The Major Histocompatibility System of the Dog

  • H. M. Vriesendorp
  • H. Grosse-Wilde
  • M. E. Dorf


Dogs are frequently used as experimental animals in transplantation research. For ethical and economical reasons this use should be limited to those experimental protocols in which members of the canine species will provide the best answers to the questions that an investigator wants to answer. This will be the case when transplantation surgeons require an experimental subject of a size and temperament that allows major operations and intensive postoperative care. Dogs may also be useful when new biological concepts, after their development in inbred murine strains, need further definition and clarification in an outbred preclinical animal model. In such an animal model histocompatibility systems should be amenable for analysis for a proper evaluation of the results obtained and an extrapolation to the treatment of human patients. Because of this and because of other advantageous properties of dogs, such as large family size and relatively short gestation and generation times (63 and 360 days, respectively), histocompatibility has been studied in this species.


Donor Selection Marrow Graft Bone Marrow Graft Joint Report Histocompatibility System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrons, S., and Kissmeyer-Nielsen, F. HL-A typing: Influence of methodological variation. Symp. Series Immunobiol. Std. 18:85–88. Karger, Basel, 1973.Google Scholar
  2. Albert, E.D., Mickey, M.R., Ting, A., and Terasaki, P.I. Deduction of 2140 HL-A haplotypes and segregation analysis in 535 families. Transplant. Proc. 5:215–221, 1973a.PubMedGoogle Scholar
  3. Albert, E.D., Storb, R., Erickson, V.M., Graham, T., Parr, M., Templeton, J.W., Mickey, M.R., and Thomas, E.D. Serology and genetics of the DL-A system I. Establishment of specificities. Tissue Antigens 3:417–430, 1973 b.PubMedCrossRefGoogle Scholar
  4. Allen, F.H. Linkage of HL-A and GBG. Vox. Sang. 27:382–000, 1974.PubMedCrossRefGoogle Scholar
  5. Altman, B., and Simonsen, M. Cytotoxic antibody and hemagglutinin in canine homotrans-plantation. Ann. N.Y. Acad. Sci. 120:28–34, 1964.PubMedCrossRefGoogle Scholar
  6. Andresen, E., Baker, L.N., and Rowe, K.E. The usefulness and limitation of two-by-two tables in distinguishing between allelism and non-allelism based on random population data. Immunogenet. Letters 3:15–20, 1963.Google Scholar
  7. Balner, H., and van Vreeswijk, W. The major histocompatibility complex of rhesus monkeys (RHL-A) V-Attempts at serological identification of MLR determinants and postulation of a I region in the RhL-A complex. Transplant. Proc. 7:13–20, 1975.Google Scholar
  8. Benacerraf, B., and Levine, B.B. Immunological specificity of the delayed and immediate hypersensitivity reactions. J. Exp. Med. 115:1023–1043, 1962.PubMedCrossRefGoogle Scholar
  9. Bijnen, A.B., Schreuder, I., Meera Khan, P., Allen, F.H., Giles, C. M., Los, W.R.T., Volkers, W.S., and van Rood, J.J. Linkage relationships of the loci of the major histocompatibility complex in families with a recombination in the HLA region. J. Immunogenet 3:171–183 1976.PubMedCrossRefGoogle Scholar
  10. Biozzi, G., Stiffel, C., Boutillier, Y., and Decreusefond, C. Genetic regulation of the function of antibody-producing cells. In B. Amos (ed.), Progress in Immunology-1st Int. Congr. Immunol, pp. 529–545, Academic Press, New York, 1971.Google Scholar
  11. Bluestein, H.G., Green, I., and Benacerraf, B. Specific immune response genes of the guinea pig. II. Relationship between the poly-L-lysine gene and the genes controlling immune responsiveness to copolymers of L-glutanic acid and L-alanine and L-glutanine acid and L-glutanic acid and L-tyrosine in random bred Hartley guinea pigs. J. Exp. Med. 134:471–481, 1971.PubMedCrossRefGoogle Scholar
  12. Bbdmer, W.F. Population genetics of the HL-A system: Retrospect and prospect. In J. Dausset and J. Colombani (eds.), Histocompatibility Testing-pp. 611–619, Munksgaard, Copenhagen 1973.Google Scholar
  13. Bos, E., Meeter, K., Stibbe, J., Vriesendorp, H.M., Westbroek, D.L., de Vries, M.J., Nauta, J., and van Rood, J.J. Histocompatibility in orthotopic heart transplantation in dogs. Transplant. Proc. 3:155–156, 1971.PubMedGoogle Scholar
  14. Calne, R.Y., White, H.J.O., Yoffa, D.E., Maginn, R.R., Binns, R.M., Samuel, J.R., and Molina, V.P. Observation of orthotopic liver transplantation in the pig Br Med J 2:478–480, 1967.PubMedCrossRefGoogle Scholar
  15. Cavalli Sforza, L.L., and Bodmer, W.F. The Genetics of Human Populations. W.H. Freeman, San Francisco, 1970.Google Scholar
  16. Cepellini, R., Mattiuz, P.L., Scudeller, G., and Visetti, M. Experimental allotransplantation in man. II. The role of A1-A2 and B antigens. Transplant. Proc. 1:390–394, 1969.Google Scholar
  17. Chandler, J.G., Villar, H., Lee, S., Williams, R.J., Nakagi, N.T., Ferrebee, J.W., and Orloff, M.J. The influence of histocompatibility matching according to lymphocyte types on orthotopic liver transplantation in dogs. Surgery 71:807–816, 1971.Google Scholar
  18. Click, R.E., Benck, L., and Alter, B.J. Immune responses in vitro. I. Culture conditions for antibody synthesis. Cell. Immunol. 3:264–276, 1972.PubMedCrossRefGoogle Scholar
  19. Cudkowicz, G., and Bennett, M. Peculiar immunobiology of bone marrow allografts. I. Graft rejection by irradiated responder mice. J. Exp. Med. 134:83–102, 1971.PubMedCrossRefGoogle Scholar
  20. Dausset, J., and Rapaport, F.T. The role of blood group antigens in human histocompatibility. Ann. N.Y. Acad. Sci. 129:408–420, 1966.CrossRefGoogle Scholar
  21. Dausset, J., Rapaport, F.T., Cannon, F.D., and Ferrebee, J.W. Histocompatibility studies in a closely bred colony of dogs. III. Genetic definition of the DL-A system of canine histocompatibility, with particular reference to the comparative immunogenicity of the major transplantable organs. J. Exp. Med. 134:1222–1237, 1971.PubMedCrossRefGoogle Scholar
  22. de Gruyl, J., Westbroek, D.L., Dijkhuis, C. M., Vriesendorp, H.M., MacDicken, L, Elion-Gerritsen, W., Verschoor, L., Hulsmans, H.A.M., and Hörchner, P. Influence of DL-A matching, ALS and 24 hour preservation on isolated pancreas allograft survival. Transplant. Proc. 3:755–759, 1973.Google Scholar
  23. de Langen, Z.J., de Jong, B., Eysink Smeets, M., Vriesendorp, H.M., Jeruzalem, Ch.R., and Wildevuur, Ch.R.H. Unmodified lung allograft survival related to the major histocompatibility complex in the dog. In J.P. Cachera (ed.), Abstracts of the 10th Congress of the European Society for Experimental Surgery-pp. 166, 1975.Google Scholar
  24. Demant, P., Capková, J., Hinzová, E., and Vorácová, B. The role of the histocompatibility 2-linked Ss Slp region in the control of mouse complement. Proc. Natl. Acad. Sci. (USA) 70:863–864, 1973.CrossRefGoogle Scholar
  25. Dorf, M.E., Balner, H., and Benacerraf, B. Mapping of the immune response genes in the major histocompatibility complex of the rhesus monkey. J. Exp. Med. 142:673–693, 1975.PubMedCrossRefGoogle Scholar
  26. Dorf, M.E., Dunham, E.K., Johnson, J.P., and Benacerraf, B. Genetic control of the immune response. The effect of non H-2 linked genes on antibody production. J. Immunol. 112:1329–1336, 1973.Google Scholar
  27. Dorf, M.E., Stimpfling, J.H., and Benacerraf, B. Requirements for two H-2 complex Ir genes for the immune response to the 1-GLU, 1-LYS-1-PHE terpolymer. J. Exp. Med. 147:1459–1463, 1975.Google Scholar
  28. Epstein, R.B., Storb, R., Ragde, H., and Thomas, E.D. Cytotoxic antisera for bone marrow grafting in littermate dogs. Transplantation 6:45–58, 1968.PubMedCrossRefGoogle Scholar
  29. Epstein, R.B., Storb, R., and Thomas, E.D. Relation of canine histocompatibility testing to marrow grafting. Transplant. Proc. 3:161–164, 1971.PubMedGoogle Scholar
  30. Fu, S.W., Kunkel, H.G., Brusman, H.P., Allen, F.P., Jr., and Fotino, M. Evidence for linkage between HL-A histocompatibility genes and those involved in the synthesis of the second component of complement. J. Exp. Med. 140:1108–1111, 1974.PubMedCrossRefGoogle Scholar
  31. Gluckman, E., Parr, M., Mickelson, E., Schroeder, M.L., and Storb, R. Mixed leucocyte cultures in dogs. A micro-technique, using gradient separated cells. Transplantation 15:642–645, 1973.PubMedCrossRefGoogle Scholar
  32. Gluckman, E., Schroeder, M.L., Storb, R., Goselink, H., Johnson, S., Graham, T.C., Pretorius, G., and Thomas, E.D. One-way nonstimulation of mixed leukocyte culture in dog families. Transplantation 19:36–42, 1975.PubMedCrossRefGoogle Scholar
  33. Goldman, S.F., and Flad, H.D. Histocompatibility testing in dogs. I. A semimicro mixed lymphocyte culture (MLC) technique for histocompatibility matching in dogs. Tissue Antigens 5:145–154, 1975.Google Scholar
  34. Goldman, S.F., Krumbacher, K., Schnappauf, H., and Flad, H.D. Definition of MLC specificities in the dog. Transplant. Proc. 7:389–393, 1975.Google Scholar
  35. Grosse-Wilde, H., Baumann, P., Netzel, B., Kolb, H.J., Wank, R., Mempel, W., and Albert, E. D. One way non stimulation in MLC related to DL-A homozygosity. Transplant. Proc. 5:1567–1571, 1973.PubMedGoogle Scholar
  36. Grosse-Wilde, H., Vriesendorp, H.M., Wank, R., Mempel, W., Dechamps, B., Honauer, U., Baumann, P., Netzel, B., Kolb, H. J., and Albert, E. D. Identification of four MLC specificities in the dog. Tissue Antigens 4:229–237, 1974PubMedCrossRefGoogle Scholar
  37. Grosse-Wilde, H., Netzel, B., Mempel, W., Ruppelt, W., Brehm, G., Bertrams, J., Ewald, R., Lenhard, V., Rittner, Ch., Scholz, S., and Albert, E. Immunogenetics of LD determinants in man. In F. Kissmeyer-Nielsen (ed.), Histocompatibility Testing 1975 pp. 526–532, 1975Google Scholar
  38. Grosse-Wilde, H., Vriesendorp, H.M., Netzel, B., Mempel, W., Kolb, H.J., Wank, R., and Albert, E.D. Immunogenetics of 7 LD alleles of the DLA complex in mongrels, beagles and labradors. Transplant. Proc. 7 (Suppl. 1): 159–169, 1975.Google Scholar
  39. Halasz, N.A., Orloff, M.J., and Hirose, F. Increased survival of renal homografts in dogs after injection of graft donor blood. Transplantation 2:453–458, 1964PubMedCrossRefGoogle Scholar
  40. Hartzman, R.J., Bach, M.L., and Bach, F.H. Precipitation of radioactivity labeled samples: A semi-automatic multiple-sample-processor. Cell Immunol. 4:182–186, 1972.PubMedCrossRefGoogle Scholar
  41. Hartzman, R.J., Segall, M., Bach, M.L., and Bach, F.H. Histocompatibility matching. II. Miniaturization of the mixed lymphocyte culture test. Transplantation 11:268–273, 1971.PubMedCrossRefGoogle Scholar
  42. ICLA reference centers for histocompatibility testing in dogs. ILAR News 19:9, 1975.Google Scholar
  43. Joint Report Fourth Human Histocompatibility Workshop. Histocompatibility Testing-Munks-gaard, Copenhagen, 1970.Google Scholar
  44. Joint Report First International Workshop on Canine Immunogenetics. Tissue Antisens 3:145–163, 1973.Google Scholar
  45. Joint Report Second International Workshop on Canine Immunogenetics. Transplant Proc 8:289–314, 1976.Google Scholar
  46. Kasakura, S., Thomas, E.D., and Ferrebee, J.W. Leukocytotoxic isoantibodies in the dog. Transplantation 2:214–280, 1964Google Scholar
  47. Katz, D. H., Paul, W. E., Goidl, E. A., and Benacerraf, B. Carrier function in anti-hapten immune responses. I. Enhancement of primary and secondary anti-hapten antibody responses by carrier preimmunization. J. Exp. Med. 132:261–282, 1970.PubMedCrossRefGoogle Scholar
  48. Kissmeyer-Nielsen, F., and Kjerbye, F.E. Lymphocytotoxic microtechnique. Purification of lymphocytes by flotation. In E.S. Curtoni, P.L. Mattiuz, and R.M. Tosi (eds.), Histocompatibility Testing-pp. 381–383, Munksgaard, Copenhagen, 1967.Google Scholar
  49. Kolb, H.J., Rieder, I., Grosse-Wilde, H., Netzel, B., Mempel, W., Scholz, S., Albert, E.D., and Thierfelder, S. Canine marrow grafts in donor recipient combinations with one way non stimulation in the MLC. Transplant. Proc. 7:461–464, 1975.PubMedGoogle Scholar
  50. Léon, S., Zweibaum, A., Vriesendorp, H.M., and Smid Mercx, B.H.J. Production of tissue typing reagents in rabbits immunized with dog-spleen dry acetone powder. Transplant Proc 7:379–382, 1975a.PubMedGoogle Scholar
  51. Léon, S., Vriesendorp, H. M., Zweibaum, A., Fléché-Seban, C., and Chevalier, G. Application á l’étude sérologique du système majeur d’histocompatibilité du chien (DLA) des propriétés antigéniques et immunogènes de la poudre acétonique de rate. CR. Acad Sci (Paris) Series D-1653 281:1653–1656, 1975b.Google Scholar
  52. Lotzová, E., and Cudkowicz, G. Abrogation of resistance to bone marrow grafts by silica particles. Prevention of the silica effect by the macrophage stabilizer poly-2-vinylpyridine N-oxide. J. Immunol. 113:798–803, 1974PubMedGoogle Scholar
  53. Mattiuz, P.L., Ihde, D., Piazza, A., Ceppellini, R., and Bodmer, W.F. New approaches to the population genetic and segregation analysis of the HL-A system. In P.I Terasaki (ed.), Histocompatibility Testing-pp. 193–205, Munksgaard, Copenhagen, 1970.Google Scholar
  54. Meera Khan, P., Los, W.R.T., van der Does, J.A., and Epstein, R.B. Iso enzyme markers in dog blood cells. Transplantation 15:624–628, 1973.PubMedCrossRefGoogle Scholar
  55. Meera Khan, P., Vriesendorp, H.M., Saison, R., Volkers, W., Los, W.R.T., and Doppert, B. Homologies between the human and canine phosphoglucomutases. Manuscript in preparation-1976.Google Scholar
  56. Netzel, B., Grosse-Wilde, H., and Mempel, W. MLC reactions with dog lymphocytes frozen in microtiter plates. Transplant. Proc. 7:403–405, 1975.PubMedGoogle Scholar
  57. Obertop, H., Jeekel, J., Vriesendorp, H.M., MacDicken, I., and Westbroek, D.L. The effect of donor blood on renal allograft survival in DL-A tissue typed beagle littermates Transplantation 20:49–52, 1975.PubMedCrossRefGoogle Scholar
  58. Opelz, G., Sengar, D.P.S., Mickey, M.R., and Terasaki, P.I. The effect of blood transfusion on subsequent kidney transplants. Transplant. Proc. 5:253–259, 1973.PubMedGoogle Scholar
  59. Penn, O.C.K.M., MacDicken, I., and Bos, T. Histopathology of rejection in DL-A identical canine cardiac allografts. Transplantation 22:313–322, 1976.PubMedCrossRefGoogle Scholar
  60. Puza, A., Rubinstein, P., Kasakura, S., Vlakovic, S., and Ferrebee, J.W. The production of isoanti-bodies in the dog by immunization with homologous tissue. Transplantation 2:722–733, 1964.PubMedCrossRefGoogle Scholar
  61. Rapaport, F.T., Boyd, A.D., Spencer, F.C., Lower, R.R., Dausset, J., Cannon, F.D., and Ferrebee, J.W. Histocompatibility studies in a closely bred colony of dogs. II. Influence of the DL-A system of canine histocompatibility upon the survival of cardiac allografts. J. Exp. Med. 133:260–274, 1971.PubMedCrossRefGoogle Scholar
  62. Rapaport, F.T., Hanaoka, T., Shimada, T., Cannon, F.D., and Ferrebee, J.W. Histocompatibility studies in a closely bred colony of dogs. I. Influence of leucocyte groups antigens upon renal allograft survival in the unmodified host. J. Exp. Med. 131:881–893, 1970.PubMedCrossRefGoogle Scholar
  63. Rubinstein, P., and Ferrebee, J.W. Efforts to differentiate iso hemagglutinins in the dog. Transplantation 2:734–741, 1964.PubMedCrossRefGoogle Scholar
  64. Sachs, D.H., Davis, C.S., Shreffler, D.C., Nathensen, S.G., and McDevitt, H.O. Meeting report Ir associated antigen. Immunogenetics 2:301–000, 1975.CrossRefGoogle Scholar
  65. Saison, R., and Doble, E. The reproducibility of reactions obtained with cytotoxic antisera directed against various DL-A specificities. Transplant. Proc. 7:353–360, 1975.PubMedGoogle Scholar
  66. Smid Mercx, B.M.J., Duyzer-den Hartog, B., Visser, T. P., and Vriesendorp, H.M. Serological studies of canine histocompatibility antigens. Transplant. Proc. 7:361–364, 1975.PubMedGoogle Scholar
  67. Storb, R., Epstein, R.B., Rudolph, R.H., and Thomas, E.D. The effects of prior transfusion on marrow grafts between histocompatible canine siblings. J. Immunol. 195:627–633, 1970.Google Scholar
  68. Storb, R., Kolb, H.J., Graham, T.C., Leblond, R., Kolb, H., Lerner, K.G., and Thomas, E.D. Marrow grafts between histo-incompatible family members. Rev. Eur. Etudes Clin. Biol. 17:680–685, 1972.Google Scholar
  69. Storb, R., Rudolph, R.H., Graham, T.C., and Thomas, E.D. The influence of transfusions from unrelated donors upon marrow grafts between histocompatible canine siblings. J. Immunol. 107:409–413, 1971.PubMedGoogle Scholar
  70. Storb, R., Rudolph, R.H., Kolb, H.J., Graham, T.C., Mickelson, E., Erickson, V., Lerner, K. G., Kolb, H., and Thomas, E. D. Marrow grafts between DL-A matched canine littermates. Transplantation 15:92–100, 1973.PubMedCrossRefGoogle Scholar
  71. Storb, R., Weiden, P., Schroeder, M.L., and Graham, T.C. Marrow grafts between LD-hetero-and homozygous littermates. Transplant. Proc. 7:459–460, 1975.PubMedGoogle Scholar
  72. Swisher, S.N. Bio medical notation systems. JAMA 185:21–26, 1963.PubMedCrossRefGoogle Scholar
  73. Templeton, J.W., Moseley, H.S., and Fletcher, W.S. Production of skin graft survival by MLC testing. Tissue Antigens 3:168–169, 1973.Google Scholar
  74. Templeton, J.W., and Thomas, E.D. Evidence for a major histocompatibility locus in the dog. Transplantation 11:429–431, 1971.PubMedCrossRefGoogle Scholar
  75. Terasaki, P.I., and McClelland, J.D. Microdroplet assay of human serum cytotoxins. Nature 219:998–1000, 1964.CrossRefGoogle Scholar
  76. Thomas, E.D., Ashley, L.A., Lochte, H.L., Jaretzki, A., III, Sahler, O.D., and Ferrebee, J.W. Homografts of bone marrow in dogs after lethal total body irradiation. Blood 14:120–136, 1959.Google Scholar
  77. Thomsen, M., Platz, P., Ortved Andersen, O., Christy, M., Lyngsøe, J., Nerup, I., Rasmussen, K., Ryder, L.P., Staub Nielsen, L., and Svejgaard, A. MLC typing in juvenile diabetes mellitus and idiopathic addison’s disease. Transplant. Rev. 22:125–147, 1975.PubMedGoogle Scholar
  78. van Bekkum, D.W., and de Vries, M.J. Radiation Chimaeras-Logos Press, Academic Press, London/New York, 1967.Google Scholar
  79. van Bekkum, D.W., and Vos, O. Immunological aspects of homo-and heterologous bone marrow transplantation in irradiated animals. J. Cell Comp. Physiol. 50:139–156, 1957.CrossRefGoogle Scholar
  80. van den Tweel, J.G., Vriesendorp, H.M., Termytelen, A., Westbroek, D.L., Bach, M.C., and van Rood, J.J. Genetic aspects of canine mixed leucocyte cultures. J. Exp. Med. 140:825–836, 1974.PubMedCrossRefGoogle Scholar
  81. van der Does, J. A., van Rood, J. J., Walker, W., and Epstein, R.B. Consequent intrafamilial immunization for DL-A haplotyping in canines. J. Exp. Med. 137:494–503, 1973.PubMedCrossRefGoogle Scholar
  82. Vriesendorp, H. M. Major histocompatibility complex of the dog. Thesis, Erasmus University, Rotterdam; Bronder Offset, Rotterdam, 1973.Google Scholar
  83. Vriesendorp, H.M., Bijnen, A.B., Zurcher, C., and van Bekkum, D.W. Donor selection and bone marrow transplantation in dogs. In F. Kissmeyer-Nielsen (ed.), Histocompatibility Testing-pp. 963–971, Munksgaard, Copenhagen, 1975a.Google Scholar
  84. Vriesendorp, H.M., D’Amaro, J., van der Does, J. A., Westbroek, D.L., and Epstein, R.B. Analysis of the DL-A system in families and populations of healthy and diseased individuals. Transplant. Proc. 5:311–315, 1973.PubMedGoogle Scholar
  85. Vriesendorp, H.M., Epstein, R.B., D’Amaro, J., Westbroek, D.L., and van Rood, J.J. Polymorphism of the DL-A system. Transplantation 14:299–301, 1972.PubMedCrossRefGoogle Scholar
  86. Vriesendorp, H.M., Löwenberg, B., Visser, T.P., Knaan, S., and van Bekkum, D.W. The influence of genetic resistance and silica particles on survival after bone marrow transplantation. Transplant. Proc. 8:483–489, 1976.PubMedGoogle Scholar
  87. Vriesendorp, H.M., Rothengatter, C., Bos, E., Westbroek, D.L., and van Rood, J.J. The production and evaluation of dog allolymphocytotoxins for donor selection in transplantation experiments. Transplantation 11:440–445, 1971.PubMedCrossRefGoogle Scholar
  88. Vriesendorp, H.M., Zurcher, C., and van Bekkum, D.W. Engraftment of allogeneic dog bone marrow. Transplant. Proc. 7:465–468, 1975b.PubMedGoogle Scholar
  89. Vriesendorp, H.M., Zurcher, C., Bull, R.W., Los, W.R.T., Meera Khan, P., van den Tweel, J.G., Zweibaum, A., and van Bekkum, D.W. Take and graft vs host reactions of allogeneic bone marrow in tissue typed dogs. Transplant. Proc. 7 (Suppl. 1):849–853, 1975c.Google Scholar
  90. Westbroek, D.L., Rothengatter, C., Vriesendorp, H.M., and van Rood, J.J. Histocompatibility and heterotopic segmental small bowel allograft survival in dogs. Eur. Surg. Res. 2:401–407, 1970.PubMedCrossRefGoogle Scholar
  91. Westbroek, D.L., Rothengatter, C., Vriesendorp, H.M., van Rood, J.J. Willighagen, R.G.J., and de Vries, M. J. Histocompatibility and allograft rejection in canine small bowel transplants. Evidence for the existence of a major histocompatibility locus in the dog. Transplant. Proc. 3:157–160, 1971.PubMedGoogle Scholar
  92. Westbroek, D.L., Silberbusch, J., Vriesendorp, H.M., van Urk, H., Roemeling, H.W., Schönherr-Scholtes, Y., and de Vries, M.J. The influence of DL-A histocompatibility on the function and pathohistological changes in unmodified canine renal allografts. Transplantation 14:582–589, 1972.PubMedCrossRefGoogle Scholar
  93. Westbroek, D.L., Vriesendorp, H.M., van den Tweel, J.G., de Gruyl, J., and van Urk, H. Influence of SD and LD matching on kidney allograft survival in unrelated mongrel dogs. Transplant. Proc. 7:427–430, 1975.PubMedGoogle Scholar
  94. Ziegler, J.B., Alper, C.A., and Balner, H. Properdin factor B and histocompatibility loci linked in the rhesus monkey. Nature 254:609–611, 1975.PubMedCrossRefGoogle Scholar
  95. Zweibaum, A., and Bouhou, E. Studies on digestive groups. II. Influence of the digestive group A system on skin allografts in rabbits. Transplantation 15:294–297, 1973.PubMedCrossRefGoogle Scholar
  96. Zweibaum, A., Oriol, R., Feingold, N., Dussaulx, E., Rousset, M., and Chevalier, G. Studies on canine secretory allo antigens (CSA). Tissue Antigens 4:115–129, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • H. M. Vriesendorp
  • H. Grosse-Wilde
  • M. E. Dorf

There are no affiliations available

Personalised recommendations