Skip to main content

Information Theory with Applications to Biogenesis and Evolution

  • Conference paper
Biogenesis Evolution Homeostasis

Abstract

The representation theorem and the channel capacity theorem of information theory are applied to the molecular biology of biogenesis and evolution. From the information theoretic point of view it is essentially incredible for a particular given protein to arise de novo by chance alone. Genetic information could arise in a series of steps in which a useful sequence of amino acids or a sequence of improved specificity arises by chance. Such an improvement will be incorporated in the genome in a time short compared to the time required to appear by chance. One-to-one codes are part of the modern protein synthesis and may have been used by the most early form of life. The environment would have been modified by the generation of new substances. A one-to-one code may have led to a binary code and then to the modern triplett code. At each step the primitive life may have modified its environment irreversibly. Proteins with specificity may form a chain so that one is transformed to another by a series of amino acid substitutions, additions or deletions. There may be many such paths of specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke, B.: Science 168, 1009 (1970).

    Article  PubMed  CAS  Google Scholar 

  2. Gamow, G.: Biol. Med., Kbh 22 (3), (1954).

    Google Scholar 

  3. Goldman, S.: Perspective in Biol. and Med. 11, 12 (1968).

    Google Scholar 

  4. Goldman, S.: Perspective in Biol. and Med. 12, 638 (1969).

    Google Scholar 

  5. Haldane, J.B.S.: Rationalist Annual 148 (1928).

    Google Scholar 

  6. Harada, K., Fox, S.N. and Oro, J.: The Origin of Prebiological Systems and of Their Molecular Matrices, New York: Academic Press 1965.

    Google Scholar 

  7. Harrison, B.J. and Holliday, R.: Nature 213, 990 (1967).

    Article  CAS  Google Scholar 

  8. Holliday, R.: Nature 221, 1224 (1969).

    Article  PubMed  CAS  Google Scholar 

  9. Jaynes, E.T.: Phys. Rev. 106, 620 (1957); 108, 171 (1957).

    Article  Google Scholar 

  10. Johnson, H.A.: Science 168, 1545 (1970).

    Article  PubMed  CAS  Google Scholar 

  11. Jukes, T.H.: Biochem. Biophys. Res. Comm. 19, 391 (1966).

    Article  Google Scholar 

  12. Kimura, M.: Proc. Nat. Acad. Sci. 63, 1181 (1969).

    Article  PubMed  CAS  Google Scholar 

  13. King, J.L. and Jukes, T.H.: Nature 231, 114 0971).

    Google Scholar 

  14. Miller, S.L.: J. Am. Chem. Soc. 77, 2351 (1955).

    Article  CAS  Google Scholar 

  15. Oparin, A.: The Origin of Life, Academic Press, New York (1957).

    Google Scholar 

  16. Orgel, L.E.: Proc. Nat. Acad. Sci. 49, 517–21 (1963);67, 1476 (1970).

    Article  PubMed  CAS  Google Scholar 

  17. Pielou, E.C.: An Introduction to Mathematical Ecology, Wiley-Interscience, New York (1969).

    Google Scholar 

  18. Ponnamperuma, C. and Gabel, N.W.: Space Life Sciences 1, 64 (1968).

    Article  PubMed  CAS  Google Scholar 

  19. Quastler, H.: The Emergence of Biological Organization, Yale University Press, New Haven (1964).

    Google Scholar 

  20. Salisbury, F.B.: Nature 224, 342 (1969).

    Article  PubMed  CAS  Google Scholar 

  21. Shannon, C.E. and Weaver, W.: The Mathematical Theory of Communication, The University of Illinois Press (1949).

    Google Scholar 

  22. Simpson, G.C.: Science 143, 769 (1964).

    Article  PubMed  CAS  Google Scholar 

  23. Smith, J.M.: Nature 225, 563 (1970).

    Article  PubMed  CAS  Google Scholar 

  24. Spetner, L.M.: J. Theoret, Biol. 7, 412–419 (1964); IEEE Trans. Info. Theor. 11, 3 (1968); Nature 226, 948 (1970).

    Article  CAS  Google Scholar 

  25. Yockey, H.P.: Radiation Research 5, 146 (1956).

    Article  PubMed  CAS  Google Scholar 

  26. Yockey, H.P., Platzman, R.L. and Quastler, H.: (Eds), Symposium on Information Theory in Biology, Pergamon (1958) p. 50 et seq.

    Google Scholar 

  27. Wallace, B.: Genetic Load in Biological and Conceptual Aspects, Prentice-Hall, New York (1970).

    Google Scholar 

  28. Woese, C.R.: Proc. Nat. Acad. Sci. 59, 110 (1968).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Yockey, H.P. (1973). Information Theory with Applications to Biogenesis and Evolution. In: Locker, A. (eds) Biogenesis Evolution Homeostasis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95235-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95235-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06134-2

  • Online ISBN: 978-3-642-95235-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics