Skip to main content

Part of the book series: Halbleiter-Elektronik ((HALBLEITER,volume 18))

  • 138 Accesses

Zusammenfassung

Das Gebiet der amorphen Halbleiter ist heute noch ein sehr junges Arbeitsgebiet, das erst in den letzten Jahren stark expandierte. Der jetzige Zustand (1982) entspricht etwa dem der kristallinen Halbleiter von 1950. Halbleitende Eigenschaften amorpher Materialien wurden 1950 am Physikalisch-Technischen Institut der Akademie der Wissenschaften in Leningrad zuerst gefunden und untersucht. Lange Zeit spielten die amorphen Halbleiter in der etablierten Halbleiterphysik kristalliner Stoffe die Rolle eines enfant terrible, dessen erste kühne Anwendungen und ungewöhnlichen physikalischen Modelle nicht recht ernst genommen wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

Lehrbücher und Monographien

  1. Mott, N. F.; Davis, E. A.: Electronic processes in non-crystalline materials. Oxford: Clarendon Press 1979.

    Google Scholar 

  2. Brodsky, M. H. (ed.): Amorphous semiconductors. Berlin: Springer 1979 (Topics in Applied Physics, Vol. 36).

    Google Scholar 

  3. Yonezawa, F. (ed.): Fundamental physics of amorphous semiconductors. Berlin: Springer 1981 (Springer Series in Solid-State Sciences, Vol. 25).

    Google Scholar 

  4. Tauc, J. (ed.): Amorphous and liquid semiconductors. London: Plenum Press 1974.

    Google Scholar 

  5. Zingaro, R. A.; Cooper, W. C. (eds.): Selenium. New York: Van Nostrand Reinhold 1974.

    Google Scholar 

  6. Mort, J.; Pai, D. M. (eds.): Photoconductivity and related phenomena. Amsterdam: Elsevier 1976.

    Google Scholar 

  7. Schaffert, R. M.: Electrophotography. London: Focal Press 1975.

    Google Scholar 

  8. Hamakawa, Y. (ed.): Amorphous semiconductor, technologies and devices. Japan Anual Reviews in Electronics, Computers & Telecommunications. Amsterdam: North Holland 1982.

    Google Scholar 

Arbeiten, auf die im Text verwiesen wird

  1. Sayers, D. E.; Stern, E. A.; Lytle, F. W.: New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray-absorption fine structure. Phys. Rev. Lett. 27 (1971) 1204.

    Article  CAS  Google Scholar 

  2. Kolomiets, B. T.: Vitreous semiconductors (II). Phys. Status Solidi 7 (1964) 713.

    Article  CAS  Google Scholar 

  3. Grigorovici, R.: Structure of amorphous semiconductors. In [l.D], S. 45.

    Google Scholar 

  4. Davies, E. A.: States in the gap and defects in amorphous semiconductors. In [1.B], S. 41.

    Google Scholar 

  5. Solomon, I.: Spin effects in amorphous semiconductors. In [1.B], S. 189.

    Google Scholar 

  6. Kramer, B.; Weaire, D.: Theory of electronic states in amorphous semiconductors. In [l.B], S. 9.

    Google Scholar 

  7. Connell, G. A. N.: Optical properties of amorphous semiconductors. In [1.B], S. 73.

    Google Scholar 

  8. Mell, H.: Transport properties of tetrahedrally bonded amorphous semiconductors. In Stuke, J.; Brenig, W. (eds.): Proc. 5th Int. Conf. on Amorphous and Liquid Semiconductors. London: Taylor + Franzis, 1974, p 203.

    Google Scholar 

  9. In [1.A], S. 32.

    Google Scholar 

  10. Dolezalek, F. K.: Experimental techniques. In [1.F], S. 33.

    Google Scholar 

  11. Scher, H.: Theory of time-dependent photoconductivity in disordered systems. In [1.F], S. 71.

    Google Scholar 

  12. Davis, E. A.: Arsenic and other three-fold co-ordinated materials. In [1.A], S. 408.

    Google Scholar 

  13. Le Comber, P. G.; Spear, W.: Doped amorphous semiconductors. In [1.B], S. 251.

    Google Scholar 

  14. Spear, W. E.; Le Comber, P. G.: Amorphous tetrahedrally bonded solids. In [1.F], S. 185.

    Google Scholar 

  15. Lucovsky, G.; Hayes, T. M.: Short-range order in amorphous semiconductors. In [l.B], S. 215.

    Google Scholar 

  16. Fischer, R.: Luminescence in amorphous semiconductors. In [1.B], S. 159.

    Google Scholar 

  17. Lucovsky, G.: Selenium, the amorphous and liquid states. In Gerlach, E.; Grosse, P. (eds.): The physics of selenium and tellurium. Berlin: Springer 1979 (Springer Series in Solid-States Sciences, Vol. 13, p 178).

    Google Scholar 

  18. Wendtland, W.W. In West, T. S. (eds.): MTP international review of science, physical chemistry. Series one. Vol. 13, London: Butterworths 1973, p 177.

    Google Scholar 

  19. Street, R. A.: Electron and hole transport in amorphous AS2Se3. Phil. Mag. B 38 (1980) 209.

    Google Scholar 

  20. Pfister, G.; Morgan, M.: Defects in chalcogenide glasses I und II. Phil. Mag. B 41 (1980) 209.

    CAS  Google Scholar 

  21. Pfister, G.: New aspects of electronic properties of amorphous selenium and its use in xerography. Contemp. Phys. 20 (1979) 449.

    Article  CAS  Google Scholar 

  22. Pai, D. M.; Enck, R. C: Onsager mechanism of photogeneration in amorphous selenium. Phys. Rev. B 11 (1975) 5163.

    Article  CAS  Google Scholar 

  23. Kawamura, T.; Yamamoto: Electrophotographic applications of amorphous semiconductors. In [1.H], S. 311.

    Google Scholar 

  24. Schmidlin, F. W.: Electrophotography. In [1.F], S. 421.

    Google Scholar 

  25. Mort, J.: Polymers as electronic materials. Adv. Phys. 29 (1980) 367. Siehe auch Schaffert, R. M.: Organic photoconductors. In [1.G], S. 380.

    Article  CAS  Google Scholar 

  26. Adler, D.; Shur, M. S.; Silver, M.; Ovshinsky, S. R.: Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51 (1980) 3289.

    Article  CAS  Google Scholar 

  27. Ovshinsky, S. R.; Fritzsche, H.: Amorphous semiconductors for switching, memory and imaging applications. IEEE Trans. Electr. Dev. ED-20 (1973) 91.

    Article  Google Scholar 

  28. Guntersdorfer, M.: Thermal effects connected with switching in amorphous semiconducting chalcogenide films. J. Appl. Phys. 42 (1971) 2566.

    Article  CAS  Google Scholar 

  29. Homma, K.; Henisch, H. K.; Ovshinsky, S. R.: New experiments on threshold switching in chalcogenide and non-chalcogenide alloys. J. Non-Cryst. Solids 35 u. 36 (1980) 1105.

    Article  Google Scholar 

  30. De Neufville, J. P.: Photostructural transformations in amorphous solids. In Seraphin, B. O. (ed.): Optical properties of solid new developments. Amsterdam: North Holland 1976, p 437.

    Google Scholar 

  31. Kolomiets, B.T.; Lyubin, V. M.: Reversible photoinduced changes in the properties of chalcogenide vitrous semiconductors. Mater. Res. Bull. 13 (1978) 1343.

    Article  CAS  Google Scholar 

  32. Tanaka, K. : Reversible photostructural change: Mechanisms, properties and applications. J. Non-cryst. Solids 35 u. 36 (1980) 1023.

    Article  Google Scholar 

  33. Keneman, S. A.; Bordogna, J.; Zemel, J. N.: Evaporated films of arsenic trisulfide: Dependence of optical properties on light exposure and heat cycling. J. Opt. Soc. Am. 68 (1978) 32.

    Article  CAS  Google Scholar 

  34. Leadbetter, A. J.; Apling, A. J.: Daniel, M. F.: Structures of vapour-deposited amorphous films of arsenic chalcogenides. J. Non-Cryst. Solids 21 (1976) 47.

    Article  CAS  Google Scholar 

  35. Igo, T.; Toyoshima, Y.: A reversible optical change in the As-Se-Ge glass. J. Non-Cryst. Solids 11 (1973) 304.

    Article  CAS  Google Scholar 

  36. Berkes, J. S.; Ing, S. W.; Hillegas, W. J.: Photodecomposition of amorphous As2Se3 and As2Se3. J. Appl. Phys. 42 (1971) 4908.

    Article  CAS  Google Scholar 

  37. Averianov, V. L.; Kolobov, A. V.; Kolomiets, B. T.; Lyubin, V. M.: Thermal and optical bleaching in darkened films of chalogenide vitreous semiconductors. Phys. Status Solidi (A) 57 (1980) 81.

    Article  CAS  Google Scholar 

  38. Klose, P. H.: Effect of trapping levels on photostructural image polarity in a selenium glass. In Spear, W. E. (ed.): Proc. 7th Int. Conf. Amorphous and Liquid Semiconductors. Edinburgh: CICL University of Edinburgh 1977, p 797.

    Google Scholar 

  39. Yoshikawa, A.; Nagai, H.; Mizushima, Y.: New application of Se-Ge glasses to silicon microfabrication technology. Jap. J. Appl. Phys. 16 (1977) Suppl. 16–1, 67.

    Article  Google Scholar 

  40. Tai, K. L.; Vadimsky, R. G.; Kemmerer, C.T.; Wagner, J. S.; Lamberti, V. E.; Timko, A. G.: Submicron optical lithography using an inorganic resist/polymer bilevel scheme. J. Vac. Sci. Technol. 17 (1980) 1169.

    Article  CAS  Google Scholar 

  41. Zembutsi, S.: Optical massmemories and optical IC elements applications. In [1.H], S. 296.

    Google Scholar 

  42. Carlson, D. E.: Recent developments in a-Si:H solar cells. Solar Energy Mater. 3 (1980) 503.

    Article  CAS  Google Scholar 

  43. Hamakawa, Y.: Device physics and optimum design of amorphous silicon photovoltaic devices. In [l.H], S. 134.

    Google Scholar 

  44. Moore, A. R.: Photoelectromagnetic effect in amorphous silicon. Appl. Phys. Lett. 37 (1980) 327.

    Article  CAS  Google Scholar 

  45. Hamakawa, Y.; Okamoto, H.; Nitta, Y.: Horizontally multi-layered a-Si photo-voltaic cells. J. Non-Cryst. Solids 35 u. 36 (1980) 749.

    Article  Google Scholar 

  46. Madan, A.; Le Comber, P. G.; Spear, W. E.: Investigation of the density of localized states in a-Si using the field effect technique. J. Non-Cryst. Solids 20 (1976) 239.

    Article  CAS  Google Scholar 

  47. Le Comber, P. G.; Snell, A. J.; Mackenzie, K. D.; Spear, W. E.: Applications of a-Si field effect transistors in liquid crystal displays and in integrated logic circuits. J. Phys. 42 (1981) C 4–423.

    Google Scholar 

  48. Fukai, M.; Nagata, S.: Amorphous silicon electronic devices. In [1.H], S. 199.

    Google Scholar 

  49. Hirai, T.; Maruyama, E.: Integrated photosensors and imaging devices. In [l.H], S. 264.

    Google Scholar 

  50. Gibson, R. A.; Spear, W. E.; Le Comber, P. G.; Snell, A. J.: Recent developments in amorphous silicon p-n junction devices. J. Non-Cryst. Solids 35 u. 36 (1980) 725.

    Article  Google Scholar 

  51. Weitzel, I.; Primig, R.; Kempter, K.: Preparation of glow discharge amorphous silicon for passivation layers. Thin Solid Films 75 (1981) 143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Heywang, W. (1984). Amorphe Halbleiter. In: Amorphe und polykristalline Halbleiter. Halbleiter-Elektronik, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95447-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95447-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12981-3

  • Online ISBN: 978-3-642-95447-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics