Advertisement

Biological bases of the radioisotope investigation of the skeleton

  • Rodolfo Amprino
Part of the Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology book series (HDBRADIOL, volume 4 / 1)

Abstract

Bone serves two distinct functions, viz., (1) it aids to protect part of the body, to support it in rest and in locomotion, and (2) it plays the role of a store of inorganic matter helpful in the mineral homeostasis in the blood and in the extracellular fluids. Bone owes most of its functional characteristics to its mineralization, i.e., to the presence within an organic matrix — gel-like polysaccharides which form a continuous phase and embed collagen fibres — of a system of discrete submicroscopic particles built of a complex mineral substance chiefly composed of calcium, phosphate and carbonate. The mineral phase gives a Roentgen-ray diffraction pattern characteristic of a structure called by the minerologists hydroxyapatite crystal lattice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, J., and H. Holtzer: The loss of phenotypic traits by differentiated cells. J. Cell Biol. 28, 473–487 (1966).PubMedCrossRefGoogle Scholar
  2. Amprino, R.: Autoradiographic analysis of the distribution of labeled Ca and P in bones. Experientia (Basel) 8, 20–22 (1952a).CrossRefGoogle Scholar
  3. — Further experiments on the fixation in vitro of radiocalcium to sections of bone. Experientia (Basel) 8, 380–382 (1952b).CrossRefGoogle Scholar
  4. — Rapporti fra processi di ricostruzione e distribuzione dei minerali nelle ossa. I. Ricerche con metodo istoradiografico. Z. Zeilforsch. 37, 144–183 (1952c).CrossRefGoogle Scholar
  5. — Rapporti fra processi di ricostruzione e distribuzione dei minerali nelle ossa. II. Ricerche con metodo autoradiografico. Z. Zeilforsch. 37, 240–273 (1952d).CrossRefGoogle Scholar
  6. — Autoradiographic research on the S35-sulphate metabolism in cartilage and bone differentiation and growth. Acta anat. (Basel) 24, 121–163 (1955).CrossRefGoogle Scholar
  7. —, and A. Engström: Studies on X-ray absorption and diffraction of bone tissue. Acta anat. (Basel) 15, 1–22 (1952).CrossRefGoogle Scholar
  8. —, e Gr. Godina: La struttura delle ossa nei vertebrati. Ricerche comparative negli anfibi e negli amnioti. Comm. Pontif. Acad. Sci. 11, 329–464 (1947).Google Scholar
  9. Armstrong, W. D.: Phosphorus metabolism in the skeleton. In: Phosphorus Metabolism II, ed. by W. D. McElroy and B. Glass, pp.698–731. Baltimore: Johns Hopkins Press 1952.Google Scholar
  10. J. Schubert and A. Lindenbaum: Distribution of radioactive carbon administered as carbonate in the body and excreta of mature rat. Proc. Soc. exp. Biol. (N.Y.) 68, 233–240 (1948).Google Scholar
  11. Arnold, J. S.: Metabolism of bone as studied by radioautographic distribution of calcium, plutonium and radium. Amer. J. Physiol. 167, 765 (1951).Google Scholar
  12. —, and W. S. S. Jee: Double tracer radioautographic studies of Ca45 and Ra226 bone disposition. Radiat. Res. 1, 5 (1954a).Google Scholar
  13. Arnold, J. S., and W. S.S. Jee: Ion exchange and recrystallization in fixation of Ca45 in the rabbit skeleton. Proc. Soc. exp. Biol. (N.Y.) 85, 658–663 (1954b).Google Scholar
  14. — — Bone growth and osteoclastic activity as indicated by radioautographic distribution of plutonium. Amer. J. Anat. 101, 367–418 (1957).PubMedCrossRefGoogle Scholar
  15. — — Autoradiography in the localization and radiation dosage of Ra226 and Pu239 in the bones of dogs. Lab. Invest. 8, 194–204 (1959).PubMedGoogle Scholar
  16. — — and K. Johnson: Role of radioautographically detected bone growth and remodelling in Ca45 excretion and redistribution. XIX. Intern. Physiol. Congr. Abstracts of Communication 1953, pp. 174–175.Google Scholar
  17. — — and K. Johnson: Observations and quantitative autoradiographic studies of Calcium45 deposited in vivo in forming haversian systems and old bone of rabbit. Amer. J. Anat. 99, 291–313 (1956).PubMedCrossRefGoogle Scholar
  18. Asling, C. W., and L. E. Nelson: Autoradiographic localization of growth hormone-induced proliferation in bone and certain soft tissues. In: Radioisotopes and Bone, ed. by F. C. McLean, P. Lacroix, and A. M. Budy, pp. 191–195. Oxford: Blackwell Sci. Publ. 1962.Google Scholar
  19. Aub, J. C., R. D. Evans, L. H. Hempelmann and H. S. Martland: Late effects of internally-deposited radioactive materials in man. Medicine (Baltimore) 31, 221–329 (1952).Google Scholar
  20. Aubert, J.-P., F. Bronner, and L. J. Richelle: Quantitation of calcium metabolism. J. clin. Invest. 42, 885–897 (1963).PubMedCrossRefGoogle Scholar
  21. —, et G. Milhaud: Méthode de mésure des principales voies du métabolisme calcique chez l’homme. Biochim. biophys. Acta (Amst.) 39, 122–139 (1960).CrossRefGoogle Scholar
  22. Bäckström, J., L. Hammarström, and A. Nelson: Distribution of Zirconium and Niobium in mice. Acta radiol. (Stockh.) 6, 122–128 (1967).CrossRefGoogle Scholar
  23. Barnes, L. L., G. Sperling, C. M. McCay and C. E. Brown: The production of osteogenic sarcomas in rats with radioactive calcium. Arch. Path. (Chicago) 66, 529–535 (1958).Google Scholar
  24. Bauer, G. C. H.: The importance of bone growth as a factor in the redistribution of bone salt. I. Redistribution of radio-active calcium in the skeleton of rats. J. Bone Jt Surg. A 36, 375–380 (1954a).Google Scholar
  25. — The importance of bone growth as a factor in the redistribution of bone salt. II. Redistribution of radio-active phosphorus in the skeleton of rats. J. Bone Jt Surg. A 36, 381–386 (1954b).Google Scholar
  26. — Rate of bone formation in a healing fracture determined in rats by means of radio-calcium. Acta orthop. scand. 23, 169–191 (1954c).PubMedCrossRefGoogle Scholar
  27. — Kinetics of calcium and strontium metabolism in man. In: Bone as a Tissue, ed. by K. Rodahl, J. T. Nicholson and E. M. Brown jr., pp. 118–127. New York: McGraw-Hill Book Co., Inc. 1960.Google Scholar
  28. —, and A. Carlsson: Post-fracture bone salt resorption studied in rats. Acta orthop. scand. 25, 83–88 (1955).PubMedCrossRefGoogle Scholar
  29. — — and D. Lindquist: Evaluation of accretion, absorption and exchange reactions in the skeleton. Kgl. Fysiograf. Sällskap. Lund Förh. 25, 1–16 (1955a)Google Scholar
  30. — — A comparative study on the metabolism of Sr90 and Ca45. Acta physiol. scand. 35, 56–66 (1955b).PubMedCrossRefGoogle Scholar
  31. — — Bone salt metabolism in human rickets studied with radioactive phosphorus. Metabolism 5, 573–581 (1956).PubMedGoogle Scholar
  32. — — — Metabolism of Ba140 in man. Acta orthop. scand. 26, 241–254 (1957a).PubMedGoogle Scholar
  33. — — Bone salt metabolism in humans studied by means of radiocalcium. Acta med. scand. 158, 143–150 (1957b).PubMedCrossRefGoogle Scholar
  34. — — — Use of isotopes in clinical studies of skeletal metabolism. In: Radioaktive Isotope in Klinik und Forschung, Bd. III, herausgeg. von K. Fellinger u. H. Vetter, S. 25–39. München: Urban & Schwarzenberg 1958.Google Scholar
  35. — — Metabolism and homeostatic function of bone. In: Mineral Metabolism, vol. I/B, ed by C. L. Comar and F. Bronner, pp. 609–676. New York: Academic Press 1961.Google Scholar
  36. —, and D. Ray: Kinetics of strontium metabolism in man. J. Bone Jt Surg. A 40, 171–186 (1958).Google Scholar
  37. —, and B. Wendeberg: External counting of Ca47 and Sr85 in studies of localized skeletal lesions in man. J. Bone Jt Surg. B 41, 558–580 (1959).Google Scholar
  38. Bélanger, L. F.: A method for routine detection of radiophosphates and other radioactive compounds in tissues. The inverted autograph. Anat. Rec. 107, 149–160 (1950).PubMedCrossRefGoogle Scholar
  39. — Autoradiographic visualization of the entry and transit of S35 in cartilage, bone, and dentine of young rats and the effect of hyaluronidase in vitro. Canad. J. Biochem. 32, 161–169 (1954).PubMedCrossRefGoogle Scholar
  40. Bélanger, L. F.: Autoradiographic studies of the formation of the organic matrix of cartilage, bone and the tissues of teeth. In: Bone structure and metabolism. Ciba Foundation Symposium, ed by G. E. W. Wolstenholme and C. M. O’Connor, pp. 75–88. London: J. A. Churchill Ltd. 1956.Google Scholar
  41. —, and C. P. Leblond: A method for locating radioactive elements in tissues by covering histological sections with a photographic emulsion. Endocrinology 39, 8–13 (1946).PubMedCrossRefGoogle Scholar
  42. Bellin, J., and D. Laszlo: Metabolism and removal of Ca45 in man. Science 117, 331–334 (1953).PubMedCrossRefGoogle Scholar
  43. Bergner, P. E. E.: Dynamic aspects of a method in tracerkinetics. Exp. Cell Res. 17, 328–335 (1959).PubMedCrossRefGoogle Scholar
  44. Bernstein, D. S., and P. Handler: Effects of parathyroid extract on sulfate metabolism of cartilage and bone matrix of rachitic rats. Proc. Soc. exp. Biol. (N.Y.) 99, 339–340 (1958).Google Scholar
  45. Bessler, W.: Resultate mit Sr85 Skeletszintigraphie. In: Radioisotope in der Lokalisationsdiagnostik, herausgeg. von G. Hoffmann und K. E. Scheer, S. 431. Stuttgart: F. K. Schattauer 1967.Google Scholar
  46. Black, A. L., M. Kleiber, A. H. Smith and N. P. Ralston: Mobility of skeletal phosphorus in a mature dairy cow as determined with radioactive phosphorus. Proc. Soc. exp. Biol. (N.Y.) 82, 248–252 (1953).Google Scholar
  47. Bloom, M. A., and W. Bloom: Late effects of radium and plutonium on bone. Arch. Path. (Chicago) 47, 494–511 (1949).Google Scholar
  48. Bloom, W., J. H. Curtis and F. C. McLean: The deposition of C14 in bone. Science 105, 45 (1947).PubMedCrossRefGoogle Scholar
  49. Böstrom, H.: Chemical and autoradiographic studies on the sulfate exchange in sulpho-mucopolysaccharides. Ark. Kemi 6, 43–57 (1953).Google Scholar
  50. —, and B. Månson: Factors influencing the exchange of the sulfate group of the chondroitin sulphuric acid of cartilage in vitro. Ark. Kemi 6, 23–37 (1953).Google Scholar
  51. —, and E. Odeblad: The influence of cortisone upon the sulphate exchange of chondroitinsulphuric acid. Ark. Kemi 6, 39–42 (1953).Google Scholar
  52. Bohr, H.H.: Studies on fracture healing. J. Bone Jt Surg. A 37, 327–337 (1955).Google Scholar
  53. — On the uptake of radioactive Calcium and Strontium in the skeleton of normal and rachitic rats. Acta orthop. scand. 30, 237–250 (1961).CrossRefGoogle Scholar
  54. —, and S. Gr. Dawids: The effect of cortisone and anabolic steroids on the retention of radioactive Calcium and Strontium in rats. Acta endocr. (Kbh.) 47, 223–230 (1964).Google Scholar
  55. Boni, M., e A. Rampoldi: Ricerche con l’isotopo radioattivo del solfo (35-S) sulla cartilagine di accrescimento. Ortop. Traumat. Appar. mot. 26, 45–59 (1958).Google Scholar
  56. Boyd, G. A.: Autoradiography in biology and medicine. New York: Academic Press Inc. 1955.Google Scholar
  57. Bronner, F.: Effects of parathyroid extract on Ca and sulphur metabolism. Fed. Proc. 16, 158 (1957).Google Scholar
  58. Effects of parathyroid extract on metabolism of sulphate in immature rats. Amer. J. Physiol. 198, 605–608 (1960).PubMedGoogle Scholar
  59. Parathyroid effects on sulfate metabolism: interrelationships with calcium. In: The Parathyroids, ed. by R. O. Greep and R. V. Talmage, pp. 123–138. Springfield: Ch. C. Thomas 1961.Google Scholar
  60. Parathyroid effects on sulfate and calcium metabolism. Trans. N. Y. Acad. Sci., S. II, 24, 265–272 (1962).Google Scholar
  61. — Dynamics and function of Calcium. In: Mineral Metabolism, vol. II/A, ed. by C. L. Comar and F. Bronner, pp. 341–444. New York: Academic Press 1964.Google Scholar
  62. —, and R. S. Harris: Absorption and metabolism of calcium in human beings studied with calcium45. Ann. N. Y. Acad. Sci. 64, 314–325 (1956).CrossRefGoogle Scholar
  63. — — C. J. Maletskos and C. E. Benda: Studies in calcium metabolism. The fate of intravenous injected radiocalcium in human beings. J. clin. Invest. 35, 78–88 (1956).PubMedCrossRefGoogle Scholar
  64. Budy, A. M.: The use of radioisotopes in Orthopaedics. Part II. Application of radioactive tracer techniques to bone. J. Bone Jt Surg. A 45, 1073–1083 (1963).Google Scholar
  65. Campo, R. D., and D. D. Dziewiatkowski: A consideration of the permeability of cartilage to inorganic sulfate. J. biophys. biochem. Cytol. 9, 401–408 (1961).PubMedCrossRefGoogle Scholar
  66. — — Turnover of the organic matrix of cartilage and bone as visualized by autoradiography. J. Cell Biol. 18, 19–29 (1963).PubMedCrossRefGoogle Scholar
  67. Carlsson, A., and D. Lindquist: Comparison of intestinal and skeletal effects of vitamine D in relation to dosage. Acta physiol. scand. 35, 53–55 (1955).PubMedCrossRefGoogle Scholar
  68. Carneiro, J., and C. P. Leblond: Role of osteoblasts and odontoblasts in secreting the collagen of bone and dentin, as shown by radioautography in mice given tritium-labeledglycine. Exp. Cell Res. 18, 291–300 (1959).PubMedCrossRefGoogle Scholar
  69. Carrit, J., R. Foyxell, J. Kleinschmldt, R. Kleinschmidt, W. Langham, A. San Pietro, R. Schatfh and B. Schnap: The distribution and excretion of plutonium administered intravenously to the rat. J. biol. Chem. 171, 273–283 (1947).Google Scholar
  70. Cartier, P. H., B. de Bernard and I. Lagrange: Studies on the repair of fractures using P32. In Ciba Foundation Symposium on Bone structure and metabolism, ed. by G. E. W. Wolstenholme and C. M. O’Connor, pp. 148–160. London: Churchill Ltd. 1956.Google Scholar
  71. Cohen, J., and C. J. Maletskos: 45Ca in the study of bone grafts in dogs. In: Radioisotopes and Bone, ed. by F. C. McLean, P. Lacroix and A. M. Budy, pp. 127–148. Oxford: Blackwell Sci. Publ. 1962.Google Scholar
  72. — — J. H. Marshall and J. B. Williams: Radioactive calcium tracer studies in bone grafts. J. Bone Jt Surg. A 39, 561–577 (1957).Google Scholar
  73. Collins, E. J., O. S. Carpenter, and V. F. Baker: Influence of adrenal steroids on radio. calcium metabolism in young beagle dogs. Acta endocr. (Kbh.) 42, 348–354 (1963).Google Scholar
  74. Comar, C.L.: Radioisotopes in biology and agriculture. Principles and practice. New York: McGraw-Hill Book Co., Inc. 1955.Google Scholar
  75. W. E. Lotz and G. A. Boyd: Autoradiographic studies of calcium, phosphorus and strontium distribution in the bones of the growing pig. Amer. J. Anat. 90, 113–129 (1952).PubMedCrossRefGoogle Scholar
  76. —, and R. H. Wasserman: Radioisotopes in the study of mineral metabolism. In: Progress in nuclear energy, S. 6, vol. I, pp. 153–196. London: Pergamon Press 1956.Google Scholar
  77. — — Strontium. In: Mineral Metabolism, vol. II/A, ed. by C. L. Comar and F. Bronner, pp. 523–572. New York: Academic Press 1964.Google Scholar
  78. Copp, D. H., D. J. Axelrod and J. C. Hamilton: The deposition of radioactive metals in bone as a potential health hazard. Amer. J. Roentgenol. 58, 10–16 (1947).Google Scholar
  79. E. C. Cameron, B. A. Cheney, A. G. Davidson, and K. G. Henze: Evidence for Calcitonin — A new hormone from the parathyroid that lowers blood calcium. Endocrinology 70, 638–649 (1962).PubMedCrossRefGoogle Scholar
  80. —, and S. S. Shim: Extraction ratio and bone clearance of Sr85 as a measure of effective bone blood flow. Circulation Res. 16, 461–467 (1965).PubMedGoogle Scholar
  81. —, and A. P. Suiker: Study of calcium kinetics in calcium- and phosphorus-deficient rats with the aid of radiocalcium. In: Radioisotopes and Bone, ed. by P. Lacroix and A. M. Budy, pp. 1–16. Oxford: Blackwell Sci. Publ. 1962.Google Scholar
  82. Cramer, C.F., and D.H. Copp: Effect of mineral deficient diet on excretion of radiocalcium and radiostrontium. Amer. J. Physiol. 167, 776 (abstract) (1951).Google Scholar
  83. Curran, R. C., and J. S. Kennedy: The distribution of the sulphated mucopolysaccharides in the mouse. J. Path. Bact. 70, 449–457 (1955).PubMedCrossRefGoogle Scholar
  84. Dallemagne, M. J.: Propos sur les sels osseux. Acta physiol. pharmacol. neerl. 6, 469–478 (1957).PubMedGoogle Scholar
  85. Ch. A. Baud et P. W. Morgenthaler: Autoradiographies de coupes d’os compact après marquage aux isotopes in vitro. Essai d’interprétation. Histochemie 1, 185–189 (1959).CrossRefGoogle Scholar
  86. —, et C. Fabry: Le problème des sels osseux. Acta chir. belg. et Acta orthop. belg. Suppl. 1, 75–114 (1956).Google Scholar
  87. J. Govaerts et J. Melon: Influence de la folliculine sur le métabolisme calcique du pigeon, étudiée a l’aide du radiocalcium. Arch. int. Physiol. 58, 157–187 (1950).PubMedCrossRefGoogle Scholar
  88. Davies, D. V., and L. Young: The distribution of radioactive sulphur (35S) in the fibrous tissues, cartilages and bones of the rat following its administration in the form of inorganic sulphate. J. Anat. (Lond.) 88, 174–183 (1954).Google Scholar
  89. Denardo, L. Gr., and J. A. Volpe: Detection of bone lesions with the Strontium-85 scintiscan. J. nucl. Med. 7, 219–236 (1966).PubMedGoogle Scholar
  90. Dilla, M. A. van, B. J. Stover, R. L. Floyd, D. R. Atherton and D. H. Taysum: Radium (RA226) and Radon (Em222) metabolism in dogs. Radiat. Res. 8, 417–437 (1958).CrossRefGoogle Scholar
  91. Dixon, A. D.: Studies of the growth of the upper facial skeleton using radioactive calcium. J. dent. Res. 40, 204–216 (1961).PubMedCrossRefGoogle Scholar
  92. —, and D. A. N. Hoyte: Autoradiographic and alizarin techniques in the study of skull growth. J. Anat. (Lond.) 93, 589 (1959).Google Scholar
  93. Dudley, R. A., and B. M. Dobyns: The use of autoradiographs in the quantitative determination of radiation dosages from Ca 45 in bone. Science 109, 327–328 (1949).PubMedCrossRefGoogle Scholar
  94. Durbin, P. W., M. H. Williams, M. Gee, R. H. Neumann and J. G. Hamilton: Metabolism of the lanthanons in the rat. Proc. Soc. exp. Biol. (N.Y.) 91, 78–85 (1956).Google Scholar
  95. Duthie, R. B., and A. N. Barker: An autoradiographic study of mucopolysaccharides and phosphate complexes in bone growth and repair. J. Bone Jt Surg. B. 37, 304–323 (1955a).Google Scholar
  96. — — The histochemistry of the preosseous stage of bone repair studied by autoradiography. The effect of cortisone. J. Bone Jt Surg. B 37, 691–710 (1955b).Google Scholar
  97. Dziewiatkowski, D.D.: Radioautographic visualization of sulphur-35 disposition in the articular cartilage and bone of suckling rats following injection of labeled sodium sulphate. J. exp. Med. 93, 451–458 (1951a).PubMedCrossRefGoogle Scholar
  98. — Isolation of chondroitin-sulphate-S35 from articular cartilage of rat. J. biol. Chem. 189, 187–190 (1951b).Google Scholar
  99. — Radioautographic studies of sulphate sulphur (S35) metabolism in the articular cartilage and bone of suckling rats. J. exp. Med. 95, 489–496 (1952).CrossRefGoogle Scholar
  100. — Sulphate-sulphur metabolism in the rat fetus as indicated by sulphur-35. J. exp. Med. 98, 119–128 (1953).CrossRefGoogle Scholar
  101. — Effect of age on some aspects of sulphate metabolism in the rat. J. exp. Med. 99, 283–298 (1954a).CrossRefGoogle Scholar
  102. — Vitamine A and endochondral ossification in the rat as indicated by the use of sulphur-35 and phosphorus-32. J. exp. Med. 100, 11–24 (1954 b).CrossRefGoogle Scholar
  103. — Vitamine A and endochondral ossification in the rat as indicated by the use of sulphur-35 and phosphorus-32. J. exp. Med. 100, 25–32 (1954c).CrossRefGoogle Scholar
  104. — Synthesis of sulphomucopolysaccharides in thyroidectomized rats. J. exp. Med. 105, 69–74 (1957).CrossRefGoogle Scholar
  105. — Autoradiographic studies with S35-sulphate. Intern. Rev. Cytol. VII, ed. by G. H. Bourne and J. F. Danielli, pp. 159–193. New York: Academic Press 1958.Google Scholar
  106. — Sulfur. In: Mineral Metabolism, vol. II/B, ed. by C. L. Comar and F. Bronner, pp. 175–220. New York: Academic Press 1962.Google Scholar
  107. Dziewiatkowski, D. D., F. Bronner, N. di Ferrante and R. M. Archibald: Some aspects of the metabolism of sulphate-S35 and calcium-45 in the metaphysis of immature rats. Influence of β-estradiol benzoate. J. biophys. biochem. Cytol. 3, 151–160 (1957).PubMedCrossRefGoogle Scholar
  108. Elliot, J. R., and R. V. Talmage: Removal of Ca40 and Ca45 from bone by citrate as influenced by the parathyroid. Endocrinology 62, 709–716 (1958).CrossRefGoogle Scholar
  109. Ellis, S., J. Huble’, and M. E. Simpson: Influence of hypophysectomy and growth hormone on cartilage sulfate metabolism. Proc. Soc. exp. Biol. (N.Y.) 84, 603–605 (1953).Google Scholar
  110. Engfeldt, B., A. Engström and H. Boström: The localisation of radiosulphate in bone tissue. Exp. Cell Res. 6, 251–253 (1954).PubMedCrossRefGoogle Scholar
  111. — — and R. Zetterström: Renewal of phosphate in bone minerals. II. Radioautographic studies of renewal of phosphate in different structures of bone. Biochem. biophys. Acta 8, 375–380 (1952).PubMedCrossRefGoogle Scholar
  112. —, and S. O. Hjertquist: Biophysical studies on bone tissue. X. The in vivo and in vitro uptake of radioactive isotopes and ionic exchange reactions in bone tissue. Acta path. microbiol. scand. 35, 205–216 (1954).PubMedCrossRefGoogle Scholar
  113. —, and R. Zetterström: Biophysical and chemical investigation on bone tissue in experimental hyperparathyroidism. Endocrinology 54, 506–515 (1954).PubMedCrossRefGoogle Scholar
  114. Engström, A., R. Björnerstedt, C.-J. Clemedson, and A. Nelson: Bone and Radiostrontium. New York: Wiley 1958.Google Scholar
  115. Esteban, J., D. Lass, and S. Perez-Modrego: Detection of metastases in the skeleton with radioactive colloidal gold. Brit. J. Radiol. 40, 181–183 (1967).PubMedCrossRefGoogle Scholar
  116. Evans, R. D.: The effect of skeletally deposited alpha-ray emitters in man. Brit. J. Radiol. 39, 881–895 (1966).PubMedCrossRefGoogle Scholar
  117. Fabry, C.: L’échange isoionique de phosphates de calcium avec le calcium radioactif. II. L’ échange du phosphate synthétique de rapport Ca/P 2.14. Bull. Soc. Chim. biol. 40, 993–1002 (1958).PubMedGoogle Scholar
  118. Falkenheim, M., E. E. Underwood and H. C. Hodge: Calcium exchange: the mechanism of absorption by bone of Ca45. J. biol. Chem. 188, 805–817 (1951).PubMedGoogle Scholar
  119. Fitton Jackson, S., and J. I. Randall: Fibrogenesis and the formation of matrix in developing bone. In: Bone structure and metabolism. Ciba Foundation Symposium, ed. by G. E. W. Wolstenholme and C. M. O’Connor, pp. 47–64. London: J. A. Churchill Ltd. 1956.Google Scholar
  120. Fleming, W. H., J. D. McIlraith, and E. R. King: Photoscanning of bone lesions utilizing strontium-85. Radiology 77, 635–636 (1961).PubMedGoogle Scholar
  121. Foster, G. V., A. Baghdiantz, M. A. Kumar, E. Slack, H. A. Soliman, and I. MacIntyre: Thyroid origin of calcitonin. Nature (Lond.) 202, 1303–1305 (1964).CrossRefGoogle Scholar
  122. Frederickson, J. M., A. J. Honour, and D. H. Copp: Measurement of initial bone clearance of Ca45 from blood in the rat. Fed. Proc. 14, 49 (1965).Google Scholar
  123. Frey, K. W., A. Sonntag, M. S. Scheybani, D. Krauss, and P. Fuchs: Knochen-Szintigraphie mit Strontium-85. Fort. Röntgenstr. 106, 206–215 (1967).CrossRefGoogle Scholar
  124. Friberg, U., and N. R. Ringertz: An autoradiographic study on the uptake of radiosulphate in the rat embryo. J. Embryol. exp. Morph. 4, 313–326 (1956).Google Scholar
  125. Frost, H. M., A. R. Villanueva and H. Roth: Measurements of bone formation in a 57 year old man by means of tetracyclines. Henry Ford Hosp. Med. Bull. 8, 239–254 (1960).PubMedGoogle Scholar
  126. Gaillard, P. J.: Bone culture studies with calcitonin. Abridg. Proc. 4th Europ. Symp. on Calcified Tissues, p. 32–33. Amsterdam: Excerpta Medica Found. 1966.Google Scholar
  127. Garrett, E. R., R. L. Johnston, and E. J. Collins: Quantification of normal and adrenal steroid affected calcium metabolism in the young dog. J. Pharmacol. exp. Ther. 145, 357–366 (1964).PubMedGoogle Scholar
  128. Geschwind, I. I.: Hormonal control of calcium, phosphorus, iodine, sulfur, and magnesium metabolism. In: Mineral Metabolism, vol. I/B, pp. 387–472, ed. by C. L. Comar and F. Bronner. New York: Academic Press 1961.Google Scholar
  129. —, C. H. Li and H. M. Evans: The effects of hypophysectomy and of growth hormone on the uptake of radioactive phosphorus by tissues. Arch. Biochem. 31, 168–182 (1951).PubMedCrossRefGoogle Scholar
  130. Glick, D.: A critical survey of current approaches in quantitative Histo- and Cytochemistry. In: Intern. Rev. Cytology, ed. by G. H. Bourne and J. F. Danielli, vol. II, pp. 447–474. New York: Acad. Press. Inc. 1953.CrossRefGoogle Scholar
  131. Glimcher, M. J.: The molecular biology of the mineralized tissues with particular reference to bone. Rev. modern Phys. 31, 359–393 (1959).CrossRefGoogle Scholar
  132. Glücksmann, A., A. Howard and S. R. Pelc: The uptake of radioactive sulphate by cells, fibres and ground-substance of mature and developing connective tissue in the adult mouse. J. Anat. (Lond.) 90, 478–485 (1956).Google Scholar
  133. Gordon, G. S.: A direct action of parathyroid hormone on dead bone in vitro. Acta endocr. (Kbh.) 44, 481–489 (1963).Google Scholar
  134. Govaerts, J., and M. J. Dallemagne: Influence of folliculin on bone metabolism, studied by means of radiophosphorus, P32. Nature (Lond.) 161, 977 (1948).CrossRefGoogle Scholar
  135. — —, and J. Melon: Radiocalcium as an indicator in the study of the action of estradiol on calcium metabolism. Endocrinology 48, 443–452 (1951).PubMedCrossRefGoogle Scholar
  136. Gran, F. C.: Studies on calcium and strontium-90 metabolism in rats. Acta physiol. scand. 48, Suppl. 167, 1–109 (1960).Google Scholar
  137. Greulich, R. C.: Entry of radio-carbon from labeled bicarbonate into the organic matrix of growing bones and teeth. Anat. Rec. 115, 312–313 (1953).CrossRefGoogle Scholar
  138. — An autoradiographic study of organically bound carbon-14 in growing epiphyseal cartilage and bone. J. Bone Jt Surg. A 38, 611–626 (1956).Google Scholar
  139. Greulich R.C., and U. Friberg: Histochemical studies of sulpho-mucopolysaccharides in the organic matrices of mineralized tissues. Exp. Cell Res. 12, 685–689 (1957).PubMedCrossRefGoogle Scholar
  140. —, and C. P. Leblond: Radioautographic visualization of radio-carbon in the organs and tissues of newborn rats following administration of C14-labeled bicarbonate. Anat. Rec. 115, 559–585 (1953).PubMedCrossRefGoogle Scholar
  141. Hammarström, L., A. Nilson, and J. Ullberg: Distribution of radiostrontium in developing bones and teeth. Microradio autographic study with 85-Sr. Acta radiol. (Stockh.) 3, 183–192 (1965).Google Scholar
  142. Hansard, S. L., C. L. Comar and G. K. Davis: Effects of age upon the physiological behaviour of calcium in cattle. Amer. J. Physiol. 177, 383–389 (1954).PubMedGoogle Scholar
  143. — — and M. P. Plumlee: The effects of age upon calcium utilisation and maintenance requirements in the bovine. J. animal Sci. 13, 25–36 (1954).Google Scholar
  144. Harbers, E.: Autoradiographie als histochemisches Untersuchungsverfahren. In: Handbuch der Histochemie, Bd. I, Teil 1, herausgeg. von W. Graumann und R. Neumann, S.400–598. Stuttgart: G.Fischer 1958.Google Scholar
  145. Harris, W. H.: A microscopic method of determining rates of bone growth. Nature (Lond.) 188, 1038–1039 (1960).CrossRefGoogle Scholar
  146. Harrison, H. F., and H. C. Harrison: The uptake of radiocalcium by the skeleton: the effect of vitamine D intake. J. biol. Chem. 185, 857–867 (1950).PubMedGoogle Scholar
  147. Haumont, S.: Le Zinc dans le tissu osseux. Bruxelles: Ed. Arscia 1962.Google Scholar
  148. Heaney, R. P.: Evaluation and interpretation of calcium-kinetic data in man. Clin. Orthop. 31, 153–183 (1963).PubMedGoogle Scholar
  149. G. C. H. Bauer, F. Bronner, J. F. Dymling, F. W. Lafferty, B. E. C. Nordin, and C. Rich: A normal reference standard for radiocalcium turnover and excretion in humans. J. Lab. clin. Med. 64, 21–28 (1964).PubMedGoogle Scholar
  150. —, and G. D. Whedon: Radiocalcium studies of bone formation rate in human metabolic bone disease. J. clin. Endocr. Metab. 18, 1246–1267 (1958).PubMedCrossRefGoogle Scholar
  151. Henneman, D. H.: In vitro C14-glycine and C14-arginine metabolism by whole bone and metaphyseal fragments. Abr. Proc. 4th Europ. Symp. Calcified Tissues, pp. 102–103, ed. by P. J. Gaillard, A. van den Hooff, and R. Steendijk. Amsterdam: Excerpta Med. Foud. 1966.Google Scholar
  152. Herman, H., and M. J. Dallemagne: The main mineral constituent of bone and teeth. Arch. oral Biol. 5, 137–144 (1961).PubMedCrossRefGoogle Scholar
  153. —, and L. J. Richelle: Le calcium échangeable de la substance minérale de l’os étudiée à l’aide de 45Ca. VIL Activité comparée de fractions d’os total de densité différente. Bull. Soc. Chim. biol. (Paris) 43, 273–282 (1961).Google Scholar
  154. Hevesy, G.: Radioactive indicators. New York: Interscience Publishers, Inc. 1948.Google Scholar
  155. H. B. Levi and O. H. Rebbe: Rate of rejuvenation of the skeleton. Biochem. J. 34, 532–537 (1940).PubMedGoogle Scholar
  156. Hindmarsh, M., M. Owen and J. Vaughan: The relative hazards of strontium-90 and radium-226. Brit. J. Radiol. 81, 518–533 (1957).Google Scholar
  157. — — A note on the distribution of radium and a calculation of the radiation dose nonuniformity factor for radium226 and strontium90 in the femur of a luminous dial painter. Brit. J. Radiol. 32, 183–187 (1959).PubMedCrossRefGoogle Scholar
  158. —, and J. Vaughan: The distribution of calcium in certain bones from a man exposed to radium for thirty-four years. Brit. J. Radiol. 29, 71–80 (1956).Google Scholar
  159. Hoecker, F. E., and P. G. Roofe: Studies of radium in human bone. Radiology 56, 89–98 (1951).PubMedGoogle Scholar
  160. Howarth, J. L.: Calculation of the alpha-ray absorbed dose to soft tissue cavities in bone. Brit. J. Radiol. 38, 51–56 (1965).PubMedCrossRefGoogle Scholar
  161. Hunziger, W. A., u. Gr. A. Ortelli: Retention und Austausch von Calcium aus Ca45-Dinatrium-Aethylendiamintetraacetat. In: Badioaktive Isotope in Klinik und Forschung, herausgeg. von K. Felliger u. H. Vetter, Bd. II, S. 76–84. München: Urban & Schwarzenberg 1956.Google Scholar
  162. Httrwitz, S.: Bone composition and Ca45 retention in fowl as influenced by egg formation. Amer. J. Physiol. 206, 198–204 (1964).Google Scholar
  163. — Calcium turnover in different bone segments of laying fowl. Amer. J. Physiol. 208, 203–207 (1965).Google Scholar
  164. Irving, J. T.: Calcium metabolism. London: Methuen & Co. Ltd. 1957.Google Scholar
  165. Ito, Y., K. Takamura, and H. Endo: The effect of growth hormone on the incorporation of labeled sulfate into the chick embryo femur in tissue culture. Endocr. jap. 7, 327–335 (1960).PubMedCrossRefGoogle Scholar
  166. S. Tsurufuji, S. Ishibashi, M. Ishidate, Z. Tamura and H. Takita: Detoxication and excretion of radioactive strontium. III. Effect of tricarballytic and lactic acids. Pharm. Bull. (Tôkyô) 6, 34–36 (1958).CrossRefGoogle Scholar
  167. — — M. Shikita and S. Ishibashi: Effect of phosphorus deficient diet with excess of calcium or strontium on the excretion of radiostrontium and its possible mechanism. Pharm. Bull. (Tokyo) 6, 115–116 (1958a).CrossRefGoogle Scholar
  168. — — Detoxication and excretion of radioactive strontium. IV. Effect of sodium calcium citrate and the mode of action of citrate. Pharm. Bull. (Tôkyô) 6, 287–290 (1958b).CrossRefGoogle Scholar
  169. Jee, W. S. S., and J. S. Arnold: Rate of individual Haversian system formation. Anat. Rec. 118, 315 (Abstract) (1954).Google Scholar
  170. — — Microradiographic studies of cortical bone of chronic toxicity dogs. Semiannual Progress Report, Radiobiology Laboratory, University of Utah College of Medicine, Salt Lake City, Utah, pp. 56–61, Sept. 1957.Google Scholar
  171. Jee, W. S. S., and J. S. Arnold: The effect of internally deposited radioisotopes upon the blood vessels of cortical bone. Proc. Soc. exp. Biol. Med. 105, 351–356 (1960).PubMedGoogle Scholar
  172. — — The toxicity of plutonium deposited in skeletal tissues of beagles. I. The relation of the distribution of plutonium to the sequence of histopathologic bone changes. Lab. Invest 10, 797–825 (1961).PubMedGoogle Scholar
  173. — — R. S. Mical, B. Bird, O. Frendenberger and M. Lowe: Bone: histopathologic and autoradiographic studies. Annual Progress Report, Radiobiology Laboratory, University of Utah College of Medicine, Salt Lake City, Utah, pp. 74–97, March 1958.Google Scholar
  174. P. Ottosen, R. Mical and M. Lowe: Bone: histopathologic and autoradiographic findings. Annual Progress Report, Radiobiology Laboratory, University of Utah College of Medicine, Salt Lake City, Utah, pp. 86–114, March 1957.Google Scholar
  175. B. J. Stover, G. N. Taylor, and W. R. Christensen: The skeletal toxicity of Pu239 in adult beagles. Hlth Phys. 8, 599–607 (1962).CrossRefGoogle Scholar
  176. Jodrey, L. H., and K. M. Wilbur: Autoradiograms of irregular surfaces. Proc. Soc. exp. Biol. (N. Y.) 77, 80–82 (1951).Google Scholar
  177. Johnston, P. M.: Isotopes in studies on the metabolism of bones and teeth. In: Künstliche radio-aktive Isotope in Physiologie, Diagnostik und Therapie, herausgeg. von R. H. Schwieg u. F. Turba, 2. Aufl. Heidelberg: Springer 1961.Google Scholar
  178. Jones, D. C., and D. H. Copp: The metabolism of radioactive strontium in adult young and rachiticrats. J.biol.Chem. 189, 509–514 (1951).PubMedGoogle Scholar
  179. Jowsey, J.: Age changes in human bone. Clin. Orthop. 17, 210–218 (1960).Google Scholar
  180. W. Cafferty, and J. Rabinowitz: Analysis of distribution of Ca45 in dog bone by quantitative autoradiographic method. J. Bone Jt Surg. A 47, 359–370 (1965).Google Scholar
  181. —, and A. L. Orvis: Comparative deposition of 45Ca, 65Zn and 91Y in bone. Radiat. Res. 31, 693–698 (1967).CrossRefGoogle Scholar
  182. M. Owen and J. Vaughan: Microradiographs and autoradiographs of cortical bone from monkeys injected with 90-Sr. Brit. J. exp. Path. 34, 661–667 (1953).PubMedGoogle Scholar
  183. R. E. Rowland, and J. H. Marshall: The deposition of the rare earths in bone. Radiat. Res. 8, 490–497 (1958).PubMedCrossRefGoogle Scholar
  184. — —, and F. C. McLean: The effect of parathyroidectomy on haversian remodeling of bone. Endocrinology 63, 903–908 (1958).PubMedCrossRefGoogle Scholar
  185. Kane, W. J., and E. Grim: Blood flow to bone: a quantitative method and its validation. J. Bone Jt Surg. A 48, 1008–1009 (1966).Google Scholar
  186. Kember, N. F.: Cell division in endochondral ossification. J. Bone Jt Surg. B 42, 824–839 (1960).Google Scholar
  187. Kidman, B., M. L. Tutt and J. M. Vaughan: The retention and excretion of radioactive strontium and yttrium (Sr89, Sr90 and Y90) in the healthy rabbit. J. Path. Bact. 62, 209–227 (1950).PubMedCrossRefGoogle Scholar
  188. Kiehn, C. L., H. L. Friedell and W. J. Mac Intyre: Study of the vitality of tissue transplant by means of radioactive phosphorus. Plast. reconstr. Surg. 3, 335–339 (1948).CrossRefGoogle Scholar
  189. Knese, K. H., u. A. M. Knoop: Elektronenoptische Untersuchungen über die periostale Osteogenese. Z. Zellforsch. 48, 455–478 (1958).PubMedCrossRefGoogle Scholar
  190. Kodicek, E.: Metabolic studies on vitamin D. Ciba Foundation Symposium on Bone structure and metabolism, ed. by Gr. E. W. Wolstenholme and C. M. O’Connor, pp. 161–174. London: Churchill Ltd. 1956.Google Scholar
  191. —, and Gl. A. Thompson: Autoradiographic localization in bones of [1α3H] cholocalciferol. In: Structure and function of connective and skeletal tissue, pp. 369–372. Proc. Advanced Study Inst., St. Andrews. London: Butterworths 1965.Google Scholar
  192. Kolář, J., V. Bek, L. Janko, L. Vynánek, A. Babicky u. D. Drápelová: Zum Sinn und Grenzen der Knochendiagnostik mit 85Sr. Fortschr. Röntgenstr. 106, 216–224 (1967).CrossRefGoogle Scholar
  193. Kopriwa, B. M., and C. P. Leblond: Improvements in the coating technique of radioautography. J. Histochem. Cytochem. 10, 219–223 (1962).CrossRefGoogle Scholar
  194. Kshiragar, S. Gr., E. Lloyd, and J. Vaughan: Discrimination between Strontium and Calcium in bone and the transfer from blood to bone in the rabbit. Brit. J. Radiol. 39, 131–140(1966).CrossRefGoogle Scholar
  195. Lacroix, P.: Autoradiographies du tissu osseux spongieux. Experientia (Basel) 8, 426 (1952).CrossRefGoogle Scholar
  196. — Radiocalcium and radiosulphur in the study of bone metabolism at the histological level. Radioisotope Conference vol. 1, pp. 134–137. London: Butterworth’s Scientific Publications 1954.Google Scholar
  197. — The histological remodeling of adult bone. An autoradiographic study in bone structure and metabolism. Ciba Foundation Symposium, ed. by G. E. W. Wolstenholme and C. M. O’Connor, pp. 36–44. London: Churchill Ltd. 1956.Google Scholar
  198. — Ca45 autoradiography in the study of bone tissue. In: Bone as a Tissue, ed. by K. Rodahl, J. T. Nicholson and E. M. Brown, pp. 262 – 279. New York: McGraw-Hill Book Co., Inc. 1960.Google Scholar
  199. Langenskijöld, A., T. Rytömaa, and T. Videman: An autoradiographic study with 35S-sulphate in the growth in diameter of epiphyseal cartilage in rabbits. Acta orthop. scand., Suppl. No 106, 3–25 (1967).Google Scholar
  200. Laszlo, D.: Biological studies on calcium, strontium, lanthanum and yttrium. Intern. Conf. on the peaceful uses of atomic energy. A/Conf. 8/P/21, U.S.A./1955.Google Scholar
  201. —, and H. Spencer: Newer techniques in the study of calcium metabolism in man and effects of hormones thereon. In: Hormones and the aging process, ed. by E. T. Enger and G. Pincus, pp. 175–200. New York: Acad. Press Inc. 1956.Google Scholar
  202. Layton, L. L., with the technical assistance of D. F. Frankel and S. Scapa: Quantitative differential fixation of sulphate by tissues maintained in vitro. I. Sulphate fixation as a function of age for embryonic tissues. Cancer (Philad.) 3, 725–734 (1950).CrossRefGoogle Scholar
  203. Lea, L. M., et R. Ponlot: Sur les autoradiographies au Ca45 des os longs en croissance. Les mécanismes de l’apposition osseuse souspériostée. Arch. Biol. (Liège) 69, 455–465 (1958).Google Scholar
  204. —, and J. Vaughan: The uptake of 35S in cortical bone. Quart. J. micr. Sci. 98, 369–375 (1957).Google Scholar
  205. Leblond, C. P., and R. C. Greulich: Autoradiographie studies of bone formation and growth. In: The Biochemistry and Physiology of bone, ed. by G. H. Bourne, pp. 325–358. New York: Acad. Press. Inc. 1956.Google Scholar
  206. P. Lacroix, R. Ponlot et A. Dhem: Les stades initiaux de l’ostéogénèse. Nouvelles données histochimiques et autoradiographiques. Bull. Acad. roy. Méd. Belg. 25, 421–443 (1959).Google Scholar
  207. Gr.V. Wilkinson, L. F. Bélanger and Y. Robichon: Radio-autographic visualisation of bone formation in the rat. Amer. J. Anat. 86, 289–341 (1950).PubMedCrossRefGoogle Scholar
  208. Lee, W. R., J. T. Marshall, and H. A. Sissons: Calcium accretion and bone formation in dogs. An experimental comparison between the results of Ca45 kinetic analysis and tetracycline labeling. J. Bone Jt Surg. B 47, 157–180 (1965).Google Scholar
  209. Lemaire, R. Gr.: Calcium metabolism in fracture healing. J. Bone Jt Surg. A 48, 1156–1170 (1966).Google Scholar
  210. Lindquist, B., A. M. Budy, F. C. McLean and J. L. Howard: Skeletal metabolism in estrogentreated rats studied by means of Ca45. Endocrinology 66, 100–111 (1960).PubMedCrossRefGoogle Scholar
  211. Lloyd, E.: The distribution of radium in human bone. Brit. J. Radiol. 34, 521–528 (1961).PubMedCrossRefGoogle Scholar
  212. — The assessment of radioactive body burdens of the alkaline earths. In: Assessment of Radioactivity in man, vol. II, pp. 329–343. Vienna: Intern. Atomic Energy Agency 1964.Google Scholar
  213. — Quantitative autoradiography of Ca45 in bone. In: Calcified Tissues. Proc. 2nd Europ. Symp., pp. 11–22. Liège: Coll. des Colloques de l’Université de Liège 1965.Google Scholar
  214. Lontie, P.: Comment se distribue dans le squelette le radiocalcium administré au lapin adulte. Rev. belge Path. 23, 118–125 (1953).PubMedGoogle Scholar
  215. Looney, W. B.: Late effects (twenty-five to forty years) of the early medical and industrial use of radio-active materials. Their relation to the more accurate establishment of maximum permissible amounts of radio-active elements in the body. Part I. J. Bone Jt Surg. A 37, 1169–1187 (1955).Google Scholar
  216. C. J. Maletskos, M. Helmick, J. Reardon, J. Cohen and W. Guild: The artificial kidney and ion-exchange resins as possible methods of removing radio-elements from the body. Radiology 68, 255–256 (1957).PubMedGoogle Scholar
  217. Lotmar, R.: Der Einbau von 35S in die Kostalknorpel von Meerschweinchen unter Einfluß verschiedener Grlucocorticoide. Experientia (Basel) 16, 303–304 (1960).CrossRefGoogle Scholar
  218. Lotz, W. E., R. V. Talmage and C. L. Comar: Effect of parathyroid extract administration in sheep. Proc. Soc. exp. Biol. (N.Y.) 85, 292–295 (1954).Google Scholar
  219. MacDonald, N. S.: Kinetic studies of skeletal metabolism by external counting of injected in radioisotopes: the radioisotope osteogram. J. Lab. clin. Med. 52, 541–558 (1958).PubMedGoogle Scholar
  220. — The radioisotope osteogram: kinetic studies of skeletal disorders in humans. Clin. Orthop. 17, 154–166 (1960).Google Scholar
  221. P. C. Lovick and L. I. Petriello: Healing bone fractures and simultaneous administration of radioisotopes of sulphur, calcium and yttrium. Amer. J. Physiol. 191, 185–188 (1957).Google Scholar
  222. Macintyre, I., J. A. Parsons, and C. J. Robinson: The effect of thyrocalcitonin on bloodbone calcium equilibrium in the perfused tibia of the cat. J. Physiol. (Lond.) 191, 393–405 (1967).Google Scholar
  223. Macpherson, S., M. Owen, and J. Vaughan: The relation of radiation dose to radiation damage in the tibia of weanling rabbits injected with Strontium-90. Brit. J. Radiol. 35, 221–234 (1962).PubMedCrossRefGoogle Scholar
  224. Manly LeFevre, M., and W. F. Bale: The metabolism of inorganic phosphorus of rat bones and teeth as indicated by the radio active isotopes. J. biol. Chem. 129, 125–134(1939).Google Scholar
  225. Marshall, J. H.: Microscopic metabolism of calcium in bone. In: Bone as a Tissue, ed. by K. Rodahl, J. T. Nicholson and E. M. Brown, pp. 144–155. New York: McGraw-Hill Book Co., Inc. 1960.Google Scholar
  226. J. Jowsey and R. E. Rowland: Microscopic metabolism of calcium in bone. IV. Ca45 deposition and growth rate in canine osteons. Radiat. Res. 10, 243–257 (1959a).PubMedCrossRefGoogle Scholar
  227. — — Microscopic metabolism of Calcium in bone. II. Quantitative autoradiography. Radiat. Res. 10, 213–233 (1959b).PubMedCrossRefGoogle Scholar
  228. — — Microscopic metabolism of calcium in bone. V. The paradox of diffuse activity and long-term exchange. Radiat. Res. 10, 258–270 (1959c).PubMedCrossRefGoogle Scholar
  229. —, and C. C. Onkelinx: Radial diffusion and power function retention of alkaline earth radioisotopes in adult bone. Nature (Lond.) 217, 742–743 (1968).CrossRefGoogle Scholar
  230. V. K. White and J. Cohen: Microscopic metabolism of calcium in bone. I. Three dimensional deposition of Ca45 in canine osteons. Radiat. Res. 10, 197–212 (1959).PubMedCrossRefGoogle Scholar
  231. Martin, N. D., and E. S. Slater: Direct tissue radioautography technique applied to teeth. Science 113, 721–722 (1951).PubMedCrossRefGoogle Scholar
  232. McCready, V. R.: Clinical radioisotope scanning. Brit. J. Radiol. 40, 401–423 (1967).PubMedCrossRefGoogle Scholar
  233. McLean, F. C., and A. M. Budy: Radiation, Isotopes, and Bone, pp.1–216. New York: Acad. Press 1964.Google Scholar
  234. McLean, F. C., and M. R. Urist: Bone. An introduction to the physiology of skeletal tissue. Chicago: Chicago University Press 1955.Google Scholar
  235. Merseely, G. R., W. L. Alsobrook, J. M. Merril, O. J. Balchum, R. L. Weiland and C. O. T. Ball: Metabolism of the major mineral elements of the animal body. In: Radiation Biology and Medicine, ed. by W. D. Claus. Reading: Addison-Wesley Publisher Co. Inc. 1958.Google Scholar
  236. Milch, R. A., D. P. Rall and J. E. Tobie: Fluorescence of tetracycline antibiotics in bone. J. Bone Jt Surg. A 40, 897–910 (1958).Google Scholar
  237. Milhaud, G., W. Remagen, A. Gomes de Matos et J. P. Aubert: Étude du métabolisme du calcium chez le rat à l’aide de calcium-45. I. Le rachitisme expérimental. Rev. franc. Ét. clin. biol. 5, 254–261 (1960a).Google Scholar
  238. — — — — Étude du métabolisme du calcium chez le rat à l’aide de calcium-45. II. Action de la cortisone Rev. franc. Ét. clin. biol. 5, 354–358 (1960b).Google Scholar
  239. Mueller, W. J., R. Schraer, and H. Schraer: Calcium metabolism and skeletal dynamics of laying pullets. J. Nutr. 84, 20–26 (1964).PubMedGoogle Scholar
  240. Nelson, A., C. Rönnbäck, and L. Rosen: Further attempts to influence the elimination of radiostrontium. Acta radiol. (Stockh.) 1, 129–139 (1963).Google Scholar
  241. Neumann, W. F.: Chemical dynamics of bone mineral. In: Bone as a Tissue, ed. by K. Rodahl, J. P. Nicholson and E. M. Brown, pp. 103–117. New York: McGraw-Hill Book Co. Inc. 1960.Google Scholar
  242. —, and B.J. Mulryan: The surface chemistry of bone. VI. Recrystallization in vivo. J. biol. Chem. 195, 843–848 (1952).Google Scholar
  243. —, and M. W. Neumann: The chemical dynamics of bone mineral. Chicago: Chicago University Press 1958.Google Scholar
  244. —, and R. F. Riley: The uptake of radioactive phosphorus in the calcified tissues of normal and choline-deficient rats. J. biol. Chem. 168, 545–554 (1947).Google Scholar
  245. Nilsson, A.: Influence of gestation and lactation on radiostrontium-induced malignancies in mice. I. Acta radiol. (Stockh.) 6, 33–52 (1967).Google Scholar
  246. A. Nelson, C. Rönnbäck, A.-M. Sjödén, Gr. Walinder, and O. Hertzberg: Influence of gestation and lactation on radiostrontiuminduced malignancies in mice. Acta radiol. (Stockh.) 6, 129–144 (1967).CrossRefGoogle Scholar
  247. Nordin, B. E. C.: Analysis of methods for interpretation of tracer data in bone. In: Medical Uses of Ca47, p. 57. Vienna: Intern. Atomic Energy Agency 1962.Google Scholar
  248. Norris, W. P., and W. Kisieleski: Comparative metabolism of Ra, Sr and Ca. Cold Spr. Harb. Symp. quant. Biol. 13, 164–172 (1948).CrossRefGoogle Scholar
  249. S. A. Tylerand A. M. Brues: Retention of radioactive bone seekers. Science 128, 456 – 462 (1958).PubMedCrossRefGoogle Scholar
  250. Odeblad, E.: Matrix theory of quantitative apposition autoradiography. Acta radiol. (Stockh.) 45, 323–339 (1956).CrossRefGoogle Scholar
  251. Odell, R. T., O. B. Mueller and J. A. Key: Effect on bone grafts of radioactive isotopes of phosphorus. J. Bone Jt Surg. A 33, 324–332 (1951).Google Scholar
  252. Okada, T. S.: Autoradiographic study of cartilage differentiation in organ culture. Experientia (Basel) 16, 160 (1960).CrossRefGoogle Scholar
  253. Osborne, J. C., and K. Kowalewski: The uptake of radiosulphur in the fractured humerus in the rat. Surg. Gynec. Obstet. 103, 38–40 (1956).PubMedGoogle Scholar
  254. Owen, M.: Sr90 dosimetry in rabbits. In: Some aspects of internal irradiation, pp. 409–421, ed. by T. F. Daugherty, W. S. S. Jee, C. W. Mays, and B. J. Stoyer. Oxford: Pergamon Press 1962.Google Scholar
  255. — Cell population kinetics of an osteogenic tissue. I. J. Cell Biol. 19, 19–32 (1963).PubMedCrossRefGoogle Scholar
  256. — Cell differentiation in bone. In: Calcified Tissues. Proc. 2nd Europ. Symp., pp. 11–22. Liège: Coll. Colloques de l’Université de Liège 1965.Google Scholar
  257. —, and S. Macpherson: Cell population kinetics of an osteogenic tissue. II. J. Cell. Biol. 19, 33–44 (1963).PubMedCrossRefGoogle Scholar
  258. J. Jowsey and J. Vaughan: Investigation on the growth and structure of the tibia of the rabbit by microradiographic and autoradiographic techniques. J. Bone Jt Surg. B 37, 324–342 (1955).Google Scholar
  259. Pelc, S. R.: Autoradiograph technique. Nature 160, 749–750 (1947).PubMedCrossRefGoogle Scholar
  260. — The stripping-film technique of autoradiography. Int. J. appl. Radiat. 1, 172–177 (1956).PubMedCrossRefGoogle Scholar
  261. —, and A. Glücksmann: Sulphate metabolism in the cartilage of the trachea, pinna and xiphoid of the adult mouse as indicated by autoradiographs. Exp. Cell Res. 8, 336–344 (1955).PubMedCrossRefGoogle Scholar
  262. Ponlot. R.: Le radiocalcium dans l’étude des os. Préface par P. Lacroix. Paris: Masson & Cie. 1960.Google Scholar
  263. Plumlee, M. P., S. L. Hansard, C. L. Comar and W. M. Beeson: Placental transfer and deposition of labeled calcium in the developing bovine fetus. Amer. J. Physiol. 171, 678–686 (1952).PubMedGoogle Scholar
  264. Prockop, D. J., O. Pettengill, and H. Holtzer: Incorporation of sulfate and the synthesis of collagen by cultures of embryonic chondrocytes. Biochim. biophys. Acta (Aust.) 83, 189–196 (1964).Google Scholar
  265. Ramsden, E. N.: A review of experimental work on radio-yttrium comprising 1. The tissue distribution, 2. The mechanism of deposition in bone, and 3. The state in the blood. Int. J. Radiat. Biol. 3, 399–410 (1961).PubMedCrossRefGoogle Scholar
  266. Rapkin, E.: Liquid scintillation counting 1957 – 1963: a review. Int. J. appl. Radiat. 15, 66–87 (1964).CrossRefGoogle Scholar
  267. Ray, R. D., D. La Violette, H. D. Buckley and R. S. Mosiman: Studies of bone metabolism. I. Comparison of the metabolism of strontium-90 in living and dead bone. J. Bone Jt Surg. A 37, 143–155 (1955).Google Scholar
  268. Ray, R.D., and K. H. Mueller: The use of radioisotopes in Orthopaedics. Part III. Experimental and clinical studies. J. Bone Jt Surg. A 47, 417–425 (1965).Google Scholar
  269. — — B. Sankaran, E. Mensen, and T. Schwartz: Metabolic diseases of bone (kinetic studies). Med. Clin. N. Amer. 49, 241–258 (1965).PubMedGoogle Scholar
  270. D. E. Stedman and N. K. Wolff: Bone metabolism. III. The effect of various diets on the mobilization of strontium from the rat skeleton. J. Bone Jt Surg. A 38, 637–654 (1956).Google Scholar
  271. Rayner, B., M. Tutt and J. Vaughan: The deposition of 91Y in rabbit bones. Brit. J. exp. Path. 34, 138–145 (1953).PubMedGoogle Scholar
  272. Rich, C.: The calcium metabolism of a patient of a renal insufficiency before and after partial parathyroidectomy. Metabolism 6, 574–582 (1957).PubMedGoogle Scholar
  273. — Distribution of calcium given by sustained intravenous infusion. J. clin. Endocr. 20, 147–156 (1960).CrossRefGoogle Scholar
  274. —, and J. Ensinck: Effect of sodium fluoride on calcium metabolism of human beings. Nature (Lond.) 192, 185 (1961).CrossRefGoogle Scholar
  275. — —, and H. Fellows: The use of continuous infusions of calcium45 and strontium85 to study skeletal function. J. clin. Endocr. 21, 611–623 (1961).PubMedCrossRefGoogle Scholar
  276. Richelle, L. J., and F. Bronner: The calcium exchange reaction of bone in vitro. Effect of parathyroid extract. Biochem. Pharmacol. 12, 647–659 (1963).PubMedCrossRefGoogle Scholar
  277. Rigal, W. M.: The use of tritiated thymidine in studies of chondrogenesis. In: Radioisotopes and Bone, ed. by F. C. McLean, P. Lacroix, and A. M. Budy, pp. 197–225. Oxford: Blackwell Sci. Publ., 1962.Google Scholar
  278. Robertson, J. S.: Theory and use of tracers in determining transfer rates in biological systems. Physiol. Rev. 37, 133–154 (1957).PubMedGoogle Scholar
  279. Robinson, R. A.: Chemical analysis and electronmicroscopy of bone. In: Bone as a Tissue, ed. by K. Rodahl, J. T. Nicholson and E. M. Brown, pp. 186–250. New York: McGraw-Hill Book Co., Inc. 1960.Google Scholar
  280. Rosenthal, H.L.: Uptake of Ca45 and strontium90 from water by fresh-water fishes. Science 126, 669–670 (1957).CrossRefGoogle Scholar
  281. Rosoff, B., S. Ritter, K. Sullivan, H. Hart and H. Spencer-Laszlo: Effect of chelating agents on the removal of yttrium and lanthanum from man. Hlth Phys. 6, 177–182 (1961).CrossRefGoogle Scholar
  282. Rowland, R. E.: Microscopic metabolism of Ra226 in canine bone and its bearing on the radiation dosimetry of internally deposited alkaline earths. Radiat. Res. 15, 126–137 (1961).PubMedCrossRefGoogle Scholar
  283. — Skeletal retention of the alkaline earth radioisotopes and bone dosimetry. In: Some Aspects of internal Irradiation, pp. 455–467, ed. by T. F. Daugherty, W. S. S. Jee, C. W. Mays, and B. J. Stover. Oxford: Pergamon Press 1962.Google Scholar
  284. Rowland, R. E.: Resorption and bone physiology. In: Bone Biodynamics, ed by H. M. Frost, pp. 335–351. Boston: Little, Brown & Co. 1964.Google Scholar
  285. —, and J. H. Marshall: Radium in human bones: the dose in microscopic volumes of bone. Radiat. Res. 11, 299–313 (1959).PubMedCrossRefGoogle Scholar
  286. — — and J. Jowsey: Radium in human bone: the microradiographic appearance. Radiat. Res. 10, 323–334 (1959).PubMedCrossRefGoogle Scholar
  287. Rubin, M.: Application of chelating agents. In: Metabolic Interrelation. Trans. of the fifth Conference, ed. by E. C. Reifenstein jr., pp. 344–354. New York: Josiah Macy jr. Found. 1953.Google Scholar
  288. K. C. Brace, H. Gump, R. Swarm and J. R. Andrews: The radiotoxic effects of S35 in growing cartilage. Consideration of radioactive sulphur (S35) as a possible radiotherapeutic agent in chondrosarcomas. Radiology 69, 711–719 (1957).PubMedGoogle Scholar
  289. R. D. Thomas, T. A. Litovitz and C. F. Geschickter: Dynamics of calcium metabolism. Metabolic Interrelation. Trans. of the fifth Conference, ed. by E. C. Reifenstein jr., pp. 53–71. New York: Josiah Macy jr. Found. 1953.Google Scholar
  290. Ruf, F.: Über Stoffwechseluntersuchungen mit Radiophosphorus und Radiocalcium im Knochen, insbesondere während der Knochenbruchheilung und in Knochenspüren. In: Radioaktive Isotope in Klinik und Forschung, herausgeg. von K. Fellinger u. H. Vetter, Bd. 1, S. 212–221. München u. Berlin: Urban & Schwarzenberg 1955.Google Scholar
  291. Rushton, M. A., M. Owen, W. Holgate, and J. Vaughan: The relation of radiation dose to radiation damage in the mandible of weanling rabbits. Arch. oral Biol. 3, 235–246 (1961).PubMedGoogle Scholar
  292. Rundo, J., and A. L. Lillegraven: Uptake and retention of radioactive Strontium in normal subjects. Brit. J. Radiol. 39, 676–685 (1966).PubMedCrossRefGoogle Scholar
  293. Sacks, J.: Tracer techniques: stable and radioactive isotopes. In: Physical Techniques in biological Research, ed. by G. Oster and A. W. Pollister, vol. II, pp. 1–56. New York: Acad. Press Inc. 1956.Google Scholar
  294. Samachson, J.: Mechanism for the exchange of the calcium in bone mineral. Nature (Lond.) 216, 193–194 (1967).CrossRefGoogle Scholar
  295. Schubert, J.: Approaches to treatment of poisoning by both radioactive and non-radioactive elements encountered in atomic energy operations. Geneva Conference Paper, No. P/845 (1955).Google Scholar
  296. —, and W. D. Armstrong: Rate of elimination of radioactive carbon administered as carbonate from the tissues and tissue components of mature and growing rats. J. biol. Chem. 177, 521–527 (1949).PubMedGoogle Scholar
  297. —, and J. F. Fried: Chelating agents in the treatment of poisoning by polymerizable radioelements. Nature (Lond.) 185, 551–552 (1960).CrossRefGoogle Scholar
  298. Schulert, A. R., E. A. Peets, D. Laszlo, H. Spencer, M. Charles and J. Samachson: Comparative metabolism of strontium and calcium in man. Int. J. appl. Radiat. 4, 144 – 153 (1959).PubMedCrossRefGoogle Scholar
  299. Scott, K. G., H. Axelrod and J. Gr. Hamilton: The metabolism of curium in the rat. J. biol. Chem. 177, 325–335 (1949).PubMedGoogle Scholar
  300. D.H. Copp, H. Axelrod and J. Gr. Hamilton: The metabolism of americium in the rat. J. biol. Chem. 175, 691–703 (1948).PubMedGoogle Scholar
  301. Shetlar, M. R., R. M. Bradford, W. Joel, and R. P. Howard: Effects of parathyroid extract on glycoprotein and mucopolysaccharide components of serum and tissue. In: The Parathyroids, ed. by R. O. Greep and R. V. Talmage, pp. 123–143. Springfield: Ch. C. Thomas 1961.Google Scholar
  302. Shim, S. S., D. H. Copp, and F. P. Patterson: An indirect method of bone blood-flow measurement based on the bone clearance of a circulating bone-seeking radioisotope. J. Bone Jt Surg. A 49, 693–702 (1967).Google Scholar
  303. Simmons, D. J.: Cellular changes in the bones of mice as studied with tritiated thymidine and the effects of Estrogen. Clin. Orthop. 26, 176–189 (1963).PubMedGoogle Scholar
  304. Singer, L., and W. D. Armstrong: Retention and turnover of radiocalcium by the skeleton of large rats. Proc. Soc. exp. Biol. (N. Y.) 76, 229–233 (1951).Google Scholar
  305. Siri, W. E.: Isotopic tracers and nuclear radiations. New York: McGraw-Hill Book Co., Inc. 1949.Google Scholar
  306. Skipper, H. E., C. Nolan and L. Simpson: Studies on the hazard involved in use of C14. III. Long term retention in bone. J. biol. Chem. 189, 159–166 (1951).PubMedGoogle Scholar
  307. Solomon, A. K.: Compartmental methods of kinetic analysis. In: Mineral Metabolism, vol. I, pp. 119–168, ed. by C. L. Comar, and F. Bronner. New York: Acad. Press Inc. 1960.Google Scholar
  308. Sowby, F. D., and D. M. Taylor: Removal of internally deposited americium by chelating agents. Nature (Lond.) 187, 612 (1960).CrossRefGoogle Scholar
  309. Speckmann, Th. V., and W. P. Norris: The retention of strontium85 in rats as a function of animal age at injection. Quarterly Report of Biological and Medical Research Division Argonne National Laboratory, ANL-5597, 77–78 (1956).Google Scholar
  310. — — Strontium85 retention by the rat as a function of age at injection. Semi-annual Report of Biological and Medical Research Division Argonne National Laboratory, ANL-6093, 82–87 (1958).Google Scholar
  311. Spencer, H., D. Laszlo and M. Brothers: Strontium85 and calcium45 metabolism in man. J. clin. Invest. 36, 680–688 (1957).PubMedCrossRefGoogle Scholar
  312. M. Li, J. Samachson, and D. Laszlo: Metabolism of strontium-85 and calcium-45 in man. Metabolism 9, 916–925 (1960).Google Scholar
  313. J. Samachson, B. Kabakow and D. Laszlo: Factors modifying radiostrontium excretion in man. Clin. Sci. 17, 291–301 (1958).PubMedGoogle Scholar
  314. Spencer, R., R. Herbert, M. W. Rish, and W. A. Little: Bone scanning with 85Sr, 87mSr and 18F. Physical and radiopharmaceutical considerations and clinical experience in 50 cases. Brit. J. Radiol. 40, 641–654 (1967).PubMedCrossRefGoogle Scholar
  315. Spiers, F. W.: The influence of energy absorption and electron range on dosage in irradiated bone. Brit. J. Radiol. 22, 521–533 (1949).PubMedCrossRefGoogle Scholar
  316. — Calculation of ionization near bone surface. Brit. J. Radiol. 23, 743 (1950).CrossRefGoogle Scholar
  317. Sternberg, J.: Effect of tetracyclines on the turnover of Calcium-45 in young rats. Int. J. appl. Radiat. 17, 497–512 (1966).PubMedCrossRefGoogle Scholar
  318. Stillström, J.: Grain count corrections in autoradiography. I. Int. J. appl. Radiat. 14, 113 – 120 (1963).PubMedCrossRefGoogle Scholar
  319. — Grain count corrections in autoradiography. II. Int. J. appl. Radiat. 16, 357–363 (1965).CrossRefGoogle Scholar
  320. Stoclet, J. C.: Les échanges calciques rapides analysés par le Ca45 chez le rat. C.R. Acad. Sci. (Paris) 251, 1834–1836 (1960a).Google Scholar
  321. — Les échanges calciques entre plasma sanguin et divers organes, étudiés chez le rat mâle et femelle à l’aide du Ca45. C. R. Acad. Sci. (Paris) 251, 1934–1936 (19606).Google Scholar
  322. Strandh, J.: Chemical and biophysical studies of microscopic structures in compact bone. Acta Univ. upsalien. 3, 1–16 (1961).Google Scholar
  323. —, and A. Bengtsson: The uptake of phosphorus in microscopic bone structures in compact bone. Acta Soc. Med. upsalien. 66, 49–63 (1961a).Google Scholar
  324. — — The uptake of calcium in microscopic bone structures in compact bone. Acta Soc. Med. upsalien. 66, 95–103 (1961b).Google Scholar
  325. —, and K. Solheim: The change with age of the uptake of phosphorus in microscopic bone structures. Acta Soc. Med. upsalien. 68, 135 – 140 (1963).Google Scholar
  326. Talmage, R. V.: Studies on the influence of parathyroid hormone on bone cell modulation. Abr. Proc. 4th Europ. Symp. Calcified Tissues, ed. by P. J. Gaillard, A. van den Hooff and R. Steendijk, pp. 99–100. Amsterdam: Excerpta Med. Found. 1966.Google Scholar
  327. —, and J. R. Elliott: Removal of calcium from bone as influenced by the parathyroids. Endocrinology 62, 717–722 (1958).PubMedCrossRefGoogle Scholar
  328. W. E. Lotz and C. L. Comar: Action of parathyroid extract on bone phosphorus and Ca in the rat. Proc. Soc. exper. Biol. (N.Y.) 34, 578–582 (1953).Google Scholar
  329. Thomas, R. O., T. A. Litovitz, M. I. Rubin and C. F. Geschickter: Dynamics of calcium metabolism. Time distribution of intravenously administered radiocalcium. Amer. J. Physiol. 169, 568–575 (1952).PubMedGoogle Scholar
  330. Tomlin, D. H., K. M. Henry and S. K. Kon: Autoradiographic studies of growth and calcium metabolism in the long bones of the rat. Brit. J. Nutr. 7, 235–252 (1953).PubMedCrossRefGoogle Scholar
  331. — — The interstitial metabolism of calcium in the bones and teeth of rats. Brit. J. Nutr. 9, 144–156 (1955).PubMedCrossRefGoogle Scholar
  332. Tomlinson, R. W. S., M. Wall, S. B. Osborn, and J. Anderson: Radiocalcium studies in normal subjects. Calc. Tiss. Res. 1, 197–203, (1967).CrossRefGoogle Scholar
  333. Tonna, E. A.: The cellular complement of the skeletal system studied autoradiographically with tritiated thymidine (H3TDR) during growth and aging. J. biophys. biochem. Cytol. 9, 813–824 (1961a).PubMedCrossRefGoogle Scholar
  334. — An autoradiographic evaluation of the aging cellular phase of mouse skeleton using tritiated glycine. J. Geront. 19, 198–206 (1964).PubMedGoogle Scholar
  335. —, and E. P. Cronkite: Histochemical and autoradiographic studies on the effects of aging on the mucopolysaccharides of the periosteum. J. biophys. biochem. Cytol. 6, 171–178 (1959).PubMedCrossRefGoogle Scholar
  336. — — Use of tritiated thymidine for the study of the origin of the osteoclast. Nature (Lond.) 190, 459–460 (1961a).CrossRefGoogle Scholar
  337. — — Cellular response to fracture studied with tritiated thymidine. J. Bone Jt Surg. A 43, 352–362 (1961b).Google Scholar
  338. — — Utilization of tritiated histidine (H3HIL) by skeletal cells of adult mice. J. Geront. 17, 353–358 (1962a).PubMedGoogle Scholar
  339. — — Changes in the skeletal cell proliferative response to trauma concomitant with aging. J. Bone Jt Surg. A 44, 1557–1568 (1962b).Google Scholar
  340. — — The effects of extraperiosteal injections of blood components on periosteal cell proliferation. J. Cell Biol. 23, 79–87 (1964).PubMedCrossRefGoogle Scholar
  341. Triffitt, J. T.: Binding of calcium and strontium by alginates. Nature (Lond.) 217, 457–458 (1968).CrossRefGoogle Scholar
  342. Tullis, J. L., and H. A. Johnson: The biological significance of some important internal emitters. In: Radiation Biology and Medicine, ed. by W. D. Claus, pp. 341–368. Reading: Addison-Wesley Publishers Co., Inc. 1958.Google Scholar
  343. Uehlinger, E.: On the influence of thyroxine, thiouracil, cortisone, estrogen and testosterone on endochondral ossification utilizing autoradiography. In: Proc. 3rd Europ. Symp. Calcified Tissues, ed. by H. Fleisch, H. J. J. Blackwood, and M. Owen, pp. 243–245. Berlin: Springer 1965.Google Scholar
  344. Urist, M. R., N. S. Mac Donald and J. Joweey: The function of the donor tissue in experimental operations with radioactive bone grafts. Ann. Surg. 147, 129–145 (1958).PubMedCrossRefGoogle Scholar
  345. Van Dyke, D., H. O. Anger, U. Yano, and C. Bozzini: Bone blood flow shown with F18 and the positron camera. Amer. J. Physiol. 209, 65–70 (1965).Google Scholar
  346. Vaughan, J.: The effects of radiation on bone. In: The biochemistry and physiology of bone, ed. by G. H. Bourne, pp. 729–765. New York: Acad. Press Inc. 1956.Google Scholar
  347. —, and J. Jowsey: Preliminary report on lesions in the skeleton of young rabbits following a single injection of 90Sr (500–1000 c/Kg). In: Progress in Radiobiology, pp. 429–433. Edinburgh: Oliver & Boyd 1956.Google Scholar
  348. —, and M. Owen: The use of autoradiography in the measurement of radiation dose-rate in rabbit bone following the administration of Sr90. Lab. Invest. 8, 181–193 (1959).PubMedGoogle Scholar
  349. —, and M. Williamson: Variation in “turnover rates” in different parts of the skeleton in relation to turnover incidence due to 90 Sr deposition. In: Abr. Proc. 4th Europ. Symp. Calcified Tissues, ed. by P. J. Gaillard, A. van den Hooff, and R. Steendijk, pp. 102–103. Amsterdam: Excerpta Med. Found. 1966.Google Scholar
  350. Vincent, J.: Recherches sur la constitution du tissu osseux compact. Arch. Biol. (Liège) 65, 531–569 (1954).Google Scholar
  351. — Recherches sur la constitution de l’os adulte. Thèse Université Louvain, Editions Arscia, Bruxelles 1955.Google Scholar
  352. — Autoradiographies au Na22 de l’os compact de Cercopithèque. Bull. Acad. roy. Méd. Belg., VI. sér. 25, 283–295 (1960).Google Scholar
  353. —, et S. Haumont: Identification autoradiographique des ostéones métaboliques après administration de Ca45. Rev. franc. Étud. clin. biol. 5, 348–353 (1960).PubMedGoogle Scholar
  354. Visek, W. J., R. A. Monroe, E. W. Swanson and C. L. Comar: Determination of endogenous fecal calcium in cattle by a simple isotope dilution method. J. Nutr. 50, 23–33 (1953).PubMedGoogle Scholar
  355. Volf, V., and Z. Roth: Retention of Strontium-85 in rats. III. Effect of increasing the doses of sodium and barium sulphates and role of the time factor. Acta radiol. (Stockh.) 4, 481–493 (1966).Google Scholar
  356. Wasserman, R. H.: Quantitative studies on skeletal accretion in laboratory and domestic animals. 2nd U.N. Intern. Conf. peaceful uses atomic energy, A/Conf. 15/8/816 (1958).Google Scholar
  357. Weidmann, S. M.: Studies on the skeletal tissues. 4. The renewal of inorganic phosphate in bones of various species of small mammals as a function of time. Biochem. J. 62, 593–601 (1956).PubMedGoogle Scholar
  358. Weikel, G. H., and W. F. Neuman: Incorporation of dietary radiocalcium into skeleton of rats. Metabolism 10, 83–90 (1961).PubMedGoogle Scholar
  359. Wendeberg, B.: Mineral metabolism of fractures of the tibia in man studied with external counting of Sr85. Acta orthop. scand., Suppl. 52, 1–79 (1961).Google Scholar
  360. Wendberg, B., and T. Yamamuro: Mineral metabolism in primary bone tumours studied by external counting of 85-Sr. Acta orthop. scand. 36, 21–34 (1965).CrossRefGoogle Scholar
  361. White, N. B., M. M. Ter-Pogossian, and A. H. Stein: A method to determine the rate of blood flow in long bone and selected soft tissues. Surg. Gynec. Obstet. 119, 535–540 (1964).PubMedGoogle Scholar
  362. Whitehead, R. G., and S. M. Weidmann: The effect of parathormone on the uptake of P32 into adenosine-triphosphate and bone salts in kittens. Biochem. J. 71, 312–318 (1959).PubMedGoogle Scholar
  363. Woods, K. R., and W. D. Armstrong: Action of parathyroid extracts on stable bone mineral using radiocalcium as tracer. Proc. Soc. exp. Biol. (N.Y.) 91, 255–258 (1956).Google Scholar
  364. Yagoda, H.: Radioactive measurements with nuclear emulsions. New York: J. Wiley, & Sons Inc. 1949.Google Scholar
  365. Young, R. W.: Regional differences in cell generation time in growing rat tibiae. Exp. Cell Res. 26, 562–567 (1962a).PubMedCrossRefGoogle Scholar
  366. — Cell proliferation and specialization during endochondral osteogenesis in young rats. J. Cell Biol. 14, 357–370 (1962b).PubMedCrossRefGoogle Scholar
  367. — Autoradiographic studies on postnatal growth of the skull in young rats injected with tritiated glycine. Anat. Rec. 143, 1–7 (1962c).PubMedCrossRefGoogle Scholar
  368. — Histophysical studies on bone cells and bone resorption. In: Mechanisms of hard Tissue Destruction, ed. by R. F. Sognnaes, pp. 471 – 496. Washington: Amer. Ass. Adv. Sci. 1963.Google Scholar
  369. — Specialization of bone cells: In: Bone Biodynamics, ed. by H. M. Frost, pp. 117–142. Boston: Little, Brown & Co. 1964.Google Scholar
  370. Zetterström, R.: Removal of phosphate in bone minerals. I. Renewal rate of phosphate in relation to the solubility of the bone minerals. Biochim. biophys. Acta 8, 283–293 (1952).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1970

Authors and Affiliations

  • Rodolfo Amprino

There are no affiliations available

Personalised recommendations