Pharmacologic Bases of Antiparkinsonian Therapy

  • H. G. Menge
  • U. Brand


The pathologic mechanism underlying Parkinson’s disease, dopamine deficiency in the striatum (Ehringer and Hornykiewicz 1960), may be therapeutically redressed in several ways: by administering anticholinergics to reduce the cholinergic surplus, by substituting for the lack of transmitter by giving levodopa, by direct stimulation of dopaminergic receptors, or by inhibition of dopamine reuptake. Whether a pharmacotherapeutic measure is successful will ultimately depend on the stage to which the disease has progressed, the length of treatment provided, and the level of dosing applied. It is generally known, for example, that dopaminergic receptors themselves are changed both in density and responsiveness as a result of dopamine depletion and pharmacotherapy (Jellinger et al. 1982; Rinne et al. 1981). There is a clear correlation between progressive pathologic events and the type of treatment provided. In practice, the combination of different therapies has proved highly useful. It appears that combination therapy helps to prevent an excessive, one-sided influence on the transmitter systems implicated in the disease process (Fischer 1980).


Dopaminergic Receptor Antiparkinsonian Drug Human Blood Platelet Tool Substance Antiparkinsonian Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anden NE, Dahlström A, Fuxe K, Larsson K (1966) Functional role of the nigro-neustriatal dopamine neurones. Acta Pharmacol Toxicon (Copenh) 24: 263–274CrossRefGoogle Scholar
  2. Birdsall NJM (1982) National Institute for Medical Res. London (unpublished results, data on file)Google Scholar
  3. Brand U, Menge HG (1980) Antagonismus gegen den Tremor nach N-Carbamoyl-2(2.6-dichlorphenyl-acetamidin-HCl (LON-954) und Oxotremorin. Eine vergleichende Studie zum Wirkungsmechanismus. Arzneimittelforsch 30: 1242–1243Google Scholar
  4. Burt DR, Creese J, Snyder SH (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196: 326–328PubMedCrossRefGoogle Scholar
  5. Carlsson A (1975) Monoamine-depleting drugs. Pharmacol Ther B 1: 393–400PubMedGoogle Scholar
  6. Cho AK, Haslett WL, Jenden DJ (1962) The peripheral actions of oxotremorine, a metabolite of tremorine. J Pharmacol Exp Ther 138: 249PubMedGoogle Scholar
  7. Coward DM, Doggett NS, Thomas JE (1977) Central transmitter involvement in LON-954-induced tremorgenesis. Neuropharmacology 16: 479–484PubMedCrossRefGoogle Scholar
  8. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihre Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38: 1236PubMedCrossRefGoogle Scholar
  9. Eltze M (1980) The effect of prodipine and budipine on 14C-5-Hydroxytryptamine uptake and release by human blood platelets. Arzneimittelforsch 30: 1129–1134PubMedGoogle Scholar
  10. Fischer PA (ed) (1980) Parkinson-Syndrom: Kombinations- und Begleit-Therapien. Schattauer, StuttgartGoogle Scholar
  11. George R, Haslett WL, Jenden DJ (1962) The central action of a metabolite of tremorine. Life Sci 1: 361PubMedCrossRefGoogle Scholar
  12. Gothóni, P. Lehtinen M, Fincke M (1983) Drugs for Parkinson’s disease reduce tremor induced by physostigmine. Naunyn+Schmiedebergs Arch Pharmacol 323: 205–210PubMedCrossRefGoogle Scholar
  13. Janssen RA, Niemegeers JE, Schellekens KHL (1965) Is it possible to product the clinical effects of neuroleptic drugs (major tranquilizer) from animal data. Arzneimittelforsch 15: 104–117PubMedGoogle Scholar
  14. Jellinger K, Riederer P, Gabriel E (1982) D-2-receptor activity in Parkinson’s disease and schizophrenia: influence of drug treatment. Arch Pharmacol 321: (Suppl) R 23Google Scholar
  15. Julou L, Bardone MC, Ducrot R, Caffargue B, Loiseau G (1967) Comparison des effects des neuroleptiques dans divers tests, en administration unique et en administrations répétées. Hypothèses sur la signification des tests utilisés et leur valeur prévisionelle. Int Cong Ser 129: 293–303Google Scholar
  16. Juma J (1968) Depression by antiparkinson drugs of reserpine rigidity. Arch Pharmacol Exp Pathol 260: 80–88Google Scholar
  17. List SJ, Seeman P (1979) Dopamine agonists reverse the elevated 3H-neuroleptic binding in neuroleptic-pretreated rats. Life Sci 24: 1447–1452PubMedCrossRefGoogle Scholar
  18. Magnus R(1904) Versuche am überlebenden Dünndarm von Säugetieren. Pfluegers Arch Bd 102: 123CrossRefGoogle Scholar
  19. Menge HG, Brand U (1978) Zur Differenzierung der Wirkung kataleptogener Stoffe. Arzneimittelforsch 28: 1506–1507PubMedGoogle Scholar
  20. Menge HG, Brand U (1982) Zusammenfassende Darstellung der Pharmakologie von Budipin, einem neuen 4,4-Diphenylpiperidin-Derivat für die Parkinson-Therapie. Arzneimittelforsch 32 (I) 2: 85–98Google Scholar
  21. Menon MK, Vivonica CA, Haddox VG (1984) Evidence for presynaptic antagonism by amantadine of indirectly acting central stimulants. Psychopharmacology 82: 89–92PubMedCrossRefGoogle Scholar
  22. Nose T, Kogunia M (1970) A simple screening method for antiparkinsonian drugs in mice. Eur J Pharmacol 10: 83–86PubMedCrossRefGoogle Scholar
  23. Przegalinski E, Bigajska K, Lewandowska A (1982) The effect of budipine on the central serotoninergic system. Pol J Pharmacol Pharm 34: 309–315PubMedGoogle Scholar
  24. Reches A, Burke RE, Kuhn CM, Hassan MN, Jackson VR, Fahn S (1983) Tetrabenazine, an aminedepleting drug, also blocks dopamine receptors in rat brain. J Pharmacol Exp Ther 225: 515–521PubMedGoogle Scholar
  25. Rinne UK, Lonnberg P, Koskinen V (1981) Dopamine receptors in the parkinson brain. J Neural Transm 51: 97–106PubMedCrossRefGoogle Scholar
  26. Schäfer J, Hackmack G, Eistetter K, Krüger HG, Menge HG, Klosa J (1984) Synthese, physikalischchemische Eigenschaften und orientierende pharmakologische Untersuchungen von Budipin und verwandten 4,4-Diphenylpiperidinen. Arzneimittelforsch 34: 233–240Google Scholar
  27. Seeman P, Chan-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assay. Proc Natl Acad Sci USA 72: 4376–4380PubMedCrossRefGoogle Scholar
  28. Sethy VH, van Woert MH (1973) Antimuscarinic drugs-effect on brain acetylcholine and tremors in rats. Biochem Pharmacol 22: 2655–2591CrossRefGoogle Scholar
  29. Sethy VH, van Woert MH (1974) Regulation of striatal acetylcholine concentration by dopamine receptors. Nature 251: 529–530PubMedCrossRefGoogle Scholar
  30. Stille G (1971) Die Wirkung von Neuroleptica. Arzneimittelforsch 21: 386–527PubMedGoogle Scholar
  31. Sundermann RH, Wooten GE (1980) Biochemical properties of spiperone binding to rat brain. Pharmacology 21: 295–305PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. G. Menge
  • U. Brand

There are no affiliations available

Personalised recommendations