The Book of L pp 147-156 | Cite as

Fixed and Stationary ω —Words and ω —Languages

  • Tom Head
  • Barbara Lando


Explicit representations of the ω-words that are fixed (resp., stationary) relative to a function h: A -→ A* are given. A procedure is provided for constructing a concise expression for the fixed (resp., stationary) ω -language of such an h. The equivalence problem for fixed (resp., stationary) ω-languages of functions h & k: A -→ A* is shown to be decidable. The fundamental tool for this latter procedure is the recently developed algorithm of K. Culik II & T. Harju for deciding the ω -sequence equivalence problem.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Culik II and T. Harju, The ω-sequence equivalence problem for DOL systems is decidable, J. Assoc. Computing Machinerjy 31 (1984)282–298.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    K. Culik II and A. Salomaa, On infinite words obtained by iterating morphisms, Theoret. Cumput. Sci. 19 (1982)29–38.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    J. Englefriet and G. Rozenberg, Equality languages and fixed point languages, Information and Control 43 (1979)20–49.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. J. Grefenstette, Stability in L systems, Theoret. Comput. Sci. 24 (1983)53–71.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    T. Harju and M. Linna, On the periodicity of morphisms on free monoids, RAIRO Informatique Théorique (to appear).Google Scholar
  6. [6]
    T. Head, Expanded subalphabets in the theories of languages and semigroups, Intern. J. Comput. Math. 12 (1982)113–123.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    T. Head, G. Thierrin, and J. Wilkinson, DOL schemes and the periodicity of string embeddings, Theoret. Comput. Sci. 23 (1983)83–89.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    T. Head, Adhérences of DOL languages, Theoret. Comput. Sci. 31 (1984)139–149.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    G.T. Herman and A. Walker, Context-free languages in biological systems, Internat. J. Comput. Math. 4 (1975)369–391.MathSciNetCrossRefGoogle Scholar
  10. [10]
    J. van Leeuwen, On fixed points of monogenic functions in free monoids, Semigroup Forum 10 (1975)315–328.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    J.J. Pansiot, Decidability of periodicity for infinite words, RAIRO Informatique Théorique (to appear).Google Scholar
  12. [12]
    A. Salomaa, Morphisms on free moniods and language theory, in: R.V. Book, ed., Formal Language Theory (Academic Press, New York, 1980).Google Scholar
  13. [13]
    A. Salomaa, Jewels of Formal Language Theory (Computer Science Press, Rockville, MD, 1917.Google Scholar
  14. [14]
    G. Thierrin, Context-free and stationary languages, Intern. J. Comput. Math. 7 (1979)297–301.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Tom Head
    • 1
  • Barbara Lando
    • 1
  1. 1.Department of Mathematical SciencesUniversity of AlaskaFairbanksUSA

Personalised recommendations