Scholar 

  4. A.L. Dalisa, “Electrophoretic display technology”. IEEE Trans. Electron Devices, Vol. ED-24, 1977, S. 827

    Google Scholar 

  5. P.F. Evans et al., “Color display device”. US Patent: 3 612 758, 1969

    Google Scholar 

  6. C. Kornfeld, “A defect-tolerant active-matrix electrophoretic display”. SID Symp. Digest, Vol. 15, 1984, S. 142

    Google Scholar 

  7. L.L. Lee, “A magnetic particles display”. IEEE Trans. Electron Devices, Vol. ED-22, 1975, S. 758 `.

    Google Scholar 

  8. L.L. Lee, “Matrix-addressed magnetic particles display”. SID Symp. Digest, Vol. 8, 1977, S. 112

    Google Scholar 

  9. K.A. Metcalfe, R.J. Wright, “Fine grain development in Xerography”. J. Sci. Instrum., Vol. 33, 1956, S. 194

    Google Scholar 

  10. P. Murau, “Characteristics of an x-y addressed electrophoretic image display (EPID)”. SID Symp. Digest, Vol. 15, 1984, S. 141

    Google Scholar 

  11. I. Ota et al., “Electrophoretic image display (EPID) panel”. Proc. IEEE, Vol. 61, No. 7, Jul. 1973, S. 832

    Google Scholar 

  12. M. Saitoh et al., “An electrical twisting ball display”. SID Symp. Digest, Vol. 13, 1982, S. 96

    Google Scholar 

  13. N.K. Sheridon, M.A. Berkovits, “The gyricon: A twisting ball display”. Proc. SID, Vol. 18, No. 3 /4, 1977, S. 289

    Google Scholar 

  14. B. Singer, “An x-y addressable electrophoretic display”. Proc. SID, Vol. 18, 1977, S. 255

    Google Scholar 

  15. E.J. Verwey, J. Overbeek, Theory of the stability of lyophobic colloids. Elsevier, Amsterdam, 1948

    Google Scholar 

  16. A. White, “An electrophoretic bar graph display”. Proc. SID, Vol. 22, No. 3, 1981, S. 173

    Google Scholar 

5.12 Elektrochromismus

  1. E. Ando, et al, “Large-area dot format electrochromic display”. SID Symp. Digest, Vol. 17, 1986, S. 132

    Google Scholar 

  2. D.J. Barklay et al., “An integrated electrochromic data display”. SID Symp. Digest, Vol. 11, 1980, S. 124

    Google Scholar 

  3. I.F. Chang, “Electrochromic and electrochemichronic materials and phenomena”. Non-Emissive Electro-Optic Displays, ed.: Kmetz, von Willise. Plenum Press, New York, 1976, S. 155

    Google Scholar 

  4. I.F. Chang, “State of the art of electrochromic and electrochemichromic displays”. IEEE Electro 1981

    Google Scholar 

  5. R.D. Giglia, “Features of an electrochromic display device”. SID Symp. Digest, Vol. 6, 1975, S. 52

    Google Scholar 

  6. T. Masumi et al., “Response-improved electrochromic display based on organic materials”. SID Symp. Digest, Vol. 13, 1982, S. 100

    Google Scholar 

5.13 Zusammenfassung

  1. I. Reingold, “Display devices: A perspective on status and availability”. Proc. SID, Vol. 15, No. 2, 1974, S. 63

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Proebster, W.E. (1987). Anzeigen und Bildschirme. In: Peripherie von Informationssystemen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95543-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95543-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18336-5

  • Online ISBN: 978-3-642-95543-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics