Radionuclide Imaging of Cerebral Tumours in Children

Abstract

For many years radionuclide scanning has been the only noninvasive imaging procedure for studying children with suspected central nervous system tumours. Since the introduction of computerized axial tomography (CT) this procedure has proved to be the most effective noninvasive method for examining intracranial tumours in children. On the other hand, in recent years there has been important progress in nuclear medicine equipment by the development of high resolution gamma cameras and computerized data processing systems and the introduction of new 99mTechnetium labelled radiopharmaceuticals. This improvement of cerebral radionuclide studies has increased the accuracy and specificity of the results of radionuclide cerebral tumour imaging.

Keywords

Permeability Albumin Citrate Adenoma Radionuclide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakay, L.: Basic aspects of brain tumour localization by radioactive substances: review of current concepts. J. Neurosurg. 27, 239–245 (1967)PubMedCrossRefGoogle Scholar
  2. 2.
    Biersack, H. J., Knopp, R., Wappenschmidt, J., Winkler, C.: “Single Photon” Emissions-Computertomographie des Hirns mit einer rotierenden Gammakamera — Ergebnisse bei 471 Patienten. Nuc. Compact 12, 130–134 (1981)Google Scholar
  3. 3.
    Carril, J. M., MacDonald, A. F., Dendy, P. P. et al.: Cranial scintigraphy: value of adding emission computed tomographic sections to conventional pertechnetate images (512 cases) J. Nucl. Med. 20, 1117–1123 (1979)PubMedGoogle Scholar
  4. 4.
    Conway, J. J., Quinn, J. L.: Brain imaging in pediatrics. In: James, A. E., Wagner H. N. Jr., Cooke, R. E. (eds.): Pediatric Nuclear Medicine, pp. 115–126, Philadelphia: W. B. Saunders 1974Google Scholar
  5. 5.
    Gates, G. F., Fishman, L. S., Segall, H. D.: Scintigraphic detection of congenital intracranial vascular malformations, J. Nucl. Med. 19, 235–244 (1978)PubMedGoogle Scholar
  6. 6.
    Hör, G., el Helou, A.: Cerebrale Sequenz-Szintigraphie: Perfusionsdiagnostik in pädiatrischer Neurologie, Neurochirurgie und Perinatalogie, in: Hahn, K. (ed.): Pädiatrische Nuklearmedizin, pp. 3–11, Band 2, Mainz: Kirchheim 1980Google Scholar
  7. 7.
    Kaul, A., Roedler H. D., Hine, G. J.: Internal absorbed dose from administered radiopharmaceuticals. In: Medical radionuclide imaging, IAEA, Vienna 1977, Vol. II, p. 423Google Scholar
  8. 8.
    Kaul, A., Roedler, H. D.: Patients radiation exposition caused by radiopharmaceuticals. Nuc. Compact 9, 22–28 (1978)Google Scholar
  9. 9.
    Maynard, C. D., Cowan, R. J.: Specific brain scan diagnosis. Curr. Probl. Radiol. 3, 1–40 (1973)Google Scholar
  10. 10.
    Rollo, F. D., Cavalieri, R. R., Born, M. et al.: Comparative evaluation of 99mTcGH, 99mTc O4, and 99mTcDTPA as brain imaging agents. Radiology 123, 379–383 (1977)PubMedGoogle Scholar
  11. 11.
    Ryerson, T. W., Spies, S. M., Singh, N. B. et al: A quantitative clinical comparison of three 99mTechnetium labeled brain imaging radiopharmaceuticals. Radiology 127, 429–432 (1978)PubMedGoogle Scholar
  12. 12.
    Waxman, A. D., Tanasescu, D., Siemsen, J. K. et al.: Technetium-99m-glucoheptonate as a brain scanning agent: critical comparison with pertechnetate. J. Nucl. Med., 17, 345–348 (1976)PubMedGoogle Scholar
  13. 13.
    Witcofski, R. L., Maynard, C. D., Roper, T. J.: A comparative analysis of the accuracy of the Tc-99m pertechnetate brain scan: followup of 1,000 patients. J. Nucl. Med. 8, 187–196 (1967)PubMedGoogle Scholar
  14. 14.
    Tanasescu, D., Wolfstein, R. S., Waxman, A. D.: Critical evaluation of 99mTc-glucoheptonate as a brain imaging agent. Radiology 130, 421–423 (1979)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • K. Hahn

There are no affiliations available

Personalised recommendations