Neurophysiological and Psychophysical Correlates in Vision Research

  • Richard Jung

Abstract

One of the main goals of sensory research is to establish correlates between neurophysiology and perception. During the nineteenth century, sensory physiologists could do no more than observe subjective phenomena in human perception while controlling the physical stimulation of the sense organs. Many basic facts concerning visual physiology inferred from the results of studies carried out more than a hundred years ago, are described in the works of such great pioneers as Young, Purkinje, Helmholtz, Hering, Fechner and others. Thus, the visual laws of simultaneous and successive contrast, of binocular vision, and most principles of colour vision were discovered by analysing visual perception in human subjects by means of psychophysical methods.

Keywords

Fatigue Attenuation Retina Neurol Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, A.: Nystagmographische Untersuchungen über den Lidnystagmus und die physiologische Koordination von Lidschlag und rascher Nystagmusphase. Arch. klin. exp. Ohr.-, Nas.-, u. Kehlk.-Heilk. 170, 543–585 (1957).Google Scholar
  2. 2.
    Adrian, E.D.: The basis of sensation. The action of the sense organs. London: Christophers 1928.Google Scholar
  3. 3.
    Arduini, A.: The tonic discharge of the retina and its central effects. Progr. Brain Res. 1, 184–206 (1963).CrossRefGoogle Scholar
  4. 4.
    Aubert, H.: Die Bewegungsempfindung. Pflügers Arch. ges. Physiol. 39, 347–370 (1886); 40, 459-480 (1887).CrossRefGoogle Scholar
  5. 5.
    Bárány, B.: Zur Klinik und Theorie des Eisenbahnnystagmus. Acta oto-laryng. (Stockh.) 3, 260–265 (1922).CrossRefGoogle Scholar
  6. 6.
    Barlow, H.B.: Possible principles underlying the transformation of sensory messages. In: Sensory communication. Ed.: W.A. Rosenblith. New York-London: The M.I.T. Press, J. Wiley 1961, pp. 217–234.Google Scholar
  7. 7.
    — Three points about lateral inhibition. In: Sensory communication. Ed.: W.A. Rosenblith. New York-London: The M.I.T. Press, J. Wiley 1961, pp. 782–785.Google Scholar
  8. 8.
    — Initial remarks. In: Neurophysiologie und Psychophysik des visuellen Systems. Hrsg.: R. Jung u. H.H. Kornhuber. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  9. 9.
    Bast, T.: Tachistoskopische Schijnbewegingen by centraal en peripheer zien. Med. Psy-chol. Lab Rijks Univ. Utrecht Dissert. 4, 1 (1928). Amsterdam: H.J. Paris 1928.Google Scholar
  10. 10.
    Baumgartner, G.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach Lichtblitzen. Pflügers Arch. ges. Physiol. 261, 457–469 (1955).CrossRefGoogle Scholar
  11. 11.
    — Indirekte Größenbestimmung der rezeptiven Felder der Retina beim Menschen mittels der Hermannschen Gittertäuschung. Pflügers Arch. ges. Physiol. 272, 21–22 (1960).CrossRefGoogle Scholar
  12. 12.
    — Die Reaktionen der Neurone des zentralen visuellen Systems der Katze im simultanen Helligkeitskontrast. In: Neurophysiologie und Psychophysik des visuellen Systems. Berlin-Göttingen-Heidelberg: Springer 1961, S. 296–311.Google Scholar
  13. 13.
    — Neuronale Mechanismen des Kontrast-und Bewegungssehens. Ber. dtsch. ophthal. Ges. 66, 111–125 (1964).Google Scholar
  14. 14.
    Brown, J.L., Schulz, A.: Visual motion detection in the cat. Science 146, 1070 bis 1071 (1964).PubMedCrossRefGoogle Scholar
  15. 15.
    Schulz, A. — Responses of single units of the cat visual system to rectangular stimulus patterns. J. Neurophysiol. 28, 1–18 (1965).PubMedGoogle Scholar
  16. 16.
    Eichin, F., Schulz, A.: Unterschiede neuronaler Aktivierung im zentralen visuellen System bei langdauernder Verdunkelung und Belichtung des Auges. Pflügers Arch. ges. Physiol. 279, R 4 (1964).Google Scholar
  17. 17.
    Baumgartner, G., Hakas, P.: Reaktionen einzelner Opticusneurone und corticaler Nervenzellen der Katze im Hell-Dunkel-Grenzfeld (Simultankontrast). Pflügers Arch. ges. Physiol. 270, 29 (1959).Google Scholar
  18. 18.
    Hakas, P. — Die Neurophysiologie des simultanen Helligkeitskontrastes. Reziproke Reaktionen antagonistischer Neuronengruppen des visuellen Systems. Pflügers Arch. ges. Physiol. 274, 489–510 (1962).CrossRefGoogle Scholar
  19. 19.
    Becker, W., Fuchs, A.F.: Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. Vision Res. 9, 1247–1528 (1969).PubMedCrossRefGoogle Scholar
  20. 20.
    Békésy, G von: Sensory inhibition. Princeton Univ. Press, Princeton 1967.Google Scholar
  21. 21.
    — Mach-and Hering-type lateral inhibition in vision. Vision Res. 8, 1483–1499 (1968).CrossRefGoogle Scholar
  22. 22.
    Bischof, N., Kramer, E.: Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen. Psychol. Forsch. 32, 185–218 (1968).PubMedCrossRefGoogle Scholar
  23. 23.
    Bizzi, E.: Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp. Brain Res. 6, 69–80 (1968).PubMedCrossRefGoogle Scholar
  24. 24.
    Schiller, P.H.: Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement. Exp. Brain Res. 10, 151–158 (1970).CrossRefGoogle Scholar
  25. 25.
    Boring, E.G.: Sensation and perception in the history of experimental psychology. New York: Appleton-Century Crofts, Inc. 1942.Google Scholar
  26. 26.
    Borries, A.V. Th.: Fixation and Nystagmus. Copenhagen: Munksgaard 1926.Google Scholar
  27. 27.
    Brindley, G.S., Merton, P.A.: The absence of position sense in the human eye. J. Physiol. 153, 127–130 (1960).PubMedGoogle Scholar
  28. 28.
    Broadbent, D.E.: Perception and communication. London, New York, Los Angeles, Paris: Pergamon Press 1958.CrossRefGoogle Scholar
  29. 28a.
    Brooks, B.A.: Neurophysiological correlates of brightness discrimination in the squirrel monkey. Exp. Brain Res. 2, 1–17 (1966).PubMedCrossRefGoogle Scholar
  30. 28b.
    — Personal communication.Google Scholar
  31. 29.
    Bohn, H.: Activity in the optic tract and lateral geniculate nucleus of the cat during the first moments of light adaptation in the scotopic region. Exp. Brain Res. 11, 213–228 (1970).PubMedCrossRefGoogle Scholar
  32. 30.
    Huber, C.: Influence of incremental light duration on the off-response of the dark adapted cat. Vision Res. (in press) 1971.Google Scholar
  33. 31.
    Brown, J.F.: The visual perception of velocity. Psychol. Forsch. 14, 199–232 (1931).CrossRefGoogle Scholar
  34. 32.
    Bryngdahl, O.: Größenschätzung des rezeptiven Feldzentrums der menschlichen Retina. Pflügers Arch. ges. Physiol. 280, 362–368 (1964).CrossRefGoogle Scholar
  35. 33.
    — Perceived contrast variation with eccentricity of spatial sine-wave stimuli: Size determination of receptive field centers. Vision Res. 6, 553–565 (1966).PubMedCrossRefGoogle Scholar
  36. 34.
    Campbell, F.W., Cleland, B.G., Cooper, G.F., Enroth-Cugell, C.: The angular selectivity of visual cortical cells to moving gratings. J. Physiol. (Lond.) 98, 237–250 (1968).Google Scholar
  37. 35.
    Kulikowski, J.J.: Orientational selectivity of the human visual system. J. Physiol. (Lond.) 187, 437–445 (1966).Google Scholar
  38. 36.
    Cowey, A., Gross, C.G.: Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys. Exp. Brain Res. 11, 128–144 (1970).PubMedCrossRefGoogle Scholar
  39. 37.
    Creutzfeldt, O., Ito, M.: Functional synaptic organization of primary visual cortex neurones in the cat. Exp. Brain Res. 6, 324–352 (1968).PubMedCrossRefGoogle Scholar
  40. 38.
    Sakmann, B.: Neurophysiology of vision. Ann. Rev. Physiol. 31, 499–544 (1969).CrossRefGoogle Scholar
  41. 39.
    Denney, D., Baumgartner, G., Adorjani, C.: Responses of cortical neurones to stimulation of the visual afferent radiations. Exp. Brain Res. 6, 265–272 (1968).PubMedCrossRefGoogle Scholar
  42. 40.
    Dichgans, J., Jung, R.: Attention, eye movements and motion detection: Facilitation and selection in optokinetic nystagmus and railway nystagmus. In: Attention in Neurophysiology. Eds.: C.R. Evans and T.B. Mulholland. London: Butterworth 1969, pp. 348–375.Google Scholar
  43. 41.
    Dichgans, J., Körner, F., Voigt, K.: Vergleichende Skalierung des afferenten und efferenten Bewegungssehens beim Menschen: Lineare Funktionen mit verschiedener Anstiegssteilheit. Psychol. Forsch. 32, 277–295 (1969).PubMedCrossRefGoogle Scholar
  44. 42.
    Nauck, B., Wolpert, E.: The influence of attention, vigilance and stimulus area on optokinetic and vestibular nystagmus and voluntary saccades. In: Movement and Brain function. Ed.: Zikmund. Bratislava: Slovak Academy of Sciences 1971.Google Scholar
  45. 43.
    Wist, E.R., Schmidt, C.L.: Modulation neuronaler Spontanaktivität im N. vesti-laris durch optomotorische Impulse beim Kaninchen. Pflügers Arch. 319, R 154 (1970).Google Scholar
  46. 44.
    Dodge, E.: Visual perception during eye movement. Psychol. Rev. 7, 454–465 (1900).CrossRefGoogle Scholar
  47. 45.
    — The participation of the eye movements in the visual perception of motion. Psychol. Rev. 11, 1–14 (1904).CrossRefGoogle Scholar
  48. 46.
    Duensing, F.: Die Erregungskonstellation im Rautenhirn des Kaninchens bei den Laby-rynthstellreflexen (Magnus). Naturwissenschaften 48, 681–690 (1961).CrossRefGoogle Scholar
  49. 47.
    Schaefer, K.-P.: Die Aktivität einzelner Neurone der Formatio reticularis des nicht gefesselten Kaninchens bei Kopfwendungen und vestibulären Reizen. Arch. Psychiat. Nervenkr. 200, 97–122 (1960).Google Scholar
  50. 48.
    Ehrenstein, W.: Probleme der ganzheitspsychologischen Wahrnehmungslehre. 3. Aufl. Leipzig: J.A. Barth 1954.Google Scholar
  51. 49.
    Evarts, E.V.: Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol. 31, 14–27 (1968).PubMedGoogle Scholar
  52. 50.
    Fechner, G.T.: Elemente der Psychophysik. Teil 1 u. 2. Leipzig: Breitkopf und Härtel 1860.Google Scholar
  53. 51.
    Feldmann, M., Cohen, B.: Electrical activity in the lateral geniculate body of the alert monkey associated with eye movements. J. Neurophysiol. 31, 455–466 (1968).Google Scholar
  54. 52.
    Fischer, B., Freund, H.-J.: Eine mathematische Formulierung für Reiz-Reaktionsbeziehungen retinaler Ganglienzellen. Kybernetik 7, 160–166 (1970).PubMedCrossRefGoogle Scholar
  55. 53.
    May, H.U.: Invarianzen in der Katzenretina: Gesetzmäßige Beziehungen zwischen Empfindlichkeit, Größe und Lage receptiver Felder von Ganglienzellen. Exp. Brain Res. 11, 448–464 (1970).PubMedGoogle Scholar
  56. 54.
    Fleischl von Marxow, E.V.: Physiologisch-optische Notizen. 2. Mitt. S.-B. Akad. Wiss. Wien, math.-nat. Kl. 86, Abt. 3, 8 (1882).Google Scholar
  57. 55.
    Freund, H.J., Grünewald, G., Baumgartner, G.: Räumliche Summation im receptiven Feldzentrum von Neuronen des Geniculatum laterale der Katze. Exp. Brain Res. 8, 53–65 (1969).PubMedGoogle Scholar
  58. 56.
    Fröhlich, F.W.: Die Empfindungszeit. Jena: Gustav Fischer 1929.Google Scholar
  59. 57.
    Fuster, J.M., Creutzfeldt, O., Straschill, M.: Intracellular recording of neuronal activity in the visual system. Z. vergl. Physiol. 49, 605–622 (1965).CrossRefGoogle Scholar
  60. 58.
    Gerrits, H.J.M., Vendrik, A.J.H.: Simultaneous contrast, filling-in process and information processing in man’s visual system. Exp. Brain Res. 11, 411–430 (1970).PubMedCrossRefGoogle Scholar
  61. 59.
    Gibson, J.J.: The senses considered as perceptual systems. Boston: Houghton Mifflin 1966.Google Scholar
  62. 60.
    Glezer, V.D.: The receptive fields of the retina. Vision Res. 5, 497–525 (1965).PubMedCrossRefGoogle Scholar
  63. 61.
    Granit, R.: The organization of the vertebrate retinal elements. Ergebn. Physiol. 46, 31–70 (1950).Google Scholar
  64. 62.
    — Receptors and sensory perception. London and Yale Univ. Press 1955.Google Scholar
  65. 63.
    Gross, C.: Visual functions of inferotemporal cortex. Handbook of Sensory Physiology, Vol. VII/3. Ed.: R. Jung. Springer: Berlin-Göttingen-New York 1972.Google Scholar
  66. 64.
    Grüsser, O.-J., Creutzfeldt, O.: Eine neurophysiologische Grundlage des Brücke-Bartley-Effekts: Maxima der Impulsfrequenz retinaler und corticaler Neurone bei Flimmerlicht mittlerer Frequenzen. Pflügers Arch. ges. Physiol. 263, 668–681 (1957).CrossRefGoogle Scholar
  67. 65.
    Grüsser-Cornehls, U.: Mikroelektrodenuntersuchungen zur Konvergenz vestibulä-rer und retinaler Afferenzen an einzelnen Neuronen des optischen Cortex der Katze. Pflügers Arch. ges. Physiol. 270, 227–238 (1960).CrossRefGoogle Scholar
  68. 66.
    — Periodische Aktivierungsphasen visueller Neuronen nach kurzen Lichtreizen verschiedener Dauer. Beziehungen zu den periodischen Nachbildern und dem Charpentier-Intervall. Pflügers Arch. ges. Physiol. 275, 292–311 (1962).CrossRefGoogle Scholar
  69. 67.
    Grüsser, O.J., Grüsser-Cornehls, U.: Neurophysiologie des Bewegungssehens. Bewegungsempfindliche und richtungsspezifische Neuronen im visuellen System. Ergebn. Physiol. 61, 179–265 (1969).Google Scholar
  70. 68.
    Petersen, A., Sasowski, R.: Neurophysiologische Grundlagen des Metakontrastes. Pflügers Arch. ges. Physiol. 283, R 50 (1965).Google Scholar
  71. 69.
    Snigula, F.: Vergleichende verhaltensphysiologische und neurophysiologische Untersuchungen am visuellen System von Katzen. Psychol. Forsch. 32, 43–63 (1968).PubMedCrossRefGoogle Scholar
  72. 70.
    Haber, R.N., Nathanson, L.S.: Processing of sequentially presented letters. Perception a. Psychophysics 5, 359–361 (1969).CrossRefGoogle Scholar
  73. 71.
    Hartline, H.K.: The response of single optic nerve fibres of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).Google Scholar
  74. 72.
    — The receptive fields of optic nerve fibres. Amer. J. Physiol. 130, 690–699 (1940).Google Scholar
  75. 73.
    — Inhibition of activity of visual receptors by illuminating nearby retinal areas in the Limulus eye. Fed. Proc. 8, 69 (1949).Google Scholar
  76. 74.
    Hensel, H., Boman, K.A.: Afferent impulses in cutaneous sensory nerves in human subjects. J. Neurophysiol. 23, 564–578 (1960).PubMedGoogle Scholar
  77. 75.
    Helmholtz, H.: Handbuch der physiologischen Optik, 2. Aufl. Hamburg und Leipzig: G. Voss 1896.Google Scholar
  78. 76.
    Hering, E.: Zur Lehre vom Lichtsinne. Wien: Gerold u. Söhne 1878.Google Scholar
  79. 77.
    — Der Raumsinn und die Bewegungen der Augen. In: Handbuch der Physiologie, Bd. 3. Hrsg.: L. Hermann. Leipzig: Vogel 1879, S. 343–601.Google Scholar
  80. 78.
    — Wissenschaftliche Abhandlungen. 2 Bände. Leipzig: Thieme 1931.Google Scholar
  81. 79.
    Hermann, L.: Eine Erscheinung des simultanen Contrastes. Pflügers Arch. ges. Physiol. 3, 13–15 (1870).CrossRefGoogle Scholar
  82. 80.
    Hess, C.: Untersuchungen über den Erregungsvorgang im Sehorgan bei kurzer und bei längerdauernder Reizung. Pflügers Arch. ges. Physiol. 101, 226–262 (1904).CrossRefGoogle Scholar
  83. 81.
    Hess, W.R.: Die Motorik als Organisationsproblem. Biol. Zbl. 61, 545–572 (1941).Google Scholar
  84. 82.
    Holst, E. v.: Zentralnervensystem und Peripherie in ihrem gegenseitigen Verhältnis. Klin. Wschr. 29, 97–105 (1951).PubMedCrossRefGoogle Scholar
  85. 83.
    — Aktive Leistungen der menschlichen Gesichtswahrnehmung. Stud. Gen. 10, 232–243 (1957).Google Scholar
  86. 84.
    Holst, E., Mittelstaedt, H.: Das Reafferenzprinzip. Naturwissenschaften 37, 464 to 476 (1950).CrossRefGoogle Scholar
  87. 85.
    Hommer, K., Schubert, G.: Die absolute Größe der fovealen rezeptorischen Feldzentren und der Panum-areale. Graefes Arch. Ophthalm. 166, 205–210 (1963).CrossRefGoogle Scholar
  88. 86.
    Horn, G., Hill, R.M.: Modifications of receptive fields of cells in the visual cortex occurring spontaneously and associated with bodily tilt. Nature (Lond.) 221, 186 to 188 (1969).CrossRefGoogle Scholar
  89. 87.
    Howard, I.P., Templeton, W.B.: Human spatial orientation. London-New York-Sydney: John Wiley and Sons 1966.Google Scholar
  90. 88.
    Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (Lond.) 148, 574–591 (1959).Google Scholar
  91. 89.
    Wiesel, T.N. — Receptive fields of optic nerve fibres in the spider monkey. J. Physiol. (Lond.) 154, 572–580 (1960).Google Scholar
  92. 90.
    Wiesel, T.N. — Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).Google Scholar
  93. 91.
    Wiesel, T.N. — Shape and arrangement of columns in cat’s striate cortex. J. Physiol. (Lond.) 165, 559–568 (1963).Google Scholar
  94. 92.
    Wiesel, T.N. — Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).PubMedGoogle Scholar
  95. 93.
    Wiesel, T.N. — Receptive fields and architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).Google Scholar
  96. 94.
    Jasper, H.H., Cruiskshank, R.M.: Electroencephalography. II. Visual stimulation and after-image as effecting the occipital alpha rhythm. J. genet. Psychol. 17, 29–48 (1937).CrossRefGoogle Scholar
  97. 95.
    Jeannerod, M., Putkonen, P.T.S.: Oculomotor influences on lateral geniculate body neurons. Exp. Brain Res. 24, 125–129 (1970).Google Scholar
  98. 96.
    Joshua, D.E., Bishop, P.O.: Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral units in cat striate cortex. Exp. Brain Res. 10, 389–426 (1970).PubMedCrossRefGoogle Scholar
  99. 97.
    Jung, R.: Nystagmographie. Zur Physiologie und Pathologie des optisch-vestibulären System beim Menschen. In: Handbuch d. inneren Medizin, 4. Aufl. 7/1. Hrsg.: G. v. Bergmann, W. Frey u. H. Schwieck. Berlin-Heidelberg-New York 1953, S. 1325 to 1379.Google Scholar
  100. 98.
    — Korrelationen von Neuronentätigkeit und Sehen. In: Neurophysiologie und Psycho-physik des visuellen Sehens. Hrsg.: R. Jung u. H. Kornhuber. Berlin-Heidelberg-New York: Springer 1961, S. 410–435.Google Scholar
  101. 99.
    — Neuronal integration in the visual cortex and its significance for visual information. Sensory Communication. Ed.: W. Rosenblith. New York-London: M.I.T. Press 1961, pp. 629–674.Google Scholar
  102. 100.
    — Neuronale Grundlagen des Hell-Dunkelsehens und der Farbwahrnehmung. Ber. dtsch. ophthal. Ges. 66, 69–111 (1964).Google Scholar
  103. 101.
    — Optisch-vestibuläre Regulation der Augenbewegungen, des Bewegungssehens und der Vertikal-Horizontal-Wahrnehmung: Ein Beitrag zur optisch-vestibulären, optisch-oculo-motorischen und optisch-gravizeptorischen Integration. Brain and Mind Problems. Ed.: G. Alemà et al., S. 188-226. Rom: “Il Pensiero Scientifico” 1968.Google Scholar
  104. 102.
    Baumgarten, R. v., Baumgartner, G.: Mikroableitungen von einzelnen Neuronen im optischen Cortex der Katze. Die lichtaktivierten B-Neurone. Arch. Psychiat. Ner-venkr. 189, 521–538 (1952).Google Scholar
  105. 103.
    Baumgartner: Hemmungsmechanismen und bremsende Stabilisierung an einzelnen Neuronen des optischen Cortex: Ein Beitrag zur Koordination corticaler Erregungsvorgänge. Pflügers Arch. ges. Physiol. 261, 434–456 (1955).CrossRefGoogle Scholar
  106. 104.
    — Neuronenphysiologie der visuellen und paravisuellen Rindenfelder. 8. Int. Congr. Neurol. Wien Proc. 3, 47–75 (1965).Google Scholar
  107. 105.
    Spillmann, L.: Receptive field estimation and perceptual integration in human vision. In: Early experience and visual information processing in perceptual and reading disorders. Eds.: F.A. Young and D.B. Lindsley. pg. 181–197. Washington, D.C.: National Academy Sciences 1970.Google Scholar
  108. 106.
    Kawamura, H., Marchiafava, P.L.: Excitability changes along visual pathways during eye tracking movements. Arch. ital. Biol. 106, 141–156 (1968).PubMedGoogle Scholar
  109. 107.
    Körner, F., Dichgans, J.: Bewegungswahrnehmung, optokinetischer Nystagmus und retinale Bildwanderung. A. v. Graefe’s Arch. klin. exp. Ophthal. 174, 34–48 (1967).CrossRefGoogle Scholar
  110. 108.
    Kornhuber, H.: Physiologie und Klinik des zentral vestibulären Systems (Blick-und Stützmotorik). In: Hals-Nasen-Ohren-Heilkunde, Bd. III/Teil 3. Eds.: J. Berendes, R. Link, F. Zöllner. Stuttgart: Georg-Thieme-Verlag 1966, S. 2150–2351.Google Scholar
  111. 109.
    Spillmann, L.: Zur visuellen Feldorganisation beim Menschen: Die receptiven Felder im peripheren und zentralen Gesichtsfeld bei Simultankontrast, Flimmerfusion, Scheinbewegung und Blickfolgebewegung. Pflügers Arch. ges. Physiol. 279, R 5–6 (1964).Google Scholar
  112. 110.
    Kuffler, S.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).PubMedGoogle Scholar
  113. 111.
    Lehmann, D., Beeler Jr., G.W., Fender, D.H.: Changes in the EEG patterns during perceptual fluctuations of stabilized retinal images. Electroenceph. clin. Neurophysiol. 20, 274 (1966).Google Scholar
  114. 112.
    Lorente de No, R.: Transmission of impulses through cranial motor nuclei. J. Neurophysiol. 2, 402–464 (1939).Google Scholar
  115. 113.
    McIlwain, J.T.: Receptive fields or optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. J. Neurophysiol. 27, 1154–1173 (1964).PubMedGoogle Scholar
  116. 114.
    MacKay, D.M.: Interactive processes in visual perception. In: Sensory communication. Ed.: W.A. Rosenblith. New York-London 1961, pp. 339-355.Google Scholar
  117. 115.
    — Psychophysics of perceived intensity: a theoretical basis for Fechner’s and Stevens’ laws. Science 139, 1213–1216 (1963).CrossRefGoogle Scholar
  118. 116.
    — Cerebral organization and the conscious control of action. In: Brain and Conscious Experience. Ed.: J.C. Eccles. New York: Springer 1966, pp. 442–445.Google Scholar
  119. 117.
    MacKay, D.M.: Visual stability and voluntary eye movements. Handbook of Sensory Physiology VII/3. Ed.: R. Jung. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  120. 118.
    Marg, E., Adams, J.E., Rutkin, B.: Receptive fields of cells in the human visual cortex. Experientia (Basel) 24, 348–350 (1968).CrossRefGoogle Scholar
  121. 119.
    Mashhour, M.: Psychophysical relations in the perception of velocity. Stockholm Studies in Psychol. 3. Stockholm: Almquist and Wiksell 1964.Google Scholar
  122. 120.
    Matin, L., Matin, E., Pearce, D.: Visual perception of direction when voluntary sac-cades occur. I. Relation of visual direction of a fixation target extinguished before a saccade to a flash presented during the saccade. Perception and Psychophysics 5, 65–80 (1969).CrossRefGoogle Scholar
  123. 121.
    Pola, J.: Visual perception of direction when voluntary saccades occur. II. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented before the saccade. Perception and Psychophysics 8, 9–14 (1970).CrossRefGoogle Scholar
  124. 122.
    May, H.U., Fischer, B.: Coding of background illumination by peak frequency and latency of responses of retinal ganglion cells. Proc. 25, Int. Congr. Physiol. Sci. München Vol. IX, Abstr. 1120, 1971.Google Scholar
  125. 123.
    Merton, P.A.: The accuracy of directing the eyes and the hand in the dark. J. Physiol. 156, 555–577 (1961).PubMedGoogle Scholar
  126. 124.
    Mountcastle, V.B.: The problem of sensing and the neural coding of sensory events. In: The Neurosciences. New York: Rockefeller Univ. Press 1967, pp. 393–408.Google Scholar
  127. 125.
    Talbot, W.H., Sakata, H., Hyvärinen, J.: Cortical neuronal mechanisms in Flutter-Vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J. Neurophysiol. 32, 452–484 (1969).PubMedGoogle Scholar
  128. 126.
    Noda, H., Freeman Jr., R.B., Gies, B., Creutzfeldt, O.D.: Neuronal responses in the visual cortex of awake cats to stationary and moving targets. Exp. Brain Res. 12, 389–405 (1971).Google Scholar
  129. 127.
    Otsuka, R., Hassler, R.: Über Aufbau und Gliederung der corticalen Sehsphäre der Katze. Arch. Psychiat. Nervenkr. 203, 212–234 (1962).PubMedCrossRefGoogle Scholar
  130. 128.
    Purkinje, J.: Beiträge zur Kenntnis des Sehens in subjektiver Hinsicht. Prag: J.G. Calve 1819.Google Scholar
  131. 129.
    Rachlin, H.C.: Scaling subjective velocity, distance and duration. Percept, and Psychophys. 1, 77–82 (1966).CrossRefGoogle Scholar
  132. 130.
    Ratliff, F.: Mach Bands: Quantitative studies on neural networks in the retina. San Francisco-Amsterdam: Holden-Day Inc. 1965.Google Scholar
  133. 131.
    Richards, W.: Apparent modifiability of receptive fields during accomodation and convergence and a model for size constancy. Neuropsychologia 5, 63–72 (1967).CrossRefGoogle Scholar
  134. 132.
    Ronchi, L., Bottai, G.: On the visual effects produced by a test-object consisting of two stripes darker than the background, intersecting with another. Atti Fondaz. G. Ronchi 18, 47–70 (1963).Google Scholar
  135. 133.
    Bottai, G. — Simultaneous contrast effect at the center of figures showing different degrees of symmetry. Atti Fondaz. G. Ronchi 19, 84–100 (1964).Google Scholar
  136. 134.
    Bottai, G. — The neural organization of the central retina as revealed by an experiment on simultaneous contrast. Atti Fondaz. G. Ronchi 20, 192–199 (1965).Google Scholar
  137. 135.
    Rushton, W.A.H.: Visual adaptation: the Ferrier Lecture. Proc. roy. Soc. B 126, 20–46 (1965).CrossRefGoogle Scholar
  138. 136.
    Schepelmann, F., Aschayeri, H., Baumgartner, G.: Die Reaktionen der „simple field“-Neurone in Area 17 der Katze beim Hermann-Gitter-Kontrast. Pflügers Arch, ges. Physiol. 294, 57 (1967).Google Scholar
  139. 137.
    Sindermann, F., Deecke, L.: Subjektive Intensität des Hermann-Gitter-Phänomens in der Netzhautperipherie. Pflügers Arch. 316, R 95 (1970).CrossRefGoogle Scholar
  140. 138.
    Pieper, E.: Größenschätzung von fovealen Projektionen receptiver Kontrastfelder (Zentrum und Umfeld) beim Menschen im psycho-physischen Versuch. Pflügers Arch, ges. Physiol. 283, R 47–48 (1965).Google Scholar
  141. 139.
    Spehlmann, R.: The averaged electrical responses to diffuse and to patterned light in the human. Electroenceph. clin. Neurophysiol. 19, 560–567 (1965).PubMedCrossRefGoogle Scholar
  142. 140.
    Sperry, R.W.: Neural basis of the spontaneous optokinetic response produced by visual inversion. J. comp. physiol. Psychol. 43, 482–489 (1950).PubMedCrossRefGoogle Scholar
  143. 141.
    Spillmann, L.: Zur Feldorganisation der visuellen Wahrnehmung beim Menschen. Ph. D. Thesis, Univ. of Münster 1964.Google Scholar
  144. 142.
    — Foveal perceptive fields in the human visual system measured with simultaneous contrast in grids and bars. Pflügers Arch. ges. Physiol. 326, 281–299 (1971).CrossRefGoogle Scholar
  145. 143.
    Straschill, M., Taghavy, A.: Neuronale Reaktionen im Tectum opticum der Katze auf bewegte und stationäre Lichtreize. Exp. Brain Res. 3, 353–367 (1967).PubMedCrossRefGoogle Scholar
  146. 144.
    Stevens, S.S.: The psychophysics of sensory function. In: Sensory communication. Ed.: W.A. Rosenblith. New York-London: John Wiley 1961, pp. 1–33.Google Scholar
  147. 145.
    — Sensory power functions and neural events. Handbook of Sensory Physiology Vol. 1. Ed.: W.R. Loewenstein. Berlin-Heidelberg-New York: Springer 1971, pp. 226 to 242.Google Scholar
  148. 146.
    Ter Braak, J.W.G.: Untersuchungen über optokinetischen Nystagmus. Arch. néed. Physiol. 21, 309–376 (1936).Google Scholar
  149. 147.
    Teuber, H.-L.: Perception. In: Handbook of Physiology, Section 1, Neurophysiology 3. Eds.: J. Field, H.W. Magoun, and E. v. Hall. Washington: Amer. Physiol. Soc. 1960, pp. 1595–1688.Google Scholar
  150. 148.
    Vaughan, H.G., Jr.: The perceptual and physiologic significance of visual evoked responses from the scalp in man. In: Clinical Electroretinography. Oxford and New York: Pergamon Press 1966, pp. 203–223.Google Scholar
  151. 149.
    Vossius, G.: Die Regelbewegungen des Auges. Aufnahme und Verarbeitung von Nachrichten in Organismen. Stuttgart: Hirzel 1961, S. 149–157.Google Scholar
  152. 150.
    Werner, G., Mountcastle, V.B.: Neural activity in mechanoreceptive cutaneous afferents: stimulus response relations, Weber functions and information transmission. J. Neurophysiol. 28, 359–392 (1965).PubMedGoogle Scholar
  153. 151.
    Wertheimer, M.: Experimentelle Studien über das Sehen von Bewegung. 2. Psychol. 61, 161–265 (1912).Google Scholar
  154. 152.
    Westheimer, G.: Eye movement responses to a horizontally moving visual stimulus. Arch. Ophthal. (N.Y.) 52, 932–941 (1954).CrossRefGoogle Scholar
  155. 153.
    — Spatial interaction in human cone vision. J. Physiol. (Lond.) 190, 139–154 (1967).Google Scholar
  156. 154.
    Whitteridge, D.: Central control of eye movements. In: Handbook of Physiology — Neurophysiology II, pp. 1089–1109. Ed.: J. Field et al. Washington: Amer. Physiol. Soc. 1960.Google Scholar
  157. 155.
    Wilson, M.E.: Invariant features of spatial summation with changing locus in the visual field. J. Physiol. 207, 611–622 (1970).PubMedGoogle Scholar
  158. 156.
    Wurtz, R.H.: Responses of striate cortex neurones to stimuli during rapid eye movements in the monkey. J. Neurophysiol. 32, 975–986 (1969).PubMedGoogle Scholar
  159. 157.
    Goldberg, M.E.: Superior cell responses related to eye movements in awake monkeys. Science 171, 82–84 (1971).PubMedCrossRefGoogle Scholar
  160. 158.
    Zuber, B.L., Stark, L.: Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Exp. Neurol. 16, 65–79 (1966).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • Richard Jung
    • 1
  1. 1.Abteilung für NeurophysiologieNeurologische UniversitätsklinikFreiburg i. Br.Germany

Personalised recommendations