Advertisement

Measure Extensions According to a Given Function

  • Dieter Bierlein
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 157)

Abstract

The question how to make a real function measurable by an adequate extension1) of a given measure is motivated by problems of applied mathematics. The question arises especially in connection with the definition of any feasible “randomized extensions” of a game with non-denumerable many pure strategies.

Keywords

Pure Strategy Borel Subset Measure Extension Measurable Selection Informative Summary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AUMANN, R.J.: Measurable utility and the measurable choice theorem. Proc.Coll.Intern. C.N.R.S. “La Décision”, Aixen-Provence, 15–26 (1967).Google Scholar
  2. [2]
    BIERLEIN, D.: Der Graph meßbarer Funktionen mit abstraktem Definitionsbereich. Math. Zeitschrift 76, 468–471 (1961).CrossRefGoogle Scholar
  3. [3]
    BIERLEIN, D.: Über die Fortsetzung von Wahrscheinlichkeits-feldern. Z.Wahrscheinlichkeitstheorie verw. Gebiete 1, 28–46 (1962).CrossRefGoogle Scholar
  4. [4]
    BIERLEIN, D.: Die Konstruktion eines Maßes … Z. Wahrscheinlichkeitstheorie verw. Gebiete 1, 126–140 (1962).CrossRefGoogle Scholar
  5. [5]
    HILDENBRAND, W.: Core and equilibria of a large economy. Princ. Univ. Press, Princeton,.Google Scholar
  6. [6]
    KURZ, A.: Uniformisierung analytischer Mengen und eine Anwendung bei der Maßfortsetzung. Archiv Math. 29, 204–207 (1977).CrossRefGoogle Scholar
  7. [7]
    LANDERS, D. and ROGGE, L.: On the extension problem for measures. Z. Wahrscheinlichkeitstheorie verw. Gebiete 30, 167–169 (1974).CrossRefGoogle Scholar
  8. [8]
    LEHN, J.: Maßfortsetzungen und Aumann’ s Selektionstheorem, Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 265–268 (1976).CrossRefGoogle Scholar
  9. [9]
    MARCZEWSKI, E.: Ensembles indépendants et … Fund.Math. 35, 13–28 (1968).Google Scholar
  10. [10]
    MERLO, J.C. and PANZONE, R.: Notes on the measure extension problem. Rev. Un. Mat. Argentina 23, 77–88 (1966/67).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Dieter Bierlein
    • 1
  1. 1.Universität RegensburgGermany

Personalised recommendations