Skip to main content

Entwurfsverfahren für Robuste Regelungen

Design Methods for Robust Control Systems

  • Conference paper
Fortschritte durch digitale Meß- und Automatisierungstechnik

Part of the book series: Fachberichte Messen · Steuern · Regeln ((FACHBERICHTE,volume 10))

  • 179 Accesses

Summary

The problem of robust control is introduced and formulated as a multi-model problem. A controller structure is assumed and its free parameters are designed by three methods: Frequency domain, pole region assignment and performance vector optimization. A brief survey of other robustness approaches for frequency domain stability margins and robust asymptotic tracking concludes the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ackermann, J.: Abtastregelung, Bd. II Entwurf robuster Systeme, Berlin: Springer 1983.

    Google Scholar 

  2. Horowitz, I., Sidi, M.: Synthesis of cascaded multiple-loop feedback systems with large plant parameter ignorance, Automatica (1973), vol. 9, 589–600.

    Article  MATH  Google Scholar 

  3. Horowitz, I.: Quantitative synthesis of uncertain multiple input-output feedback system, Int.J.Control (1979), vol. 30, 81–106.

    Article  MathSciNet  MATH  Google Scholar 

  4. Sondergeld, K.P.: A generalization of the Routh1-Hurwitz stability criteria and application to feedback design, IEEE Trans. Aut. Control (1983).

    Google Scholar 

  5. Ackermann, J., Kaesbauer, D.: D-Decomposition in the space of feedback gains for arbitrary pole regions, Preprints VIII IFAC Congress, Kyoto, Vol. IV, 12–17. (Eingereicht auch bei Automatica)

    Google Scholar 

  6. Ackermann, Jw Türk, S.: A common controller for a family of plant models. Preprints IEEE Conf. on Decision and Control, Orlando 1982, 240–244.

    Google Scholar 

  7. Franklin, S.N., Ackermann, J.: Robust flight control: A design example. AIAA J. Guidance and Control (1981), vol. 4, 597–605.

    Article  Google Scholar 

  8. Kreisselmeier, G., Steinhauser, R.: Systematische Auslegung von Reglern durch Optimierung eines vektoriellen Gütekriteriums, Regelungstechnik (1979), vol. 27, 76–79.

    MATH  Google Scholar 

  9. Kreisselmeier, G.: Controller design using a performance index vector and a gradient-free parameter optimization algorithm, Eingereicht bei IEEE Trans. Aut. Control.

    Google Scholar 

  10. Kreisselmeier, G., Steinhauser, R.: Application of vector performance optimization to a robust control loop design for a fighter aircraft, Int. J. Control (1983), vol. 37, 251–284.

    MATH  Google Scholar 

  11. Sander, N., Steinhauser, R.: Entwurf eines Flugzustandsreglers für einen Flugkörper mittels Optimierung eines vektoriellen Gütekriteriums, DFVLR-Forschungsbericht, erscheint 19 83.

    Google Scholar 

  12. Steinhauser, R.: Regelung eines Tieftemperatur-Windkanals, Vortrag beim Regelungstechnischen Kolloquium Boppard, Feb. 1983.

    Google Scholar 

  13. Cuno, B., Steinhauser, R.: Design of automatic generation control by optimizing a vector performance index. Eingereicht bei Automatica.

    Google Scholar 

  14. Zakian, V., A1 Naib, U.: Design of dynamical and control systems by a method of inequalities, Proc. IEE (1973) 120, 1421.

    Google Scholar 

  15. Harvey, C.A. Pope, R.E.: Insensitive control technology development, NASA Contractor Report 2947, Feb. 1978.

    Google Scholar 

  16. Vinkler, A., Wood, L.: A comparison of several techniques for designing controllers of uncertain dynamic systems, Preprints IEEE Conf. on Decision and Control, San Diego, 1978, 31–38.

    Google Scholar 

  17. Gembicki, F.W., Haimes, Y.Y.: Multiobjective optimization approach to performance and sensitivity: The goal attainment method. IEEE Trans. Aut. Control (1975), vol. 20, 669–771.

    Article  Google Scholar 

  18. Tabak, 0., Schy, A.A., Giesy, D.P., Johnson, K.G.: Application of multiobjective optimization in aircraft control systems design, Automatica (1979), vol. 15, 595–600.

    Article  Google Scholar 

  19. Mayne, D.Q., Polak, E., Sangiovanni-Vincentelli, A.: Computer-aided design via optimization: A review, Automatica (1982), vol. 18, 147–154.

    Article  MATH  Google Scholar 

  20. Doyle, J.C., Stein, G.: Multivariable feedback design: Concepts for a classical/modern synthesis, IEEE Trans. Aut. Control (1981), 4–16.

    Google Scholar 

  21. Postlethwaite, I., Edmunds, J.M., MacFarlane, A.G.J.: Principal gains and principal phases in the analysis of linear multi-variable feedback systems, IEEE Trans. Aut. Control (1981), 32–46.

    Google Scholar 

  22. Safanov, M.G., Laub, A.J., Hartmann, G.L.: Feedback properties of multivariable systems: The role of the return difference matrix. IEEE Trans. Aut. Control (1981), 47–65.

    Google Scholar 

  23. Cruz, J.B., Freudenberg, J.S., Looze, D.P.: A relationship between sensitivity and stability of multivariable feedback systems, IEEE Trans. Aut. Control (1981), 66–74.

    Google Scholar 

  24. Kalman, R.E.: When is a linear system optimal? Trans. ASME, J. Basic Engineering (1964), vol. 86, 51–60.

    Article  Google Scholar 

  25. Anderson, B.D.O., Moore, J.B.: Linear optimal control, Englewood Cliffs: Prentice Hall, 1971.

    MATH  Google Scholar 

  26. Lektomaki, N.A., Sandell, N.R., Athans, A.: Robustness results in LQG based multivariable control designs, IEEE Trans. Aut. Control (1981), vol. 26, 75–93.

    Article  Google Scholar 

  27. Willems, Jacques, van der Voorde, H.: The return difference for discrete-time optimal feedback systems, Automatica (1978), vol. 14, 511–513.

    Article  Google Scholar 

  28. Davison, E.J.: Robust controller design. Kapitel 13 in Bell, Cook, Munro (ed.): Design of modern control systems. Stevenage: Peregrinus, 1982.

    Google Scholar 

  29. Ackermann, J.: Abtastregelung, Berlin, Springer 1972 und 1983, Bd. I, 237–243.

    Google Scholar 

  30. Young, K.K.D., Kokotovic, P., Utkin, V.: A singular perturbation analysis of high-gain feedback systems. IEEE Trans. Aut. Control (1977), vol. 22, 931–938.

    Article  MathSciNet  MATH  Google Scholar 

  31. Franke, D.: Strukturvariable Regelung ohne Gleitzustande, Regelungstechnik (1982), 271–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Ackermann, J. (1983). Entwurfsverfahren für Robuste Regelungen. In: Syrbe, M., Thoma, M. (eds) Fortschritte durch digitale Meß- und Automatisierungstechnik. Fachberichte Messen · Steuern · Regeln, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95443-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95443-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12862-5

  • Online ISBN: 978-3-642-95443-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics