Advertisement

Influence of Strouhal Number on the Structure of Flat Plate Turbulent Boundary Layer

  • J. Cousteix
  • J. Javelle
  • R. Houdeville
Conference paper

Abstract

The development of an oscillating turbulent boundary layer is studied along a flat plate. The Strouhal number, based on a fictitious origin of the boundary layer, varies from 1.5 to 18. Systematic measurements of the velocity profiles are carried out and are presented in the form of the harmonic analysis of the velocity, as well as of the displacement thickness. It is shown that any quantity, for example the phase and the amplitude of the displacement thickness, oscillates as the Strouhal number increases. The period of this oscillation can be correctly estimated from a small perturbation development of the Von Kàrmàn momentum integral equation.

The evolution of the phase of velocity profiles near the wall is carefully examined. An estimation of the wall shear stress is deduced from the law of the wall, and is compared to direct measurements obtained with a skin friction gauge.

The evolution in time of the u-component of the kinetic energy of turbulence and of the correlation coefficient, are presented in a typical case.

Keywords

Wall Shear Stress Skin Friction Turbulent Boundary Layer Strouhal Number Displacement Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Houdeville, R., Cousteix, J.: “Couches Limites Turbulentes en Ecoulement Pulse avec Gradient de Pression Moyen Défavorable”, La Recherche Aérospatiale, 1979-1, pp. 33-48 NASA Tr. TM 75799-N 8017400Google Scholar
  2. 2.
    Simpson, R.L.: “Features of Unsteady Turbulent Boundary Layers as Revealed From Experiments”, Proc. Conf. on Unsteady Aerodynamics, Ottawa, Sept. 1977, AGARD-CP-227Google Scholar
  3. 3.
    Karlsson, S.K.F.: An unsteady turbulent boundary layer. J. Fluid Mech. 5, 622–636 (1959)ADSMATHCrossRefGoogle Scholar
  4. 4.
    Cousteix, J., Houdeville, R.: “Turbulent Boundary Layer Calculations in Unsteady Flow”, in Numerical Methods in Applied Fluid Dynamics, (Academic, New York 1980) pp. 615–644Google Scholar
  5. 5.
    Cousteix, J., Houdeville, R., Javelle, J.: “Response of a Turbulent Boundary Layer to a Pulsation of the External Flow With and Without Adverse Pressure Gradient”, Proceedings of the IUTAM Symposium on Unsteady Turbulent Shear Flows, Toulouse, May 1981, (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  6. 6.
    Cousteix, J., Desopper, A., Houdeville, R.: “Structure and Development of a Turbulent Boundary Layer in an Oscillatory External Flow”, in Turbulent Shear Flows I, ed. by F. Durst, B.E. Launder, F.W. Schmidt, J.H. Whitelaw (Springer, Berlin, Heidelberg, New York 1979) pp. 154–171CrossRefGoogle Scholar
  7. 7.
    Binder, G., Kueny, J.L.: “Measurements of the Periodic Velocity Oscillations near the Wall in Unsteady Turbulent Channel Flow”, IUTAM Symposium on Unsteady Turbulent Shear Flows, Toulouse May 1981 (Springer, Berlin, Heidelberg, New York 1981) pp. 100–108CrossRefGoogle Scholar
  8. 8.
    Rubesin, M.W., Okuno, A.F., Mateer, C.C., Brosh, A.: “A Hot-Wire Surface Gauge for Skin Friction and Separation Detection Measurements”, NASA TM X62465, 1975Google Scholar
  9. 9.
    Cousteix, J., Juillen, J.C.: Jauges à fil chaud pour la mesure du frottement pariétal (réalisation, étalonnage, application). Rech. Aérosp. 3, 207–216 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • J. Cousteix
    • 1
  • J. Javelle
    • 1
  • R. Houdeville
    • 1
  1. 1.Aerothermodynamics Department ONERA/CERTF-Toulouse CedexFrance

Personalised recommendations