Modelling Epidemics of Polycyclic Foliar Diseases and Development of Simulators


In the previous chapter (see Campbell et al., Chap. 18), the scope, purpose and types of models in plant disease epidemiology as well as the role of systems analysis in plant pathology are outlined and it is not necessary to repeat them here. The terms, e.g. model or simulation, are used in this chapter in the same sense as defined in the previous one.


Adult Plant Resistance Epidemiological Model American Phytopathological Society Host Growth Barley Powdery Mildew 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arneson, PA, Oren TR, Loria R, Jenkins JJ, Goodman ED, Cooper WE (1978) APPLESCAB: a pest management game. Michigan State Univ, East Lansing (MI )Google Scholar
  2. Aust H J (1981) Über den Verlauf von Mehltauepidemien innerhalb des Agro-Ökosystems Gerstenfeld. Parey, Berlin (Acta Phytomedica, vol 7 )Google Scholar
  3. Aust HJ, Bretschneider-Herrmann B (1982) Nutzen und Grenzen biologischer Forschung unter kontrollierten Umweltbedingungen mit besonderer Berücksichtigung phytopathologischer Fragestellungen. Angew Bot 56: 201–217Google Scholar
  4. Aust HJ, Bashi E, Rotem J (1980) Flexibility of plant pathogens in exploiting ecological and biotic conditions in the development of epidemics. In: Palti J, Kranz J (eds) Comparative epidemiology. A tool for better disease management. Pudoc, Wageningen, pp 46–56Google Scholar
  5. Aust HJ, Hau B, Kranz J (1983) EPIGRAM — a simulator of barley powdery mildew. Z Pflanzenkr Pflanzenschutz 90: 244–250Google Scholar
  6. Barrett JA (1983) Estimating relative fitness in plant parasites: some general problems. Phytopathology 73: 510–512CrossRefGoogle Scholar
  7. Berger RD, Jones JW (1985) A general model for disease progress with functions for variable latency and lesion expansion on growing host plants. Phytopathology 75: 792–797CrossRefGoogle Scholar
  8. Boote KJ, Jones JW, Mishoe JW, Berger RD (1983) Coupling pests to crop growth simulators to predict yield reductions. Phytopathology 73: 1581–1587CrossRefGoogle Scholar
  9. Bruhn JA, Bruck RI, Fry WE, Arneson PA, Keokosky EV (1980) LATEBLIGHT: a plant disease management game. User’s manual. Cornell Univ. Ithaca (NY), Department of Plant Pathology, Mimeo 80–1Google Scholar
  10. Butt DJ, Jeger M J (1985) The practical implementation of models in crop disease management. In: Gilligan CA (ed) Mathematical modelling of crop disease. Academic Press, London, pp 207–230 (Advances in Plant Pathology, vol 3 )Google Scholar
  11. Coakley SM (1983) Ambient meteorological factors — light, temperature, and moisture. In: Kommedahl T, Williams PH (eds) Challenging problems in plant health. American Phytopathological Society, St Paul, USA, pp 154–167Google Scholar
  12. Feldmann RM, Curry GL, Wehrly TE (1984) Statistical procedure for validating a simple population model. Environ Entomol 13: 1446–1451Google Scholar
  13. Fleming RA (1980) Selection pressures and plant pathogens: robustness of the model. Phytopathology 70: 175–178, 71: 268CrossRefGoogle Scholar
  14. Fleming RA (1983) Development of a simple mechanistic model of cereal rust progress. Phytopathology 73: 308–312CrossRefGoogle Scholar
  15. Fleming RA, Bruhn JA (1983) The role of mathematical models in plant health management. In: Kommedahl T, Williams PH (eds) Challenging problems in plant health. American Phytopathological Society, St Paul, USA, pp 368–378Google Scholar
  16. Hau B (1985) Epidemiologische Simulatoren als Instrumente der Systemanalyse mit besonderer Berücksichtigung eines Modells des Gerstenmehltaus. Parey, Berlin (Acta Phytomedica, vol 9 )Google Scholar
  17. Hau B, Eisensmith SP, Kranz J (1985) Construction of temporal models. II. Simulation of aerial epidemics. In: Gilligan CA (ed) Mathematical modelling of crop disease. Academic Press, London, pp 31–65 (Advances in Plant Pathology, vol 3 )Google Scholar
  18. Jeger MJ (1982) The relation between total, infectious and postinfectious diseased plant tissue. Phytopathology 72: 1185–1189CrossRefGoogle Scholar
  19. Jeger MJ (1983) Analysing epidemics in time and space. Plant Pathology 32: 5–11CrossRefGoogle Scholar
  20. Kampmeijer P, Zadoks JC (1977) EPIMUL, a simulator of foci and epidemics in mixtures, mosaics and multilines. Pudoc, WageningenGoogle Scholar
  21. Kranz J (1979) Simulation of epidemics caused by Venturia inaequalis (Cooke) Aderh. EPPO Bull 9: 235–242CrossRefGoogle Scholar
  22. Kranz J, Hau B (1980) Systems analysis in epidemiology. Annu Rev Phytopathol 18: 67–83CrossRefGoogle Scholar
  23. Kranz J, Royle DJ (1978) Perspectives in mathematical modelling of plant disease epidemics. In: Scott PR, Bainbridge A (eds) Plant disease epidemiology. Black well, Oxford, pp 111–119Google Scholar
  24. Kranz J, Hau B, Aust HJ (1984) Monitoring in crop protection modelling. In: Conway GR (ed) Pest and pathogen control: strategic, tactical, and policy models. Wiley-II AS A, Chichester, pp 233–241 (International series on applied systems analysis, vol 13 )Google Scholar
  25. Krawczak DA, MacKenzie DR (1981) SPUD CROP, the potato pest management game. Pennsylvania State Univ, University Park (PA )Google Scholar
  26. Kushalappa AC, Ludwig A (1982) Calculation of apparent infection rate in plant diseases: development of a method to correct for host growth. Phytopathology 72: 1373–1377CrossRefGoogle Scholar
  27. Legett RW, Williams LR (1981) A reliability index for models. Ecol Model 13: 303–312CrossRefGoogle Scholar
  28. Madden LV (1980) Quantification of disease progression. Prot Ecol 23: 159–176Google Scholar
  29. McCartney HA, Fitt BDL (1985) Construction of dispersal models. In: Gilligan CA (ed) Mathematical modelling of crop disease. Academic Press, London, pp 197–143 (Advances in Plant Pathology, vol 3 )Google Scholar
  30. McLaren JS,Craignon J (1981) A computer assisted learning system for use in teaching of crop production. Agric Prog 56: 69–83Google Scholar
  31. Minogue KP, Fry WE (1983a) Models for the spread of disease: model description. Phytopathology 73: 1168–1173CrossRefGoogle Scholar
  32. Minogue KP, Fry WE (1983 b) Models for the spread of plant disease: some experimental results. Phytopathology 73: 1173–1176Google Scholar
  33. Rapilly F (1977) Recherche des facteurs de résistance horizontale à la Septoriose du Blé (Septoria nodorum Berk.). Résultats obtenus par la simulation (1). Ann Phytopathol 9:1–19 Rijsdijk FH ( 1975 ) A simulator of yellow rust of wheat. C R Semaine d’étude agriculture et hygiene des plantes. Bull Rech Agron Gembloux: 411–418Google Scholar
  34. Rouse DI (1983) Plant growth models and plant disease epidemiology. In: Kommedahl T, Williams PH (eds) Challenging problems in plant health. American Phytopathological Society, St Paul, USA, pp 387–398Google Scholar
  35. Rouse DI (1985) Construction of temporal models. I. Disease progress of air-borne pathogens. In: Gilligan CA (ed) Mathematical modelling of crop disease. Academic Press, London, pp 11–29 (Advances in Plant Pathology, vol 3 )Google Scholar
  36. Sall MA (1980) Uses of stochastic simulation: grape powdery mildew example. Z Pflanzenkr Pflanzenschutz 87: 397–403Google Scholar
  37. Shrum R (1975) Simulation of wheat stripe rust (Puccinia striiformis West) using EPIDEMIC, a flexible plant disease simulator. Penn State Univ Agri Exp Sta, Progress report 347Google Scholar
  38. Spaar D, Ebert W (1985) Monitoring and forecasting in plant protection in the German Democratic Republic. EPPO Bull 15: 299–310CrossRefGoogle Scholar
  39. Teng PS (1981) Validation of computer models of plant disease epidemics: a review of philosophy and methodology. Z Pflanzenkr Pflanzenschutz 88: 49–63Google Scholar
  40. Teng PS (1985) A comparison of simulation approaches to epidemic modeling. Annu Rev Phytopathol 23: 351–379CrossRefGoogle Scholar
  41. Teng PS, Blackie M J, Close RC (1980) Simulation of the barley leaf rust epidemic: structure and validation of BARISM-I. Agric Syst 5: 55–73CrossRefGoogle Scholar
  42. Vanderplank JE (1963) Plant diseases: epidemics and control. Academic Press, LondonGoogle Scholar
  43. Vanderplank JE (1975) Principles of plant infection. Academic Press, LondonGoogle Scholar
  44. Vanderplank JE (1982) Host-pathogen interactions in plant disease. Academic Press, LondonGoogle Scholar
  45. Waggoner PE (1978) Computer simulation of epidemics. In: Horsfall JC, Cowling EB (eds) Plant disease, vol 2. Academic Press, London, pp 203–222Google Scholar
  46. Waggoner PE, Horsfall JG (1969) EPIDEM, a simulator of plant disease written for a computer. Conn Agric Exp Stn Bull 698, pp 80Google Scholar
  47. Waggoner PE, Parlange J Y (1974 a) Mathematical model for spore germination at changing temperature. Phytopathology 64: 605–610Google Scholar
  48. Waggoner PE, Parlange JY (1974 b) Verification of a model of spore germination at variable, moderate temperatures. Phytopathology 64: 1192–1196Google Scholar
  49. Waggoner PE, Parlange J Y (1975) Slowing of spore germination with changes between moderately warm and cool temperatures. Phytopathology 65: 551–553CrossRefGoogle Scholar
  50. Zadoks JC (1971) Systems analysis and the dynamics of epidemics. Phytopathology 61: 600–610CrossRefGoogle Scholar
  51. Zadoks JC (1979) Simulation of epidemics: problems and applications. EPPO Bull 9: 227–234CrossRefGoogle Scholar
  52. Zakoks JC (1981) EPIPRE: a disease and pest management system for winter wheat developed in the Netherlands. EPPO Bull 11: 365–69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Heidelberg 1988

Authors and Affiliations

  • B. Hau
    • 1
  1. 1.Phytopathologie und Angewandte Entomologie, Wissenschaftliches Zentrum TropeninstitutJustus-Liebig-UniversitätGießenGermany

Personalised recommendations