Skip to main content

Part of the book series: Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology ((1516,volume 4 / 1))

Abstract

Bone serves two distinct functions, viz., (1) it aids to protect part of the body, to support it in rest and in locomotion, and (2) it plays the role of a store of inorganic matter helpful in the mineral homeostasis in the blood and in the extracellular fluids. Bone owes most of its functional characteristics to its mineralization, i.e., to the presence within an organic matrix — gel-like polysaccharides which form a continuous phase and embed collagen fibres — of a system of discrete submicroscopic particles built of a complex mineral substance chiefly composed of calcium, phosphate and carbonate. The mineral phase gives a Roentgen-ray diffraction pattern characteristic of a structure called by the minerologists hydroxyapatite crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, J., and H. Holtzer: The loss of phenotypic traits by differentiated cells. J. Cell Biol. 28, 473–487 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Amprino, R.: Autoradiographic analysis of the distribution of labeled Ca and P in bones. Experientia (Basel) 8, 20–22 (1952a).

    Article  CAS  Google Scholar 

  • — Further experiments on the fixation in vitro of radiocalcium to sections of bone. Experientia (Basel) 8, 380–382 (1952b).

    Article  CAS  Google Scholar 

  • — Rapporti fra processi di ricostruzione e distribuzione dei minerali nelle ossa. I. Ricerche con metodo istoradiografico. Z. Zeilforsch. 37, 144–183 (1952c).

    Article  CAS  Google Scholar 

  • — Rapporti fra processi di ricostruzione e distribuzione dei minerali nelle ossa. II. Ricerche con metodo autoradiografico. Z. Zeilforsch. 37, 240–273 (1952d).

    Article  CAS  Google Scholar 

  • — Autoradiographic research on the S35-sulphate metabolism in cartilage and bone differentiation and growth. Acta anat. (Basel) 24, 121–163 (1955).

    Article  CAS  Google Scholar 

  • —, and A. Engström: Studies on X-ray absorption and diffraction of bone tissue. Acta anat. (Basel) 15, 1–22 (1952).

    Article  CAS  Google Scholar 

  • —, e Gr. Godina: La struttura delle ossa nei vertebrati. Ricerche comparative negli anfibi e negli amnioti. Comm. Pontif. Acad. Sci. 11, 329–464 (1947).

    Google Scholar 

  • Armstrong, W. D.: Phosphorus metabolism in the skeleton. In: Phosphorus Metabolism II, ed. by W. D. McElroy and B. Glass, pp.698–731. Baltimore: Johns Hopkins Press 1952.

    Google Scholar 

  • J. Schubert and A. Lindenbaum: Distribution of radioactive carbon administered as carbonate in the body and excreta of mature rat. Proc. Soc. exp. Biol. (N.Y.) 68, 233–240 (1948).

    Google Scholar 

  • Arnold, J. S.: Metabolism of bone as studied by radioautographic distribution of calcium, plutonium and radium. Amer. J. Physiol. 167, 765 (1951).

    Google Scholar 

  • —, and W. S. S. Jee: Double tracer radioautographic studies of Ca45 and Ra226 bone disposition. Radiat. Res. 1, 5 (1954a).

    Google Scholar 

  • Arnold, J. S., and W. S.S. Jee: Ion exchange and recrystallization in fixation of Ca45 in the rabbit skeleton. Proc. Soc. exp. Biol. (N.Y.) 85, 658–663 (1954b).

    CAS  Google Scholar 

  • — — Bone growth and osteoclastic activity as indicated by radioautographic distribution of plutonium. Amer. J. Anat. 101, 367–418 (1957).

    Article  PubMed  CAS  Google Scholar 

  • — — Autoradiography in the localization and radiation dosage of Ra226 and Pu239 in the bones of dogs. Lab. Invest. 8, 194–204 (1959).

    PubMed  CAS  Google Scholar 

  • — — and K. Johnson: Role of radioautographically detected bone growth and remodelling in Ca45 excretion and redistribution. XIX. Intern. Physiol. Congr. Abstracts of Communication 1953, pp. 174–175.

    Google Scholar 

  • — — and K. Johnson: Observations and quantitative autoradiographic studies of Calcium45 deposited in vivo in forming haversian systems and old bone of rabbit. Amer. J. Anat. 99, 291–313 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Asling, C. W., and L. E. Nelson: Autoradiographic localization of growth hormone-induced proliferation in bone and certain soft tissues. In: Radioisotopes and Bone, ed. by F. C. McLean, P. Lacroix, and A. M. Budy, pp. 191–195. Oxford: Blackwell Sci. Publ. 1962.

    Google Scholar 

  • Aub, J. C., R. D. Evans, L. H. Hempelmann and H. S. Martland: Late effects of internally-deposited radioactive materials in man. Medicine (Baltimore) 31, 221–329 (1952).

    CAS  Google Scholar 

  • Aubert, J.-P., F. Bronner, and L. J. Richelle: Quantitation of calcium metabolism. J. clin. Invest. 42, 885–897 (1963).

    Article  PubMed  CAS  Google Scholar 

  • —, et G. Milhaud: Méthode de mésure des principales voies du métabolisme calcique chez l’homme. Biochim. biophys. Acta (Amst.) 39, 122–139 (1960).

    Article  CAS  Google Scholar 

  • Bäckström, J., L. Hammarström, and A. Nelson: Distribution of Zirconium and Niobium in mice. Acta radiol. (Stockh.) 6, 122–128 (1967).

    Article  Google Scholar 

  • Barnes, L. L., G. Sperling, C. M. McCay and C. E. Brown: The production of osteogenic sarcomas in rats with radioactive calcium. Arch. Path. (Chicago) 66, 529–535 (1958).

    CAS  Google Scholar 

  • Bauer, G. C. H.: The importance of bone growth as a factor in the redistribution of bone salt. I. Redistribution of radio-active calcium in the skeleton of rats. J. Bone Jt Surg. A 36, 375–380 (1954a).

    CAS  Google Scholar 

  • — The importance of bone growth as a factor in the redistribution of bone salt. II. Redistribution of radio-active phosphorus in the skeleton of rats. J. Bone Jt Surg. A 36, 381–386 (1954b).

    CAS  Google Scholar 

  • — Rate of bone formation in a healing fracture determined in rats by means of radio-calcium. Acta orthop. scand. 23, 169–191 (1954c).

    Article  PubMed  CAS  Google Scholar 

  • — Kinetics of calcium and strontium metabolism in man. In: Bone as a Tissue, ed. by K. Rodahl, J. T. Nicholson and E. M. Brown jr., pp. 118–127. New York: McGraw-Hill Book Co., Inc. 1960.

    Google Scholar 

  • —, and A. Carlsson: Post-fracture bone salt resorption studied in rats. Acta orthop. scand. 25, 83–88 (1955).

    Article  PubMed  CAS  Google Scholar 

  • — — and D. Lindquist: Evaluation of accretion, absorption and exchange reactions in the skeleton. Kgl. Fysiograf. Sällskap. Lund Förh. 25, 1–16 (1955a)

    Google Scholar 

  • — — A comparative study on the metabolism of Sr90 and Ca45. Acta physiol. scand. 35, 56–66 (1955b).

    Article  PubMed  CAS  Google Scholar 

  • — — Bone salt metabolism in human rickets studied with radioactive phosphorus. Metabolism 5, 573–581 (1956).

    PubMed  CAS  Google Scholar 

  • — — — Metabolism of Ba140 in man. Acta orthop. scand. 26, 241–254 (1957a).

    PubMed  CAS  Google Scholar 

  • — — Bone salt metabolism in humans studied by means of radiocalcium. Acta med. scand. 158, 143–150 (1957b).

    Article  PubMed  CAS  Google Scholar 

  • — — — Use of isotopes in clinical studies of skeletal metabolism. In: Radioaktive Isotope in Klinik und Forschung, Bd. III, herausgeg. von K. Fellinger u. H. Vetter, S. 25–39. München: Urban & Schwarzenberg 1958.

    Google Scholar 

  • — — Metabolism and homeostatic function of bone. In: Mineral Metabolism, vol. I/B, ed by C. L. Comar and F. Bronner, pp. 609–676. New York: Academic Press 1961.

    Google Scholar 

  • —, and D. Ray: Kinetics of strontium metabolism in man. J. Bone Jt Surg. A 40, 171–186 (1958).

    Google Scholar 

  • —, and B. Wendeberg: External counting of Ca47 and Sr85 in studies of localized skeletal lesions in man. J. Bone Jt Surg. B 41, 558–580 (1959).

    Google Scholar 

  • Bélanger, L. F.: A method for routine detection of radiophosphates and other radioactive compounds in tissues. The inverted autograph. Anat. Rec. 107, 149–160 (1950).

    Article  PubMed  Google Scholar 

  • — Autoradiographic visualization of the entry and transit of S35 in cartilage, bone, and dentine of young rats and the effect of hyaluronidase in vitro. Canad. J. Biochem. 32, 161–169 (1954).

    Article  PubMed  Google Scholar 

  • Bélanger, L. F.: Autoradiographic studies of the formation of the organic matrix of cartilage, bone and the tissues of teeth. In: Bone structure and metabolism. Ciba Foundation Symposium, ed by G. E. W. Wolstenholme and C. M. O’Connor, pp. 75–88. London: J. A. Churchill Ltd. 1956.

    Google Scholar 

  • —, and C. P. Leblond: A method for locating radioactive elements in tissues by covering histological sections with a photographic emulsion. Endocrinology 39, 8–13 (1946).

    Article  PubMed  Google Scholar 

  • Bellin, J., and D. Laszlo: Metabolism and removal of Ca45 in man. Science 117, 331–334 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Bergner, P. E. E.: Dynamic aspects of a method in tracerkinetics. Exp. Cell Res. 17, 328–335 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, D. S., and P. Handler: Effects of parathyroid extract on sulfate metabolism of cartilage and bone matrix of rachitic rats. Proc. Soc. exp. Biol. (N.Y.) 99, 339–340 (1958).

    CAS  Google Scholar 

  • Bessler, W.: Resultate mit Sr85 Skeletszintigraphie. In: Radioisotope in der Lokalisationsdiagnostik, herausgeg. von G. Hoffmann und K. E. Scheer, S. 431. Stuttgart: F. K. Schattauer 1967.

