Information Theory with Applications to Biogenesis and Evolution

  • H. P. Yockey


The representation theorem and the channel capacity theorem of information theory are applied to the molecular biology of biogenesis and evolution. From the information theoretic point of view it is essentially incredible for a particular given protein to arise de novo by chance alone. Genetic information could arise in a series of steps in which a useful sequence of amino acids or a sequence of improved specificity arises by chance. Such an improvement will be incorporated in the genome in a time short compared to the time required to appear by chance. One-to-one codes are part of the modern protein synthesis and may have been used by the most early form of life. The environment would have been modified by the generation of new substances. A one-to-one code may have led to a binary code and then to the modern triplett code. At each step the primitive life may have modified its environment irreversibly. Proteins with specificity may form a chain so that one is transformed to another by a series of amino acid substitutions, additions or deletions. There may be many such paths of specificity.


Letter Alphabet Noise Free Case Error Catastrophe Somatic Mutation Theory Modern Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, B.: Science 168, 1009 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    Gamow, G.: Biol. Med., Kbh 22 (3), (1954).Google Scholar
  3. 3.
    Goldman, S.: Perspective in Biol. and Med. 11, 12 (1968).Google Scholar
  4. Goldman, S.: Perspective in Biol. and Med. 12, 638 (1969).Google Scholar
  5. 4.
    Haldane, J.B.S.: Rationalist Annual 148 (1928).Google Scholar
  6. 5.
    Harada, K., Fox, S.N. and Oro, J.: The Origin of Prebiological Systems and of Their Molecular Matrices, New York: Academic Press 1965.Google Scholar
  7. 6.
    Harrison, B.J. and Holliday, R.: Nature 213, 990 (1967).CrossRefGoogle Scholar
  8. 7.
    Holliday, R.: Nature 221, 1224 (1969).PubMedCrossRefGoogle Scholar
  9. 8.
    Jaynes, E.T.: Phys. Rev. 106, 620 (1957); 108, 171 (1957).CrossRefGoogle Scholar
  10. 9.
    Johnson, H.A.: Science 168, 1545 (1970).PubMedCrossRefGoogle Scholar
  11. 10.
    Jukes, T.H.: Biochem. Biophys. Res. Comm. 19, 391 (1966).CrossRefGoogle Scholar
  12. 11.
    Kimura, M.: Proc. Nat. Acad. Sci. 63, 1181 (1969).PubMedCrossRefGoogle Scholar
  13. 12.
    King, J.L. and Jukes, T.H.: Nature 231, 114 0971).Google Scholar
  14. 13.
    Miller, S.L.: J. Am. Chem. Soc. 77, 2351 (1955).CrossRefGoogle Scholar
  15. 14.
    Oparin, A.: The Origin of Life, Academic Press, New York (1957).Google Scholar
  16. 15.
    Orgel, L.E.: Proc. Nat. Acad. Sci. 49, 517–21 (1963);67, 1476 (1970).PubMedCrossRefGoogle Scholar
  17. 16.
    Pielou, E.C.: An Introduction to Mathematical Ecology, Wiley-Interscience, New York (1969).Google Scholar
  18. 17.
    Ponnamperuma, C. and Gabel, N.W.: Space Life Sciences 1, 64 (1968).PubMedCrossRefGoogle Scholar
  19. 18.
    Quastler, H.: The Emergence of Biological Organization, Yale University Press, New Haven (1964).Google Scholar
  20. 19.
    Salisbury, F.B.: Nature 224, 342 (1969).PubMedCrossRefGoogle Scholar
  21. 20.
    Shannon, C.E. and Weaver, W.: The Mathematical Theory of Communication, The University of Illinois Press (1949).Google Scholar
  22. 21.
    Simpson, G.C.: Science 143, 769 (1964).PubMedCrossRefGoogle Scholar
  23. 22.
    Smith, J.M.: Nature 225, 563 (1970).PubMedCrossRefGoogle Scholar
  24. 23.
    Spetner, L.M.: J. Theoret, Biol. 7, 412–419 (1964); IEEE Trans. Info. Theor. 11, 3 (1968); Nature 226, 948 (1970).CrossRefGoogle Scholar
  25. 24.
    Yockey, H.P.: Radiation Research 5, 146 (1956).PubMedCrossRefGoogle Scholar
  26. 25.
    Yockey, H.P., Platzman, R.L. and Quastler, H.: (Eds), Symposium on Information Theory in Biology, Pergamon (1958) p. 50 et seq.Google Scholar
  27. 26.
    Wallace, B.: Genetic Load in Biological and Conceptual Aspects, Prentice-Hall, New York (1970).Google Scholar
  28. 27.
    Woese, C.R.: Proc. Nat. Acad. Sci. 59, 110 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • H. P. Yockey

There are no affiliations available

Personalised recommendations