    Google Scholar 

  • Black, A. L., M. Kleiber, A. H. Smith and N. P. Ralston: Mobility of skeletal phosphorus in a mature dairy cow as determined with radioactive phosphorus. Proc. Soc. exp. Biol. (N.Y.) 82, 248–252 (1953).

    CAS  Google Scholar 

  • Bloom, M. A., and W. Bloom: Late effects of radium and plutonium on bone. Arch. Path. (Chicago) 47, 494–511 (1949).

    CAS  Google Scholar 

  • Bloom, W., J. H. Curtis and F. C. McLean: The deposition of C14 in bone. Science 105, 45 (1947).

    Article  PubMed  CAS  Google Scholar 

  • Böstrom, H.: Chemical and autoradiographic studies on the sulfate exchange in sulpho-mucopolysaccharides. Ark. Kemi 6, 43–57 (1953).

    Google Scholar 

  • —, and B. Månson: Factors influencing the exchange of the sulfate group of the chondroitin sulphuric acid of cartilage in vitro. Ark. Kemi 6, 23–37 (1953).

    Google Scholar 

  • —, and E. Odeblad: The influence of cortisone upon the sulphate exchange of chondroitinsulphuric acid. Ark. Kemi 6, 39–42 (1953).

    Google Scholar 

  • Bohr, H.H.: Studies on fracture healing. J. Bone Jt Surg. A 37, 327–337 (1955).

    Google Scholar 

  • — On the uptake of radioactive Calcium and Strontium in the skeleton of normal and rachitic rats. Acta orthop. scand. 30, 237–250 (1961).

    Article  Google Scholar 

  • —, and S. Gr. Dawids: The effect of cortisone and anabolic steroids on the retention of radioactive Calcium and Strontium in rats. Acta endocr. (Kbh.) 47, 223–230 (1964).

    CAS  Google Scholar 

  • Boni, M., e A. Rampoldi: Ricerche con l’isotopo radioattivo del solfo (35-S) sulla cartilagine di accrescimento. Ortop. Traumat. Appar. mot. 26, 45–59 (1958).

    CAS  Google Scholar 

  • Boyd, G. A.: Autoradiography in biology and medicine. New York: Academic Press Inc. 1955.

    Google Scholar 

  • Bronner, F.: Effects of parathyroid extract on Ca and sulphur metabolism. Fed. Proc. 16, 158 (1957).

    Google Scholar 

  • Effects of parathyroid extract on metabolism of sulphate in immature rats. Amer. J. Physiol. 198, 605–608 (1960).

    PubMed  CAS  Google Scholar 

  • Parathyroid effects on sulfate metabolism: interrelationships with calcium. In: The Parathyroids, ed. by R. O. Greep and R. V. Talmage, pp. 123–138. Springfield: Ch. C. Thomas 1961.

    Google Scholar 

  • Parathyroid effects on sulfate and calcium metabolism. Trans. N. Y. Acad. Sci., S. II, 24, 265–272 (1962).

    Google Scholar 

  • — Dynamics and function of Calcium. In: Mineral Metabolism, vol. II/A, ed. by C. L. Comar and F. Bronner, pp. 341–444. New York: Academic Press 1964.

    Google Scholar 

  • —, and R. S. Harris: Absorption and metabolism of calcium in human beings studied with calcium45. Ann. N. Y. Acad. Sci. 64, 314–325 (1956).

    Article  CAS  Google Scholar 

  • — — C. J. Maletskos and C. E. Benda: Studies in calcium metabolism. The fate of intravenous injected radiocalcium in human beings. J. clin. Invest. 35, 78–88 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Budy, A. M.: The use of radioisotopes in Orthopaedics. Part II. Application of radioactive tracer techniques to bone. J. Bone Jt Surg. A 45, 1073–1083 (1963).

    CAS  Google Scholar 

  • Campo, R. D., and D. D. Dziewiatkowski: A consideration of the permeability of cartilage to inorganic sulfate. J. biophys. biochem. Cytol. 9, 401–408 (1961).

    Article  PubMed  CAS  Google Scholar 

  • — — Turnover of the organic matrix of cartilage and bone as visualized by autoradiography. J. Cell Biol. 18, 19–29 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., and D. Lindquist: Comparison of intestinal and skeletal effects of vitamine D in relation to dosage. Acta physiol. scand. 35, 53–55 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Carneiro, J., and C. P. Leblond: Role of osteoblasts and odontoblasts in secreting the collagen of bone and dentin, as shown by radioautography in mice given tritium-labeledglycine. Exp. Cell Res. 18, 291–300 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Carrit, J., R. Foyxell, J. Kleinschmldt, R. Kleinschmidt, W. Langham, A. San Pietro, R. Schatfh and B. Schnap: The distribution and excretion of plutonium administered intravenously to the rat. J. biol. Chem. 171, 273–283 (1947).

    Google Scholar 

  • Cartier, P. H., B. de Bernard and I. Lagrange: Studies on the repair of fractures using P32. In Ciba Foundation Symposium on Bone structure and metabolism, ed. by G. E. W. Wolstenholme and C. M. O’Connor, pp. 148–160. London: Churchill Ltd. 1956.

    Google Scholar 

  • Cohen, J., and C. J. Maletskos: 45Ca in the study of bone grafts in dogs. In: Radioisotopes and Bone, ed. by F. C. McLean, P. Lacroix and A. M. Budy, pp. 127–148. Oxford: Blackwell Sci. Publ. 1962.

    Google Scholar 

  • — — J. H. Marshall and J. B. Williams: Radioactive calcium tracer studies in bone grafts. J. Bone Jt Surg. A 39, 561–577 (1957).

    Google Scholar 

  • Collins, E. J., O. S. Carpenter, and V. F. Baker: Influence of adrenal steroids on radio. calcium metabolism in young beagle dogs. Acta endocr. (Kbh.) 42, 348–354 (1963).

    CAS  Google Scholar 

  • Comar, C.L.: Radioisotopes in biology and agriculture. Principles and practice. New York: McGraw-Hill Book Co., Inc. 1955.

    Google Scholar 

  • W. E. Lotz and G. A. Boyd: Autoradiographic studies of calcium, phosphorus and strontium distribution in the bones of the growing pig. Amer. J. Anat. 90, 113–129 (1952).

    Article  PubMed  CAS  Google Scholar 

  • —, and R. H. Wasserman: Radioisotopes in the study of mineral metabolism. In: Progress in nuclear energy, S. 6, vol. I, pp. 153–196. London: Pergamon Press 1956.

    Google Scholar 

  • — — Strontium. In: Mineral Metabolism, vol. II/A, ed. by C. L. Comar and F. Bronner, pp. 523–572. New York: Academic Press 1964.

    Google Scholar 

  • Copp, D. H., D. J. Axelrod and J. C. Hamilton: The deposition of radioactive metals in bone as a potential health hazard. Amer. J. Roentgenol. 58, 10–16 (1947).

    CAS  Google Scholar 

  • E. C. Cameron, B. A. Cheney, A. G. Davidson, and K. G. Henze: Evidence for Calcitonin — A new hormone from the parathyroid that lowers blood calcium. Endocrinology 70, 638–649 (1962).

    Article  PubMed  CAS  Google Scholar 

  • —, and S. S. Shim: Extraction ratio and bone clearance of Sr85 as a measure of effective bone blood flow. Circulation Res. 16, 461–467 (1965).

    PubMed  CAS  Google Scholar 

  • —, and A. P. Suiker: Study of calcium kinetics in calcium- and phosphorus-deficient rats with the aid of radiocalcium. In: Radioisotopes and Bone, ed. by P. Lacroix and A. M. Budy, pp. 1–16. Oxford: Blackwell Sci. Publ. 1962.

    Google Scholar 

  • Cramer, C.F., and D.H. Copp: Effect of mineral deficient diet on excretion of radiocalcium and radiostrontium. Amer. J. Physiol. 167, 776 (abstract) (1951).

    Google Scholar 

  • Curran, R. C., and J. S. Kennedy: The distribution of the sulphated mucopolysaccharides in the mouse. J. Path. Bact. 70, 449–457 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Dallemagne, M. J.: Propos sur les sels osseux. Acta physiol. pharmacol. neerl. 6, 469–478 (1957).

    PubMed  CAS  Google Scholar 

  • Ch. A. Baud et P. W. Morgenthaler: Autoradiographies de coupes d’os compact après marquage aux isotopes in vitro. Essai d’interprétation. Histochemie 1, 185–189 (1959).

    Article  Google Scholar 

  • —, et C. Fabry: Le problème des sels osseux. Acta chir. belg. et Acta orthop. belg. Suppl. 1, 75–114 (1956).

    Google Scholar 

  • J. Govaerts et J. Melon: Influence de la folliculine sur le métabolisme calcique du pigeon, étudiée a l’aide du radiocalcium. Arch. int. Physiol. 58, 157–187 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Davies, D. V., and L. Young: The distribution of radioactive sulphur (35S) in the fibrous tissues, cartilages and bones of the rat following its administration in the form of inorganic sulphate. J. Anat. (Lond.) 88, 174–183 (1954).

    CAS  Google Scholar 

  • Denardo, L. Gr., and J. A. Volpe: Detection of bone lesions with the Strontium-85 scintiscan. J. nucl. Med. 7, 219–236 (1966).

    PubMed  CAS  Google Scholar 

  • Dilla, M. A. van, B. J. Stover, R. L. Floyd, D. R. Atherton and D. H. Taysum: Radium (RA226) and Radon (Em222) metabolism in dogs. Radiat. Res. 8, 417–437 (1958).

    Article  Google Scholar 

  • Dixon, A. D.: Studies of the growth of the upper facial skeleton using radioactive calcium. J. dent. Res. 40, 204–216 (1961).

    Article  PubMed  CAS  Google Scholar 

  • —, and D. A. N. Hoyte: Autoradiographic and alizarin techniques in the study of skull growth. J. Anat. (Lond.) 93, 589 (1959).

    Google Scholar 

  • Dudley, R. A., and B. M. Dobyns: The use of autoradiographs in the quantitative determination of radiation dosages from Ca 45 in bone. Science 109, 327–328 (1949).

    Article  PubMed  CAS  Google Scholar 

  • Durbin, P. W., M. H. Williams, M. Gee, R. H. Neumann and J. G. Hamilton: Metabolism of the lanthanons in the rat. Proc. Soc. exp. Biol. (N.Y.) 91, 78–85 (1956).

    CAS  Google Scholar 

  • Duthie, R. B., and A. N. Barker: An autoradiographic study of mucopolysaccharides and phosphate complexes in bone growth and repair. J. Bone Jt Surg. B. 37, 304–323 (1955a).

    Google Scholar 

  • — — The histochemistry of the preosseous stage of bone repair studied by autoradiography. The effect of cortisone. J. Bone Jt Surg. B 37, 691–710 (1955b).

    Google Scholar 

  • Dziewiatkowski, D.D.: Radioautographic visualization of sulphur-35 disposition in the articular cartilage and bone of suckling rats following injection of labeled sodium sulphate. J. exp. Med. 93, 451–458 (1951a).

    Article  PubMed  CAS  Google Scholar 

  • — Isolation of chondroitin-sulphate-S35 from articular cartilage of rat. J. biol. Chem. 189, 187–190 (1951b).

    Google Scholar 

  • — Radioautographic studies of sulphate sulphur (S35) metabolism in the articular cartilage and bone of suckling rats. J. exp. Med. 95, 489–496 (1952).

    Article  Google Scholar 

  • — Sulphate-sulphur metabolism in the rat fetus as indicated by sulphur-35. J. exp. Med. 98, 119–128 (1953).

    Article  Google Scholar 

  • — Effect of age on some aspects of sulphate metabolism in the rat. J. exp. Med. 99, 283–298 (1954a).

    Article  Google Scholar 

  • — Vitamine A and endochondral ossification in the rat as indicated by the use of sulphur-35 and phosphorus-32. J. exp. Med. 100, 11–24 (1954 b).

    Article  Google Scholar 

  • — Vitamine A and endochondral ossification in the rat as indicated by the use of sulphur-35 and phosphorus-32. J. exp. Med. 100, 25–32 (1954c).

    Article  Google Scholar 

  • — Synthesis of sulphomucopolysaccharides in thyroidectomized rats. J. exp. Med. 105, 69–74 (1957).

    Article  Google Scholar 

  • — Autoradiographic studies with S35-sulphate. Intern. Rev. Cytol. VII, ed. by G. H. Bourne and J. F. Danielli, pp. 159–193. New York: Academic Press 1958.

    Google Scholar 

  • — Sulfur. In: Mineral Metabolism, vol. II/B, ed. by C. L. Comar and F. Bronner, pp. 175–220. New York: Academic Press 1962.

    Google Scholar 

  • Dziewiatkowski, D. D., F. Bronner, N. di Ferrante and R. M. Archibald: Some aspects of the metabolism of sulphate-S35 and calcium-45 in the metaphysis of immature rats. Influence of β-estradiol benzoate. J. biophys. biochem. Cytol. 3, 151–160 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Elliot, J. R., and R. V. Talmage: Removal of Ca40 and Ca45 from bone by citrate as influenced by the parathyroid. Endocrinology 62, 709–716 (1958).

    Article  Google Scholar 

  • Ellis, S., J. Huble’, and M. E. Simpson: Influence of hypophysectomy and growth hormone on cartilage sulfate metabolism. Proc. Soc. exp. Biol. (N.Y.) 84, 603–605 (1953).

    CAS  Google Scholar 

  • Engfeldt, B., A. Engström and H. Boström: The localisation of radiosulphate in bone tissue. Exp. Cell Res. 6, 251–253 (1954).

    Article  PubMed  CAS  Google Scholar 

  • — — and R. Zetterström: Renewal of phosphate in bone minerals. II. Radioautographic studies of renewal of phosphate in different structures of bone. Biochem. biophys. Acta 8, 375–380 (1952).

    Article  PubMed  CAS  Google Scholar 

  • —, and S. O. Hjertquist: Biophysical studies on bone tissue. X. The in vivo and in vitro uptake of radioactive isotopes and ionic exchange reactions in bone tissue. Acta path. microbiol. scand. 35, 205–216 (1954).

    Article  PubMed  CAS  Google Scholar 

  • —, and R. Zetterström: Biophysical and chemical investigation on bone tissue in experimental hyperparathyroidism. Endocrinology 54, 506–515 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Engström, A., R. Björnerstedt, C.-J. Clemedson, and A. Nelson: Bone and Radiostrontium. New York: Wiley 1958.

    Google Scholar 

  • Esteban, J., D. Lass, and S. Perez-Modrego: Detection of metastases in the skeleton with radioactive colloidal gold. Brit. J. Radiol. 40, 181–183 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Evans, R. D.: The effect of skeletally deposited alpha-ray emitters in man. Brit. J. Radiol. 39, 881–895 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Fabry, C.: L’échange isoionique de phosphates de calcium avec le calcium radioactif. II. L’ échange du phosphate synthétique de rapport Ca/P 2.14. Bull. Soc. Chim. biol. 40, 993–1002 (1958).

    PubMed  CAS  Google Scholar 

  • Falkenheim, M., E. E. Underwood and H. C. Hodge: Calcium exchange: the mechanism of absorption by bone of Ca45. J. biol. Chem. 188, 805–817 (1951).

    PubMed  CAS  Google Scholar 

  • Fitton Jackson, S., and J. I. Randall: Fibrogenesis and the formation of matrix in developing bone. In: Bone structure and metabolism. Ciba Foundation Symposium, ed. by G. E. W. Wolstenholme and C. M. O’Connor, pp. 47–64. London: J. A. Churchill Ltd. 1956.

    Google Scholar 

  • Fleming, W. H., J. D. McIlraith, and E. R. King: Photoscanning of bone lesions utilizing strontium-85. Radiology 77, 635–636 (1961).

    PubMed  CAS  Google Scholar 

  • Foster, G. V., A. Baghdiantz, M. A. Kumar, E. Slack, H. A. Soliman, and I. MacIntyre: Thyroid origin of calcitonin. Nature (Lond.) 202, 1303–1305 (1964).

    Article  CAS  Google Scholar 

  • Frederickson, J. M., A. J. Honour, and D. H. Copp: Measurement of initial bone clearance of Ca45 from blood in the rat. Fed. Proc. 14, 49 (1965).

    Google Scholar 

  • Frey, K. W., A. Sonntag, M. S. Scheybani, D. Krauss, and P. Fuchs: Knochen-Szintigraphie mit Strontium-85. Fort. Röntgenstr. 106, 206–215 (1967).

    Article  CAS  Google Scholar 

  • Friberg, U., and N. R. Ringertz: An autoradiographic study on the uptake of radiosulphate in the rat embryo. J. Embryol. exp. Morph. 4, 313–326 (1956).

    Google Scholar 

  • Frost, H. M., A. R. Villanueva and H. Roth: Measurements of bone formation in a 57 year old man by means of tetracyclines. Henry Ford Hosp. Med. Bull. 8, 239–254 (1960).

    PubMed  CAS  Google Scholar 

  • Gaillard, P. J.: Bone culture studies with calcitonin. Abridg. Proc. 4th Europ. Symp. on Calcified Tissues, p. 32–33. Amsterdam: Excerpta Medica Found. 1966.

    Google Scholar 

  • Garrett, E. R., R. L. Johnston, and E. J. Collins: Quantification of normal and adrenal steroid affected calcium metabolism in the young dog. J. Pharmacol. exp. Ther. 145, 357–366 (1964).

    PubMed  CAS  Google Scholar 

  • Geschwind, I. I.: Hormonal control of calcium, phosphorus, iodine, sulfur, and magnesium metabolism. In: Mineral Metabolism, vol. I/B, pp. 387–472, ed. by C. L. Comar and F. Bronner. New York: Academic Press 1961.

    Google Scholar 

  • —, C. H. Li and H. M. Evans: The effects of hypophysectomy and of growth hormone on the uptake of radioactive phosphorus by tissues. Arch. Biochem. 31, 168–182 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Glick, D.: A critical survey of current approaches in quantitative Histo- and Cytochemistry. In: Intern. Rev. Cytology, ed. by G. H. Bourne and J. F. Danielli, vol. II, pp. 447–474. New York: Acad. Press. Inc. 1953.

    Chapter  Google Scholar 

  • Glimcher, M. J.: The molecular biology of the mineralized tissues with particular reference to bone. Rev. modern Phys. 31, 359–393 (1959).

    Article  CAS  Google Scholar 

  • Glücksmann, A., A. Howard and S. R. Pelc: The uptake of radioactive sulphate by cells, fibres and ground-substance of mature and developing connective tissue in the adult mouse. J. Anat. (Lond.) 90, 478–485 (1956).

    Google Scholar 

  • Gordon, G. S.: A direct action of parathyroid hormone on dead bone in vitro. Acta endocr. (Kbh.) 44, 481–489 (1963).

    Google Scholar 

  • Govaerts, J., and M. J. Dallemagne: Influence of folliculin on bone metabolism, studied by means of radiophosphorus, P32. Nature (Lond.) 161, 977 (1948).

    Article  CAS  Google Scholar 

  • — —, and J. Melon: Radiocalcium as an indicator in the study of the action of estradiol on calcium metabolism. Endocrinology 48, 443–452 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Gran, F. C.: Studies on calcium and strontium-90 metabolism in rats. Acta physiol. scand. 48, Suppl. 167, 1–109 (1960).

    CAS  Google Scholar 

  • Greulich, R. C.: Entry of radio-carbon from labeled bicarbonate into the organic matrix of growing bones and teeth. Anat. Rec. 115, 312–313 (1953).

    Article  Google Scholar 

  • — An autoradiographic study of organically bound carbon-14 in growing epiphyseal cartilage and bone. J. Bone Jt Surg. A 38, 611–626 (1956).

    Google Scholar 

  • Greulich R.C., and U. Friberg: Histochemical studies of sulpho-mucopolysaccharides in the organic matrices of mineralized tissues. Exp. Cell Res. 12, 685–689 (1957).

    Article  PubMed  CAS  Google Scholar 

  • —, and C. P. Leblond: Radioautographic visualization of radio-carbon in the organs and tissues of newborn rats following administration of C14-labeled bicarbonate. Anat. Rec. 115, 559–585 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Hammarström, L., A. Nilson, and J. Ullberg: Distribution of radiostrontium in developing bones and teeth. Microradio autographic study with 85-Sr. Acta radiol. (Stockh.) 3, 183–192 (1965).

    Google Scholar 

  • Hansard, S. L., C. L. Comar and G. K. Davis: Effects of age upon the physiological behaviour of calcium in cattle. Amer. J. Physiol. 177, 383–389 (1954).

    PubMed  CAS  Google Scholar 

  • — — and M. P. Plumlee: The effects of age upon calcium utilisation and maintenance requirements in the bovine. J. animal Sci. 13, 25–36 (1954).

    CAS  Google Scholar 

  • Harbers, E.: Autoradiographie als histochemisches Untersuchungsverfahren. In: Handbuch der Histochemie, Bd. I, Teil 1, herausgeg. von W. Graumann und R. Neumann, S.400–598. Stuttgart: G.Fischer 1958.

    Google Scholar 

  • Harris, W. H.: A microscopic method of determining rates of bone growth. Nature (Lond.) 188, 1038–1039 (1960).

    Article  CAS  Google Scholar 

  • Harrison, H. F., and H. C. Harrison: The uptake of radiocalcium by the skeleton: the effect of vitamine D intake. J. biol. Chem. 185, 857–867 (1950).

    PubMed  CAS  Google Scholar 

  • Haumont, S.: Le Zinc dans le tissu osseux. Bruxelles: Ed. Arscia 1962.

    Google Scholar 

  • Heaney, R. P.: Evaluation and interpretation of calcium-kinetic data in man. Clin. Orthop. 31, 153–183 (1963).

    PubMed  CAS  Google Scholar 

  • G. C. H. Bauer, F. Bronner, J. F. Dymling, F. W. Lafferty, B. E. C. Nordin, and C. Rich: A normal reference standard for radiocalcium turnover and excretion in humans. J. Lab. clin. Med. 64, 21–28 (1964).

    PubMed  CAS  Google Scholar 

  • —, and G. D. Whedon: Radiocalcium studies of bone formation rate in human metabolic bone disease. J. clin. Endocr. Metab. 18, 1246–1267 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Henneman, D. H.: In vitro C14-glycine and C14-arginine metabolism by whole bone and metaphyseal fragments. Abr. Proc. 4th Europ. Symp. Calcified Tissues, pp. 102–103, ed. by P. J. Gaillard, A. van den Hooff, and R. Steendijk. Amsterdam: Excerpta Med. Foud. 1966.

    Google Scholar 

  • Herman, H., and M. J. Dallemagne: The main mineral constituent of bone and teeth. Arch. oral Biol. 5, 137–144 (1961).

    Article  PubMed  CAS  Google Scholar 

  • —, and L. J. Richelle: Le calcium échangeable de la substance minérale de l’os étudiée à l’aide de 45Ca. VIL Activité comparée de fractions d’os total de densité différente. Bull. Soc. Chim. biol. (Paris) 43, 273–282 (1961).

    CAS  Google Scholar 

  • Hevesy, G.: Radioactive indicators. New York: Interscience Publishers, Inc. 1948.

    Google Scholar 

  • H. B. Levi and O. H. Rebbe: Rate of rejuvenation of the skeleton. Biochem. J. 34, 532–537 (1940).

    PubMed  CAS  Google Scholar 

  • Hindmarsh, M., M. Owen and J. Vaughan: The relative hazards of strontium-90 and radium-226. Brit. J. Radiol. 81, 518–533 (1957).

    Google Scholar 

  • — — A note on the distribution of radium and a calculation of the radiation dose nonuniformity factor for radium226 and strontium90 in the femur of a luminous dial painter. Brit. J. Radiol. 32, 183–187 (1959).

    Article  PubMed  CAS  Google Scholar 

  • —, and J. Vaughan: The distribution of calcium in certain bones from a man exposed to radium for thirty-four years. Brit. J. Radiol. 29, 71–80 (1956).

    Google Scholar 

  • Hoecker, F. E., and P. G. Roofe: Studies of radium in human bone. Radiology 56, 89–98 (1951).

    PubMed  CAS  Google Scholar 

  • Howarth, J. L.: Calculation of the alpha-ray absorbed dose to soft tissue cavities in bone. Brit. J. Radiol. 38, 51–56 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Hunziger, W. A., u. Gr. A. Ortelli: Retention und Austausch von Calcium aus Ca45-Dinatrium-Aethylendiamintetraacetat. In: Badioaktive Isotope in Klinik und Forschung, herausgeg. von K. Felliger u. H. Vetter, Bd. II, S. 76–84. München: Urban & Schwarzenberg 1956.

    Google Scholar 

  • Httrwitz, S.: Bone composition and Ca45 retention in fowl as influenced by egg formation. Amer. J. Physiol. 206, 198–204 (1964).

    Google Scholar 

  • — Calcium turnover in different bone segments of laying fowl. Amer. J. Physiol. 208, 203–207 (1965).

    Google Scholar 

  • Irving, J. T.: Calcium metabolism. London: Methuen & Co. Ltd. 1957.

    Google Scholar 

  • Ito, Y., K. Takamura, and H. Endo: The effect of growth hormone on the incorporation of labeled sulfate into the chick embryo femur in tissue culture. Endocr. jap. 7, 327–335 (1960).

    Article  PubMed  CAS  Google Scholar 

  • S. Tsurufuji, S. Ishibashi, M. Ishidate, Z. Tamura and H. Takita: Detoxication and excretion of radioactive strontium. III. Effect of tricarballytic and lactic acids. Pharm. Bull. (Tôkyô) 6, 34–36 (1958).

    Article  CAS  Google Scholar 

  • — — M. Shikita and S. Ishibashi: Effect of phosphorus deficient diet with excess of calcium or strontium on the excretion of radiostrontium and its possible mechanism. Pharm. Bull. (Tokyo) 6, 115–116 (1958a).

    Article  CAS  Google Scholar 

  • — — Detoxication and excretion of radioactive strontium. IV. Effect of sodium calcium citrate and the mode of action of citrate. Pharm. Bull. (Tôkyô) 6, 287–290 (1958b).

    Article  CAS  Google Scholar 

  • Jee, W. S. S., and J. S. Arnold: Rate of individual Haversian system formation. Anat. Rec. 118, 315 (Abstract) (1954).

    Google Scholar 

  • — — Microradiographic studies of cortical bone of chronic toxicity dogs. Semiannual Progress Report, Radiobiology Laboratory, University of Utah College of Medicine, Salt Lake City, Utah, pp. 56–61, Sept. 1957.

    Google Scholar 

  • Jee, W. S. S., and J. S. Arnold: The effect of internally deposited radioisotopes upon the blood vessels of cortical bone. Proc. Soc. exp. Biol. Med. 105, 351–356 (1960).

    PubMed  CAS  Google Scholar 

  • — — The toxicity of plutonium deposited in skeletal tissues of beagles. I. The relation of the distribution of plutonium to the sequence of histopathologic bone changes. Lab. Invest 10, 797–825 (1961).

    PubMed  CAS  Google Scholar 

  • — — R. S. Mical, B. Bird, O. Frendenberger and M. Lowe: Bone: histopathologic and autoradiographic studies. Annual Progress Report, Radiobiology Laboratory, University of Utah College of Medicine, Salt Lake City, Utah, pp. 74–97, March 1958.

    Google Scholar 

  • P. Ottosen, R. Mical and M. Lowe: Bone: histopathologic and autoradiographic findings. Annual Progress Report, Radiobiology Laboratory, University of Utah College of Medicine, Salt Lake City, Utah, pp. 86–114, March 1957.

    Google Scholar 

  • B. J. Stover, G. N. Taylor, and W. R. Christensen: The skeletal toxicity of Pu239 in adult beagles. Hlth Phys. 8, 599–607 (1962).

    Article  CAS  Google Scholar 

  • Jodrey, L. H., and K. M. Wilbur: Autoradiograms of irregular surfaces. Proc. Soc. exp. Biol. (N. Y.) 77, 80–82 (1951).

    CAS  Google Scholar 

  • Johnston, P. M.: Isotopes in studies on the metabolism of bones and teeth. In: Künstliche radio-aktive Isotope in Physiologie, Diagnostik und Therapie, herausgeg. von R. H. Schwieg u. F. Turba, 2. Aufl. Heidelberg: Springer 1961.

    Google Scholar 

  • Jones, D. C., and D. H. Copp: The metabolism of radioactive strontium in adult young and rachiticrats. J.biol.Chem. 189, 509–514 (1951).

    PubMed  CAS  Google Scholar 

  • Jowsey, J.: Age changes in human bone. Clin. Orthop. 17, 210–218 (1960).

    Google Scholar 

  • W. Cafferty, and J. Rabinowitz: Analysis of distribution of Ca45 in dog bone by quantitative autoradiographic method. J. Bone Jt Surg. A 47, 359–370 (1965).

    CAS  Google Scholar 

  • —, and A. L. Orvis: Comparative deposition of 45Ca, 65Zn and 91Y in bone. Radiat. Res. 31, 693–698 (1967).

    Article  CAS  Google Scholar 

  • M. Owen and J. Vaughan: Microradiographs and autoradiographs of cortical bone from monkeys injected with 90-Sr. Brit. J. exp. Path. 34, 661–667 (1953).

    PubMed  CAS  Google Scholar 

  • R. E. Rowland, and J. H. Marshall: The deposition of the rare earths in bone. Radiat. Res. 8, 490–497 (1958).

    Article  PubMed  CAS  Google Scholar 

  • — —, and F. C. McLean: The effect of parathyroidectomy on haversian remodeling of bone. Endocrinology 63, 903–908 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Kane, W. J., and E. Grim: Blood flow to bone: a quantitative method and its validation. J. Bone Jt Surg. A 48, 1008–1009 (1966).

    Google Scholar 

  • Kember, N. F.: Cell division in endochondral ossification. J. Bone Jt Surg. B 42, 824–839 (1960).

    Google Scholar 

  • Kidman, B., M. L. Tutt and J. M. Vaughan: The retention and excretion of radioactive strontium and yttrium (Sr89, Sr90 and Y90) in the healthy rabbit. J. Path. Bact. 62, 209–227 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Kiehn, C. L., H. L. Friedell and W. J. Mac Intyre: Study of the vitality of tissue transplant by means of radioactive phosphorus. Plast. reconstr. Surg. 3, 335–339 (1948).

    Article  CAS  Google Scholar 

  • Knese, K. H., u. A. M. Knoop: Elektronenoptische Untersuchungen über die periostale Osteogenese. Z. Zellforsch. 48, 455–478 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Kodicek, E.: Metabolic studies on vitamin D. Ciba Foundation Symposium on Bone structure and metabolism, ed. by Gr. E. W. Wolstenholme and C. M. O’Connor, pp. 161–174. London: Churchill Ltd. 1956.

    Google Scholar 

  • —, and Gl. A. Thompson: Autoradiographic localization in bones of [1α3H] cholocalciferol. In: Structure and function of connective and skeletal tissue, pp. 369–372. Proc. Advanced Study Inst., St. Andrews. London: Butterworths 1965.

    Google Scholar 

  • Kolář, J., V. Bek, L. Janko, L. Vynánek, A. Babicky u. D. Drápelová: Zum Sinn und Grenzen der Knochendiagnostik mit 85Sr. Fortschr. Röntgenstr. 106, 216–224 (1967).

    Article  Google Scholar 

  • Kopriwa, B. M., and C. P. Leblond: Improvements in the coating technique of radioautography. J. Histochem. Cytochem. 10, 219–223 (1962).

    Article  Google Scholar 

  • Kshiragar, S. Gr., E. Lloyd, and J. Vaughan: Discrimination between Strontium and Calcium in bone and the transfer from blood to bone in the rabbit. Brit. J. Radiol. 39, 131–140(1966).

    Article  Google Scholar 

  • Lacroix, P.: Autoradiographies du tissu osseux spongieux. Experientia (Basel) 8, 426 (1952).

    Article  CAS  Google Scholar 

  • — Radiocalcium and radiosulphur in the study of bone metabolism at the histological level. Radioisotope Conference vol. 1, pp. 134–137. London: Butterworth’s Scientific Publications 1954.

    Google Scholar 

  • — The histological remodeling of adult bone. An autoradiographic study in bone structure and metabolism. Ciba Foundation Symposium, ed. by G. E. W. Wolstenholme and C. M. O’Connor, pp. 36–44. London: Churchill Ltd. 1956.

    Google Scholar 

  • — Ca45 autoradiography in the study of bone tissue. In: Bone as a Tissue, ed. by K. Rodahl, J. T. Nicholson and E. M. Brown, pp. 262 – 279. New York: McGraw-Hill Book Co., Inc. 1960.

    Google Scholar 

  • Langenskijöld, A., T. Rytömaa, and T. Videman: An autoradiographic study with 35S-sulphate in the growth in diameter of epiphyseal cartilage in rabbits. Acta orthop. scand., Suppl. No 106, 3–25 (1967).

    Google Scholar 

  • Laszlo, D.: Biological studies on calcium, strontium, lanthanum and yttrium. Intern. Conf. on the peaceful uses of atomic energy. A/Conf. 8/P/21, U.S.A./1955.

    Google Scholar 

  • —, and H. Spencer: Newer techniques in the study of calcium metabolism in man and effects of hormones thereon. In: Hormones and the aging process, ed. by E. T. Enger and G. Pincus, pp. 175–200. New York: Acad. Press Inc. 1956.

    Google Scholar 

  • Layton, L. L., with the technical assistance of D. F. Frankel and S. Scapa: Quantitative differential fixation of sulphate by tissues maintained in vitro. I. Sulphate fixation as a function of age for embryonic tissues. Cancer (Philad.) 3, 725–734 (1950).

    Article  CAS  Google Scholar 

  • Lea, L. M., et R. Ponlot: Sur les autoradiographies au Ca45 des os longs en croissance. Les mécanismes de l’apposition osseuse souspériostée. Arch. Biol. (Liège) 69, 455–465 (1958).

    CAS  Google Scholar 

  • —, and J. Vaughan: The uptake of 35S in cortical bone. Quart. J. micr. Sci. 98, 369–375 (1957).

    Google Scholar 

  • Leblond, C. P., and R. C. Greulich: Autoradiographie studies of bone formation and growth. In: The Biochemistry and Physiology of bone, ed. by G. H. Bourne, pp. 325–358. New York: Acad. Press. Inc. 1956.

    Google Scholar 

  • P. Lacroix, R. Ponlot et A. Dhem: Les stades initiaux de l’ostéogénèse. Nouvelles données histochimiques et autoradiographiques. Bull. Acad. roy. Méd. Belg. 25, 421–443 (1959).

    Google Scholar 

  • Gr.V. Wilkinson, L. F. Bélanger and Y. Robichon: Radio-autographic visualisation of bone formation in the rat. Amer. J. Anat. 86, 289–341 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Lee, W. R., J. T. Marshall, and H. A. Sissons: Calcium accretion and bone formation in dogs. An experimental comparison between the results of Ca45 kinetic analysis and tetracycline labeling. J. Bone Jt Surg. B 47, 157–180 (1965).

    CAS  Google Scholar 

  • Lemaire, R. Gr.: Calcium metabolism in fracture healing. J. Bone Jt Surg. A 48, 1156–1170 (1966).

    CAS  Google Scholar 

  • Lindquist, B., A. M. Budy, F. C. McLean and J. L. Howard: Skeletal metabolism in estrogentreated rats studied by means of Ca45. Endocrinology 66, 100–111 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, E.: The distribution of radium in human bone. Brit. J. Radiol. 34, 521–528 (1961).

    Article  PubMed  CAS  Google Scholar 

  • — The assessment of radioactive body burdens of the alkaline earths. In: Assessment of Radioactivity in man, vol. II, pp. 329–343. Vienna: Intern. Atomic Energy Agency 1964.

    Google Scholar 

  • — Quantitative autoradiography of Ca45 in bone. In: Calcified Tissues. Proc. 2nd Europ. Symp., pp. 11–22. Liège: Coll. des Colloques de l’Université de Liège 1965.

    Google Scholar 

  • Lontie, P.: Comment se distribue dans le squelette le radiocalcium administré au lapin adulte. Rev. belge Path. 23, 118–125 (1953).

    PubMed  CAS  Google Scholar 

  • Looney, W. B.: Late effects (twenty-five to forty years) of the early medical and industrial use of radio-active materials. Their relation to the more accurate establishment of maximum permissible amounts of radio-active elements in the body. Part I. J. Bone Jt Surg. A 37, 1169–1187 (1955).

    Google Scholar 

  • C. J. Maletskos, M. Helmick, J. Reardon, J. Cohen and W. Guild: The artificial kidney and ion-exchange resins as possible methods of removing radio-elements from the body. Radiology 68, 255–256 (1957).

    PubMed  CAS  Google Scholar 

  • Lotmar, R.: Der Einbau von 35S in die Kostalknorpel von Meerschweinchen unter Einfluß verschiedener Grlucocorticoide. Experientia (Basel) 16, 303–304 (1960).

    Article  CAS  Google Scholar 

  • Lotz, W. E., R. V. Talmage and C. L. Comar: Effect of parathyroid extract administration in sheep. Proc. Soc. exp. Biol. (N.Y.) 85, 292–295 (1954).

    CAS  Google Scholar 

  • MacDonald, N. S.: Kinetic studies of skeletal metabolism by external counting of injected in radioisotopes: the radioisotope osteogram. J. Lab. clin. Med. 52, 541–558 (1958).

    PubMed  CAS  Google Scholar 

  • — The radioisotope osteogram: kinetic studies of skeletal disorders in humans. Clin. Orthop. 17, 154–166 (1960).

    Google Scholar 

  • P. C. Lovick and L. I. Petriello: Healing bone fractures and simultaneous administration of radioisotopes of sulphur, calcium and yttrium. Amer. J. Physiol. 191, 185–188 (1957).

    Google Scholar 

  • Macintyre, I., J. A. Parsons, and C. J. Robinson: The effect of thyrocalcitonin on bloodbone calcium equilibrium in the perfused tibia of the cat. J. Physiol. (Lond.) 191, 393–405 (1967).

    CAS  Google Scholar 

  • Macpherson, S., M. Owen, and J. Vaughan: The relation of radiation dose to radiation damage in the tibia of weanling rabbits injected with Strontium-90. Brit. J. Radiol. 35, 221–234 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Manly LeFevre, M., and W. F. Bale: The metabolism of inorganic phosphorus of rat bones and teeth as indicated by the radio active isotopes. J. biol. Chem. 129, 125–134(1939).

    Google Scholar 

  • Marshall, J. H.: Microscopic metabolism of calcium in bone. In: Bone as a Tissue, ed. by K. Rodahl, J. T. Nicholson and E. M. Brown, pp. 144–155. New York: McGraw-Hill Book Co., Inc. 1960.

    Google Scholar 

  • J. Jowsey and R. E. Rowland: Microscopic metabolism of calcium in bone. IV. Ca45 deposition and growth rate in canine osteons. Radiat. Res. 10, 243–257 (1959a).

    Article  PubMed  CAS  Google Scholar 

  • — — Microscopic metabolism of Calcium in bone. II. Quantitative autoradiography. Radiat. Res. 10, 213–233 (1959b).

    Article  PubMed  CAS  Google Scholar 

  • — — Microscopic metabolism of calcium in bone. V. The paradox of diffuse activity and long-term exchange. Radiat. Res. 10, 258–270 (1959c).

    Article  PubMed  CAS  Google Scholar 

  • —, and C. C. Onkelinx: Radial diffusion and power function retention of alkaline earth radioisotopes in adult bone. Nature (Lond.) 217, 742–743 (1968).

    Article  CAS  Google Scholar 

  • V. K. White and J. Cohen: Microscopic metabolism of calcium in bone. I. Three dimensional deposition of Ca45 in canine osteons. Radiat. Res. 10, 197–212 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Martin, N. D., and E. S. Slater: Direct tissue radioautography technique applied to teeth. Science 113, 721–722 (1951).

    Article  PubMed  CAS  Google Scholar 

  • McCready, V. R.: Clinical radioisotope scanning. Brit. J. Radiol. 40, 401–423 (1967).

    Article  PubMed  CAS  Google Scholar 

  • McLean, F. C., and A. M. Budy: Radiation, Isotopes, and Bone, pp.1–216. New York: Acad. Press 1964.

    Google Scholar 

  • McLean, F. C., and M. R. Urist: Bone. An introduction to the physiology of skeletal tissue. Chicago: Chicago University Press 1955.

    Google Scholar 

  • Merseely, G. R., W. L. Alsobrook, J. M. Merril, O. J. Balchum, R. L. Weiland and C. O. T. Ball: Metabolism of the major mineral elements of the animal body. In: Radiation Biology and Medicine, ed. by W. D. Claus. Reading: Addison-Wesley Publisher Co. Inc. 1958.

    Google Scholar 

  • Milch, R. A., D. P. Rall and J. E. Tobie: Fluorescence of tetracycline antibiotics in bone. J. Bone Jt Surg. A 40, 897–910 (1958).

    Google Scholar 

  • Milhaud, G., W. Remagen, A. Gomes de Matos et J. P. Aubert: Étude du métabolisme du calcium chez le rat à l’aide de calcium-45. I. Le rachitisme expérimental. Rev. franc. Ét. clin. biol. 5, 254–261 (1960a).

    CAS  Google Scholar 

  • — — — — Étude du métabolisme du calcium chez le rat à l’aide de calcium-45. II. Action de la cortisone Rev. franc. Ét. clin. biol. 5, 354–358 (1960b).

    CAS  Google Scholar 

  • Mueller, W. J., R. Schraer, and H. Schraer: Calcium metabolism and skeletal dynamics of laying pullets. J. Nutr. 84, 20–26 (1964).

    PubMed  CAS  Google Scholar 

  • Nelson, A., C. Rönnbäck, and L. Rosen: Further attempts to influence the elimination of radiostrontium. Acta radiol. (Stockh.) 1, 129–139 (1963).

    CAS  Google Scholar 

  • Neumann, W. F.: Chemical dynamics of bone mineral. In: Bone as a Tissue, ed. by K. Rodahl, J. P. Nicholson and E. M. Brown, pp. 103–117. New York: McGraw-Hill Book Co. Inc. 1960.

    Google Scholar 

  • —, and B.J. Mulryan: The surface chemistry of bone. VI. Recrystallization in vivo. J. biol. Chem. 195, 843–848 (1952).

    Google Scholar 

  • —, and M. W. Neumann: The chemical dynamics of bone mineral. Chicago: Chicago University Press 1958.

    Google Scholar 

  • —, and R. F. Riley: The uptake of radioactive phosphorus in the calcified tissues of normal and choline-deficient rats. J. biol. Chem. 168, 545–554 (1947).

    Google Scholar 

  • Nilsson, A.: Influence of gestation and lactation on radiostrontium-induced malignancies in mice. I. Acta radiol. (Stockh.) 6, 33–52 (1967).

    CAS  Google Scholar 

  • A. Nelson, C. Rönnbäck, A.-M. Sjödén, Gr. Walinder, and O. Hertzberg: Influence of gestation and lactation on radiostrontiuminduced malignancies in mice. Acta radiol. (Stockh.) 6, 129–144 (1967).

    Article  CAS  Google Scholar 

  • Nordin, B. E. C.: Analysis of methods for interpretation of tracer data in bone. In: Medical Uses of Ca47, p. 57. Vienna: Intern. Atomic Energy Agency 1962.

    Google Scholar 

  • Norris, W. P., and W. Kisieleski: Comparative metabolism of Ra, Sr and Ca. Cold Spr. Harb. Symp. quant. Biol. 13, 164–172 (1948).

    Article  CAS  Google Scholar 

  • S. A. Tylerand A. M. Brues: Retention of radioactive bone seekers. Science 128, 456 – 462 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Odeblad, E.: Matrix theory of quantitative apposition autoradiography. Acta radiol. (Stockh.) 45, 323–339 (1956).

    Article  CAS  Google Scholar 

  • Odell, R. T., O. B. Mueller and J. A. Key: Effect on bone grafts of radioactive isotopes of phosphorus. J. Bone Jt Surg. A 33, 324–332 (1951).

    Google Scholar 

  • Okada, T. S.: Autoradiographic study of cartilage differentiation in organ culture. Experientia (Basel) 16, 160 (1960).

    Article  CAS  Google Scholar 

  • Osborne, J. C., and K. Kowalewski: The uptake of radiosulphur in the fractured humerus in the rat. Surg. Gynec. Obstet. 103, 38–40 (1956).

    PubMed  CAS  Google Scholar 

  • Owen, M.: Sr90 dosimetry in rabbits. In: Some aspects of internal irradiation, pp. 409–421, ed. by T. F. Daugherty, W. S. S. Jee, C. W. Mays, and B. J. Stoyer. Oxford: Pergamon Press 1962.

    Google Scholar 

  • — Cell population kinetics of an osteogenic tissue. I. J. Cell Biol. 19, 19–32 (1963).

    Article  PubMed  CAS  Google Scholar 

  • — Cell differentiation in bone. In: Calcified Tissues. Proc. 2nd Europ. Symp., pp. 11–22. Liège: Coll. Colloques de l’Université de Liège 1965.

    Google Scholar 

  • —, and S. Macpherson: Cell population kinetics of an osteogenic tissue. II. J. Cell. Biol. 19, 33–44 (1963).

    Article  PubMed  CAS  Google Scholar 

  • J. Jowsey and J. Vaughan: Investigation on the growth and structure of the tibia of the rabbit by microradiographic and autoradiographic techniques. J. Bone Jt Surg. B 37, 324–342 (1955).

    Google Scholar 

  • Pelc, S. R.: Autoradiograph technique. Nature 160, 749–750 (1947).

    Article  PubMed  CAS  Google Scholar 

  • — The stripping-film technique of autoradiography. Int. J. appl. Radiat. 1, 172–177 (1956).

    Article  PubMed  CAS  Google Scholar 

  • —, and A. Glücksmann: Sulphate metabolism in the cartilage of the trachea, pinna and xiphoid of the adult mouse as indicated by autoradiographs. Exp. Cell Res. 8, 336–344 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Ponlot. R.: Le radiocalcium dans l’étude des os. Préface par P. Lacroix. Paris: Masson & Cie. 1960.

    Google Scholar 

  • Plumlee, M. P., S. L. Hansard, C. L. Comar and W. M. Beeson: Placental transfer and deposition of labeled calcium in the developing bovine fetus. Amer. J. Physiol. 171, 678–686 (1952).

    PubMed  CAS  Google Scholar 

  • Prockop, D. J., O. Pettengill, and H. Holtzer: Incorporation of sulfate and the synthesis of collagen by cultures of embryonic chondrocytes. Biochim. biophys. Acta (Aust.) 83, 189–196 (1964).

    CAS  Google Scholar 

  • Ramsden, E. N.: A review of experimental work on radio-yttrium comprising 1. The tissue distribution, 2. The mechanism of deposition in bone, and 3. The state in the blood. Int. J. Radiat. Biol. 3, 399–410 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Rapkin, E.: Liquid scintillation counting 1957 – 1963: a review. Int. J. appl. Radiat. 15, 66–87 (1964).

    Article  Google Scholar 

  • Ray, R. D., D. La Violette, H. D. Buckley and R. S. Mosiman: Studies of bone metabolism. I. Comparison of the metabolism of strontium-90 in living and dead bone. J. Bone Jt Surg. A 37, 143–155 (1955).

    Google Scholar 

  • Ray, R.D., and K. H. Mueller: The use of radioisotopes in Orthopaedics. Part III. Experimental and clinical studies. J. Bone Jt Surg. A 47, 417–425 (1965).

    CAS  Google Scholar 

  • — — B. Sankaran, E. Mensen, and T. Schwartz: Metabolic diseases of bone (kinetic studies). Med. Clin. N. Amer. 49, 241–258 (1965).

    PubMed  CAS  Google Scholar 

  • D. E. Stedman and N. K. Wolff: Bone metabolism. III. The effect of various diets on the mobilization of strontium from the rat skeleton. J. Bone Jt Surg. A 38, 637–654 (1956).

    Google Scholar 

  • Rayner, B., M. Tutt and J. Vaughan: The deposition of 91Y in rabbit bones. Brit. J. exp. Path. 34, 138–145 (1953).

    PubMed  CAS  Google Scholar 

  • Rich, C.: The calcium metabolism of a patient of a renal insufficiency before and after partial parathyroidectomy. Metabolism 6, 574–582 (1957).

    PubMed  CAS  Google Scholar 

  • — Distribution of calcium given by sustained intravenous infusion. J. clin. Endocr. 20, 147–156 (1960).

    Article  CAS  Google Scholar 

  • —, and J. Ensinck: Effect of sodium fluoride on calcium metabolism of human beings. Nature (Lond.) 192, 185 (1961).

    Article  Google Scholar 

  • — —, and H. Fellows: The use of continuous infusions of calcium45 and strontium85 to study skeletal function. J. clin. Endocr. 21, 611–623 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Richelle, L. J., and F. Bronner: The calcium exchange reaction of bone in vitro. Effect of parathyroid extract. Biochem. Pharmacol. 12, 647–659 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Rigal, W. M.: The use of tritiated thymidine in studies of chondrogenesis. In: Radioisotopes and Bone, ed. by F. C. McLean, P. Lacroix, and A. M. Budy, pp. 197–225. Oxford: Blackwell Sci. Publ., 1962.

    Google Scholar 

  • Robertson, J. S.: Theory and use of tracers in determining transfer rates in biological systems. Physiol. Rev. 37, 133–154 (1957).

    PubMed  CAS  Google Scholar 

  • Robinson, R. A.: Chemical analysis and electronmicroscopy of bone. In: Bone as a Tissue, ed. by K. Rodahl, J. T. Nicholson and E. M. Brown, pp. 186–250. New York: McGraw-Hill Book Co., Inc. 1960.

    Google Scholar 

  • Rosenthal, H.L.: Uptake of Ca45 and strontium90 from water by fresh-water fishes. Science 126, 669–670 (1957).

    Article  Google Scholar 

  • Rosoff, B., S. Ritter, K. Sullivan, H. Hart and H. Spencer-Laszlo: Effect of chelating agents on the removal of yttrium and lanthanum from man. Hlth Phys. 6, 177–182 (1961).

    Article  CAS  Google Scholar 

  • Rowland, R. E.: Microscopic metabolism of Ra226 in canine bone and its bearing on the radiation dosimetry of internally deposited alkaline earths. Radiat. Res. 15, 126–137 (1961).

    Article  PubMed  CAS  Google Scholar 

  • — Skeletal retention of the alkaline earth radioisotopes and bone dosimetry. In: Some Aspects of internal Irradiation, pp. 455–467, ed. by T. F. Daugherty, W. S. S. Jee, C. W. Mays, and B. J. Stover. Oxford: Pergamon Press 1962.

    Google Scholar 

  • Rowland, R. E.: Resorption and bone physiology. In: Bone Biodynamics, ed by H. M. Frost, pp. 335–351. Boston: Little, Brown & Co. 1964.

    Google Scholar 

  • —, and J. H. Marshall: Radium in human bones: the dose in microscopic volumes of bone. Radiat. Res. 11, 299–313 (1959).

    Article  PubMed  CAS  Google Scholar 

  • — — and J. Jowsey: Radium in human bone: the microradiographic appearance. Radiat. Res. 10, 323–334 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Rubin, M.: Application of chelating agents. In: Metabolic Interrelation. Trans. of the fifth Conference, ed. by E. C. Reifenstein jr., pp. 344–354. New York: Josiah Macy jr. Found. 1953.

    Google Scholar 

  • K. C. Brace, H. Gump, R. Swarm and J. R. Andrews: The radiotoxic effects of S35 in growing cartilage. Consideration of radioactive sulphur (S35) as a possible radiotherapeutic agent in chondrosarcomas. Radiology 69, 711–719 (1957).

    PubMed  CAS  Google Scholar 

  • R. D. Thomas, T. A. Litovitz and C. F. Geschickter: Dynamics of calcium metabolism. Metabolic Interrelation. Trans. of the fifth Conference, ed. by E. C. Reifenstein jr., pp. 53–71. New York: Josiah Macy jr. Found. 1953.

    Google Scholar 

  • Ruf, F.: Über Stoffwechseluntersuchungen mit Radiophosphorus und Radiocalcium im Knochen, insbesondere während der Knochenbruchheilung und in Knochenspüren. In: Radioaktive Isotope in Klinik und Forschung, herausgeg. von K. Fellinger u. H. Vetter, Bd. 1, S. 212–221. München u. Berlin: Urban & Schwarzenberg 1955.

    Google Scholar 

  • Rushton, M. A., M. Owen, W. Holgate, and J. Vaughan: The relation of radiation dose to radiation damage in the mandible of weanling rabbits. Arch. oral Biol. 3, 235–246 (1961).

    PubMed  CAS  Google Scholar 

  • Rundo, J., and A. L. Lillegraven: Uptake and retention of radioactive Strontium in normal subjects. Brit. J. Radiol. 39, 676–685 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Sacks, J.: Tracer techniques: stable and radioactive isotopes. In: Physical Techniques in biological Research, ed. by G. Oster and A. W. Pollister, vol. II, pp. 1–56. New York: Acad. Press Inc. 1956.

    Google Scholar 

  • Samachson, J.: Mechanism for the exchange of the calcium in bone mineral. Nature (Lond.) 216, 193–194 (1967).

    Article  CAS  Google Scholar 

  • Schubert, J.: Approaches to treatment of poisoning by both radioactive and non-radioactive elements encountered in atomic energy operations. Geneva Conference Paper, No. P/845 (1955).

    Google Scholar 

  • —, and W. D. Armstrong: Rate of elimination of radioactive carbon administered as carbonate from the tissues and tissue components of mature and growing rats. J. biol. Chem. 177, 521–527 (1949).

    PubMed  CAS  Google Scholar 

  • —, and J. F. Fried: Chelating agents in the treatment of poisoning by polymerizable radioelements. Nature (Lond.) 185, 551–552 (1960).

    Article  CAS  Google Scholar 

  • Schulert, A. R., E. A. Peets, D. Laszlo, H. Spencer, M. Charles and J. Samachson: Comparative metabolism of strontium and calcium in man. Int. J. appl. Radiat. 4, 144 – 153 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Scott, K. G., H. Axelrod and J. Gr. Hamilton: The metabolism of curium in the rat. J. biol. Chem. 177, 325–335 (1949).

    PubMed  CAS  Google Scholar 

  • D.H. Copp, H. Axelrod and J. Gr. Hamilton: The metabolism of americium in the rat. J. biol. Chem. 175, 691–703 (1948).

    PubMed  CAS  Google Scholar 

  • Shetlar, M. R., R. M. Bradford, W. Joel, and R. P. Howard: Effects of parathyroid extract on glycoprotein and mucopolysaccharide components of serum and tissue. In: The Parathyroids, ed. by R. O. Greep and R. V. Talmage, pp. 123–143. Springfield: Ch. C. Thomas 1961.

    Google Scholar 

  • Shim, S. S., D. H. Copp, and F. P. Patterson: An indirect method of bone blood-flow measurement based on the bone clearance of a circulating bone-seeking radioisotope. J. Bone Jt Surg. A 49, 693–702 (1967).

    CAS  Google Scholar 

  • Simmons, D. J.: Cellular changes in the bones of mice as studied with tritiated thymidine and the effects of Estrogen. Clin. Orthop. 26, 176–189 (1963).

    PubMed  CAS  Google Scholar 

  • Singer, L., and W. D. Armstrong: Retention and turnover of radiocalcium by the skeleton of large rats. Proc. Soc. exp. Biol. (N. Y.) 76, 229–233 (1951).

    CAS  Google Scholar 

  • Siri, W. E.: Isotopic tracers and nuclear radiations. New York: McGraw-Hill Book Co., Inc. 1949.

    Google Scholar 

  • Skipper, H. E., C. Nolan and L. Simpson: Studies on the hazard involved in use of C14. III. Long term retention in bone. J. biol. Chem. 189, 159–166 (1951).

    PubMed  CAS  Google Scholar 

  • Solomon, A. K.: Compartmental methods of kinetic analysis. In: Mineral Metabolism, vol. I, pp. 119–168, ed. by C. L. Comar, and F. Bronner. New York: Acad. Press Inc. 1960.

    Google Scholar 

  • Sowby, F. D., and D. M. Taylor: Removal of internally deposited americium by chelating agents. Nature (Lond.) 187, 612 (1960).

    Article  CAS  Google Scholar 

  • Speckmann, Th. V., and W. P. Norris: The retention of strontium85 in rats as a function of animal age at injection. Quarterly Report of Biological and Medical Research Division Argonne National Laboratory, ANL-5597, 77–78 (1956).

    Google Scholar 

  • — — Strontium85 retention by the rat as a function of age at injection. Semi-annual Report of Biological and Medical Research Division Argonne National Laboratory, ANL-6093, 82–87 (1958).

    Google Scholar 

  • Spencer, H., D. Laszlo and M. Brothers: Strontium85 and calcium45 metabolism in man. J. clin. Invest. 36, 680–688 (1957).

    Article  PubMed  CAS  Google Scholar 

  • M. Li, J. Samachson, and D. Laszlo: Metabolism of strontium-85 and calcium-45 in man. Metabolism 9, 916–925 (1960).

    CAS  Google Scholar 

  • J. Samachson, B. Kabakow and D. Laszlo: Factors modifying radiostrontium excretion in man. Clin. Sci. 17, 291–301 (1958).

    PubMed  CAS  Google Scholar 

  • Spencer, R., R. Herbert, M. W. Rish, and W. A. Little: Bone scanning with 85Sr, 87mSr and 18F. Physical and radiopharmaceutical considerations and clinical experience in 50 cases. Brit. J. Radiol. 40, 641–654 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Spiers, F. W.: The influence of energy absorption and electron range on dosage in irradiated bone. Brit. J. Radiol. 22, 521–533 (1949).

    Article  PubMed  CAS  Google Scholar 

  • — Calculation of ionization near bone surface. Brit. J. Radiol. 23, 743 (1950).

    Article  Google Scholar 

  • Sternberg, J.: Effect of tetracyclines on the turnover of Calcium-45 in young rats. Int. J. appl. Radiat. 17, 497–512 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Stillström, J.: Grain count corrections in autoradiography. I. Int. J. appl. Radiat. 14, 113 – 120 (1963).

    Article  PubMed  Google Scholar 

  • — Grain count corrections in autoradiography. II. Int. J. appl. Radiat. 16, 357–363 (1965).

    Article  Google Scholar 

  • Stoclet, J. C.: Les échanges calciques rapides analysés par le Ca45 chez le rat. C.R. Acad. Sci. (Paris) 251, 1834–1836 (1960a).

    CAS  Google Scholar 

  • — Les échanges calciques entre plasma sanguin et divers organes, étudiés chez le rat mâle et femelle à l’aide du Ca45. C. R. Acad. Sci. (Paris) 251, 1934–1936 (19606).

    CAS  Google Scholar 

  • Strandh, J.: Chemical and biophysical studies of microscopic structures in compact bone. Acta Univ. upsalien. 3, 1–16 (1961).

    Google Scholar 

  • —, and A. Bengtsson: The uptake of phosphorus in microscopic bone structures in compact bone. Acta Soc. Med. upsalien. 66, 49–63 (1961a).

    CAS  Google Scholar 

  • — — The uptake of calcium in microscopic bone structures in compact bone. Acta Soc. Med. upsalien. 66, 95–103 (1961b).

    CAS  Google Scholar 

  • —, and K. Solheim: The change with age of the uptake of phosphorus in microscopic bone structures. Acta Soc. Med. upsalien. 68, 135 – 140 (1963).

    CAS  Google Scholar 

  • Talmage, R. V.: Studies on the influence of parathyroid hormone on bone cell modulation. Abr. Proc. 4th Europ. Symp. Calcified Tissues, ed. by P. J. Gaillard, A. van den Hooff and R. Steendijk, pp. 99–100. Amsterdam: Excerpta Med. Found. 1966.

    Google Scholar 

  • —, and J. R. Elliott: Removal of calcium from bone as influenced by the parathyroids. Endocrinology 62, 717–722 (1958).

    Article  PubMed  CAS  Google Scholar 

  • W. E. Lotz and C. L. Comar: Action of parathyroid extract on bone phosphorus and Ca in the rat. Proc. Soc. exper. Biol. (N.Y.) 34, 578–582 (1953).

    Google Scholar 

  • Thomas, R. O., T. A. Litovitz, M. I. Rubin and C. F. Geschickter: Dynamics of calcium metabolism. Time distribution of intravenously administered radiocalcium. Amer. J. Physiol. 169, 568–575 (1952).

    PubMed  CAS  Google Scholar 

  • Tomlin, D. H., K. M. Henry and S. K. Kon: Autoradiographic studies of growth and calcium metabolism in the long bones of the rat. Brit. J. Nutr. 7, 235–252 (1953).

    Article  PubMed  CAS  Google Scholar 

  • — — The interstitial metabolism of calcium in the bones and teeth of rats. Brit. J. Nutr. 9, 144–156 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, R. W. S., M. Wall, S. B. Osborn, and J. Anderson: Radiocalcium studies in normal subjects. Calc. Tiss. Res. 1, 197–203, (1967).

    Article  CAS  Google Scholar 

  • Tonna, E. A.: The cellular complement of the skeletal system studied autoradiographically with tritiated thymidine (H3TDR) during growth and aging. J. biophys. biochem. Cytol. 9, 813–824 (1961a).

    Article  PubMed  CAS  Google Scholar 

  • — An autoradiographic evaluation of the aging cellular phase of mouse skeleton using tritiated glycine. J. Geront. 19, 198–206 (1964).

    PubMed  CAS  Google Scholar 

  • —, and E. P. Cronkite: Histochemical and autoradiographic studies on the effects of aging on the mucopolysaccharides of the periosteum. J. biophys. biochem. Cytol. 6, 171–178 (1959).

    Article  PubMed  CAS  Google Scholar 

  • — — Use of tritiated thymidine for the study of the origin of the osteoclast. Nature (Lond.) 190, 459–460 (1961a).

    Article  CAS  Google Scholar 

  • — — Cellular response to fracture studied with tritiated thymidine. J. Bone Jt Surg. A 43, 352–362 (1961b).

    Google Scholar 

  • — — Utilization of tritiated histidine (H3HIL) by skeletal cells of adult mice. J. Geront. 17, 353–358 (1962a).

    PubMed  CAS  Google Scholar 

  • — — Changes in the skeletal cell proliferative response to trauma concomitant with aging. J. Bone Jt Surg. A 44, 1557–1568 (1962b).

    Google Scholar 

  • — — The effects of extraperiosteal injections of blood components on periosteal cell proliferation. J. Cell Biol. 23, 79–87 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Triffitt, J. T.: Binding of calcium and strontium by alginates. Nature (Lond.) 217, 457–458 (1968).

    Article  CAS  Google Scholar 

  • Tullis, J. L., and H. A. Johnson: The biological significance of some important internal emitters. In: Radiation Biology and Medicine, ed. by W. D. Claus, pp. 341–368. Reading: Addison-Wesley Publishers Co., Inc. 1958.

    Google Scholar 

  • Uehlinger, E.: On the influence of thyroxine, thiouracil, cortisone, estrogen and testosterone on endochondral ossification utilizing autoradiography. In: Proc. 3rd Europ. Symp. Calcified Tissues, ed. by H. Fleisch, H. J. J. Blackwood, and M. Owen, pp. 243–245. Berlin: Springer 1965.

    Google Scholar 

  • Urist, M. R., N. S. Mac Donald and J. Joweey: The function of the donor tissue in experimental operations with radioactive bone grafts. Ann. Surg. 147, 129–145 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Van Dyke, D., H. O. Anger, U. Yano, and C. Bozzini: Bone blood flow shown with F18 and the positron camera. Amer. J. Physiol. 209, 65–70 (1965).

    Google Scholar 

  • Vaughan, J.: The effects of radiation on bone. In: The biochemistry and physiology of bone, ed. by G. H. Bourne, pp. 729–765. New York: Acad. Press Inc. 1956.

    Google Scholar 

  • —, and J. Jowsey: Preliminary report on lesions in the skeleton of young rabbits following a single injection of 90Sr (500–1000 c/Kg). In: Progress in Radiobiology, pp. 429–433. Edinburgh: Oliver & Boyd 1956.

    Google Scholar 

  • —, and M. Owen: The use of autoradiography in the measurement of radiation dose-rate in rabbit bone following the administration of Sr90. Lab. Invest. 8, 181–193 (1959).

    PubMed  CAS  Google Scholar 

  • —, and M. Williamson: Variation in “turnover rates” in different parts of the skeleton in relation to turnover incidence due to 90 Sr deposition. In: Abr. Proc. 4th Europ. Symp. Calcified Tissues, ed. by P. J. Gaillard, A. van den Hooff, and R. Steendijk, pp. 102–103. Amsterdam: Excerpta Med. Found. 1966.

    Google Scholar 

  • Vincent, J.: Recherches sur la constitution du tissu osseux compact. Arch. Biol. (Liège) 65, 531–569 (1954).

    CAS  Google Scholar 

  • — Recherches sur la constitution de l’os adulte. Thèse Université Louvain, Editions Arscia, Bruxelles 1955.

    Google Scholar 

  • — Autoradiographies au Na22 de l’os compact de Cercopithèque. Bull. Acad. roy. Méd. Belg., VI. sér. 25, 283–295 (1960).

    Google Scholar 

  • —, et S. Haumont: Identification autoradiographique des ostéones métaboliques après administration de Ca45. Rev. franc. Étud. clin. biol. 5, 348–353 (1960).

    PubMed  CAS  Google Scholar 

  • Visek, W. J., R. A. Monroe, E. W. Swanson and C. L. Comar: Determination of endogenous fecal calcium in cattle by a simple isotope dilution method. J. Nutr. 50, 23–33 (1953).

    PubMed  CAS  Google Scholar 

  • Volf, V., and Z. Roth: Retention of Strontium-85 in rats. III. Effect of increasing the doses of sodium and barium sulphates and role of the time factor. Acta radiol. (Stockh.) 4, 481–493 (1966).

    CAS  Google Scholar 

  • Wasserman, R. H.: Quantitative studies on skeletal accretion in laboratory and domestic animals. 2nd U.N. Intern. Conf. peaceful uses atomic energy, A/Conf. 15/8/816 (1958).

    Google Scholar 

  • Weidmann, S. M.: Studies on the skeletal tissues. 4. The renewal of inorganic phosphate in bones of various species of small mammals as a function of time. Biochem. J. 62, 593–601 (1956).

    PubMed  CAS  Google Scholar 

  • Weikel, G. H., and W. F. Neuman: Incorporation of dietary radiocalcium into skeleton of rats. Metabolism 10, 83–90 (1961).

    PubMed  CAS  Google Scholar 

  • Wendeberg, B.: Mineral metabolism of fractures of the tibia in man studied with external counting of Sr85. Acta orthop. scand., Suppl. 52, 1–79 (1961).

    CAS  Google Scholar 

  • Wendberg, B., and T. Yamamuro: Mineral metabolism in primary bone tumours studied by external counting of 85-Sr. Acta orthop. scand. 36, 21–34 (1965).

    Article  Google Scholar 

  • White, N. B., M. M. Ter-Pogossian, and A. H. Stein: A method to determine the rate of blood flow in long bone and selected soft tissues. Surg. Gynec. Obstet. 119, 535–540 (1964).

    PubMed  CAS  Google Scholar 

  • Whitehead, R. G., and S. M. Weidmann: The effect of parathormone on the uptake of P32 into adenosine-triphosphate and bone salts in kittens. Biochem. J. 71, 312–318 (1959).

    PubMed  CAS  Google Scholar 

  • Woods, K. R., and W. D. Armstrong: Action of parathyroid extracts on stable bone mineral using radiocalcium as tracer. Proc. Soc. exp. Biol. (N.Y.) 91, 255–258 (1956).

    CAS  Google Scholar 

  • Yagoda, H.: Radioactive measurements with nuclear emulsions. New York: J. Wiley, & Sons Inc. 1949.

    Google Scholar 

  • Young, R. W.: Regional differences in cell generation time in growing rat tibiae. Exp. Cell Res. 26, 562–567 (1962a).

    Article  PubMed  CAS  Google Scholar 

  • — Cell proliferation and specialization during endochondral osteogenesis in young rats. J. Cell Biol. 14, 357–370 (1962b).

    Article  PubMed  CAS  Google Scholar 

  • — Autoradiographic studies on postnatal growth of the skull in young rats injected with tritiated glycine. Anat. Rec. 143, 1–7 (1962c).

    Article  PubMed  CAS  Google Scholar 

  • — Histophysical studies on bone cells and bone resorption. In: Mechanisms of hard Tissue Destruction, ed. by R. F. Sognnaes, pp. 471 – 496. Washington: Amer. Ass. Adv. Sci. 1963.

    Google Scholar 

  • — Specialization of bone cells: In: Bone Biodynamics, ed. by H. M. Frost, pp. 117–142. Boston: Little, Brown & Co. 1964.

    Google Scholar 

  • Zetterström, R.: Removal of phosphate in bone minerals. I. Renewal rate of phosphate in relation to the solubility of the bone minerals. Biochim. biophys. Acta 8, 283–293 (1952).

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Amprino, R. (1970). Biological bases of the radioisotope investigation of the skeleton. In: Diethelm, L. (eds) Skeletanatomie (Röntgendiagnostik) Teil 1 / Anatomy of the Skeletal System (Roentgen Diagnosis) Part 1. Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology, vol 4 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95147-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95147-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95148-0

  • Online ISBN: 978-3-642-95147-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics