Skip to main content

Zellstoffwechsel und Enzymologie der Niere

  • Chapter
Nierenkrankheiten

Part of the book series: Handbuch der Inneren Medizin ((510,volume 8 / 0))

  • 43 Accesses

Zusammenfassung

Suchen wir in einem Lehrbuch der Biochemie nach nierenspezifischen biochemischen Prozessen, so werden wir enttäuscht. Es ist bis heute kein Stoffwechselvorgang bekannt, der sich ausschließlich in der Niere abspielt. Wie ist es nun aber erklärbar, daß die Niere mit denselben Enzymen, wie sie in der Leber vorkommen, so unerhört spezialisierte Transportaufgaben zu erfüllen vermag ? Diese Frage kann heute nicht beantwortet werden, vor allem weil unsere Methoden zur Erforschung des Stoffwechsels der Nierenzellen viel zu grob und zu undifferenziert sind. Die Unzulänglichkeiten der Methoden gehen aus folgendem Vergleich hervor: Analysieren wir den Leberstoffwechsel mit Hilfe von Schnitten oder Homogenaten, so dürfen wir das Resultat als ziemlich repräsentativ für „die Leberzelle” betrachten. Bei der gesunden und erst recht bei der kranken Niere haben wir es aber mit einem Organgemisch zu tun, einem Konglomerat langgezogener und ineinander verschlungener Orgänchen, den Nephronen. Auch für den Biochemiker gilt, was Oliver (1950) unter dem Titel “When is a kidney not a kidney?” den Physiologen kritisch vorwarf:

“There is no ‘kidney’, either structural of functional in chronic renal disease. The only useful or meaningful purpose of the word ist to designate a mass of tissue which, except in topographical anatomic or surgical problems, has no significance until we analyze its constituents. And then it vanishes into the disparity of thousands of fantastically altered organs of strange design and anomalous behavior … Liquidate the ‘kidney’ and entitle the next symposium ‘The Nephrons in Health and Disease’.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Andres, R., G. Cader, and K.L. Zierler: The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state. Measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J. clin. Invest. 35, 671–682 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Atchley, D.W., R.F. Loeb, D.W. Richards, E.M. Benedict, and M.E. Driscoll: On diabetic acidosis; detailed study of electrolyte balances following withdrawal and reestablishment of insulin therapy. J. clin. Invest. 12, 297–326 (1933).

    Article  PubMed  CAS  Google Scholar 

  • Barclay, J.A., and I.D. Singh: The isolated renal glomerulus. Acta med. scand. 154, 483–490 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Barker, E.S., A.P. Crosley, and J.K. Clark: Respiratory quotients of human kidney in vivo. J. appl. Physiol. 18, 815–817 (1963).

    PubMed  CAS  Google Scholar 

  • Berliner, R. W., T. J. Kennedy, and J. Orloff: Relationship between acidification of the urine and potassium metabolism. Effect of carbonic anhydrase inhibition on potassium excretion. Amer. J. Med. 11, 274–282 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Berliner, R.W., and J. Orloff: Carbonic anhydrase inhibitors. Pharmacol. Rev. 8, 137–174 (1956).

    PubMed  CAS  Google Scholar 

  • Bernheim, F.: Note on the action of copper and Phenylhydrazine on certain dehydrogenases. J. biol. Chem. 133, 485–489 (1940).

    CAS  Google Scholar 

  • Beyer, K.H., R.H. Painter, and V.D. Wiebelhaus: Enzymatic factors in renal tubular secretion of phenol red. Amer. J. Physiol. 161, 259–267 (1950).

    PubMed  CAS  Google Scholar 

  • Bing, R. J., A. Siegel, I. Ungar, and M. Gilbert: Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Amer. J. Med. 16, 504–515 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Bosáčková, J.: The transport of inorganic ions and p-aminohippurate in isolated cells of the renal cortex of the rabbit. Biochim. biophys. Acta (Amst.) 71, 345–354 (1963).

    Article  Google Scholar 

  • Browne, M. J., M.W. Pitts, and R.F. Pitts: Alkaline phosphatase activity in kidneys of glomerular and aglomerular marine teleosts. Biol. Bull. 99, 152–156 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Cameron, G., and R. Chambers: Direct evidence of fundtion in kidney of an early human fetus. Amer. J. Physiol. 123, 482–485 (1938).

    Google Scholar 

  • Cargill, W. H., and J. B. Hickam: The oxygen consumption of the normal and the diseased human kidney. J. clin. Invest. 28, 526–532 (1949).

    Article  PubMed  CAS  Google Scholar 

  • Chambers, R., L.V. Beck, and M. Belkin: Secretion in tissue cultures. I. Inhibition of phenol red accumulation in the chick kidney. J. cell. comp. Physiol. 6, 425–439 (1935).

    Article  CAS  Google Scholar 

  • Chambers, R., and G. Cameron: Intracellular hydrion concentration studies. VII. The secreting cells of the mesonephros in the chick. J. cell. comp. Physiol. 2, 99–103 (1932).

    Article  CAS  Google Scholar 

  • Chambers, R., and R.T. Kempton: Indications of function of the chick mesonephros in tissue culture with phenol red. J. cell. comp. Physiol. 8, 131–160 (1933).

    Article  Google Scholar 

  • Clark, J.K., and H.G. Barker: Studies of renal oxygen consumption in man. I. The effect of tubular loading (PAH), water diuresis and osmotic (mannitol) diuresis. J. clin. Invest. 30, 745–750 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. J.: High respiratory quotient of dog kidney in vivo. Amer. J. Physiol. 199, 560–568 (1960).

    PubMed  CAS  Google Scholar 

  • Copenhaver, J.H., and R.P. Forster: Displacement characteristics of intracellularly accumulated p-aminohippurate in a mammalian renal transport system in vitro. Amer. J. Physiol. 195, 327–330 (1958).

    PubMed  CAS  Google Scholar 

  • Cross, R. J., and J.V. Taggart: Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Amer. J. Physiol. 161, 181–190 (1950).

    PubMed  CAS  Google Scholar 

  • Crumpler, H.R., C.E. Dent, H. Harris, and R.G. Westall: β:-aminoisobutyric acid (α-methyl-ß- alanine): a new amino-acid obtained from human urine. Nature (Lond.) 167, 307–308 (1951).

    Article  CAS  Google Scholar 

  • Davies, B.M. A., and J. Yudkin: Role of glutaminase in the production of urinary ammonia. Nature (Lond.) 167, 117 (1951).

    Article  CAS  Google Scholar 

  • ~ Studies in biochemical adaptation. Origin of urinary ammonia as indicated by effect of chronic acidosis and alkalosis on some renal enzymes in rat. Biochem. J. 52, 407–412 (1952).

    Google Scholar 

  • Deetjen, P., u. K. Kramer: Na-Rückresorption und O2-Verbrauch der Niere. Klin. Wschr. 88, 680 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Dent, C.E., and H. Harris: Genetics of “cystinuria”. Ann. Eugen. (Lond.) 16, 60–87 (1951).

    Article  Google Scholar 

  • Dickens, F., and H. Weil-Malherbe: Metabolism of normal and tumour tissue; note on metabolism of medulla of kidney. Biochem. J. 30, 659–660 (1936).

    PubMed  CAS  Google Scholar 

  • Eggleton, M.G., J.R. Pappenheimer, and F.R. Winton: The influence of diuretics on the osmotic work done and on the efficiency of the isolated kidney of the dog. J. Physiol. (Lond.) 97, 363–382 (1940).

    CAS  Google Scholar 

  • Evered, D.F.: The excretion of amino acids by the human. A quantitative study with ion-exchange chromatography. Biochem. J. 62, 416–427 (1956).

    PubMed  CAS  Google Scholar 

  • Føiling, A.: On the mechanism of ammonium chloride acidosis. Acta med. scand. 71, 221–279 (1929).

    Article  Google Scholar 

  • Forster, R.P.: Use of thin kidney slices and isolated renal tubules for direct study of cellular transport kinetics. Science 108, 65–67 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Forster, R.P., and J. H. Copenhaver: Intracellular accumulation as an active process in a mammalian renal transport system in vitro. Energy dependence and competitive phenomena. Amer. J. Physiol. 186, 167–171 (1956).

    PubMed  CAS  Google Scholar 

  • Forster, R.P., and J.V. Taggart: Use of isolated renal tubules for the examination of metabolic processes associated with active cellular transport. J. cell, comp. Physiol. 36, 251–270 (1950).

    Article  CAS  Google Scholar 

  • Foulkes, E.C., and B.F. Miller: Steps in p-aminohippurate transport by kidney slices. Amer. J. Physiol. 196, 86–92 (1959).

    PubMed  CAS  Google Scholar 

  • Gamble, J.L., K.D. Blackfan, and B. Hamilton: A study of the diuretic action of acid producing salts. J. clin. Invest. 1, 359–388(1925).

    Article  PubMed  CAS  Google Scholar 

  • Grupp, G., u. K. Hierholzer: Verbrauch von Nierengewebe verschiedener Zonen. Z. Biol. 109, 197–202 (1957).

    PubMed  CAS  Google Scholar 

  • György, P., W. Keller u. Th. Breme: Nierenstoffwechsel und Nierenentwicklung. Biochem. Z. 200, 356–366 (1928).

    Google Scholar 

  • Harris, E.J.: Transport and accumulation in biological systems. New York: Academic Press 1956.

    Google Scholar 

  • Harris, H.: Renal aminoaciduria. Brit. med. Bull. 13, 26–28 (1957).

    PubMed  CAS  Google Scholar 

  • Hemingway, A., and H.J. Phelps: The carbohydrate metabolism of the kidney. J. Physioli (Lond.) 80, 369–376 (1934).

    CAS  Google Scholar 

  • Herms, W., and R.L. Malvin: Effect of metabolic inhibitors on urine osmolality and electrolyte excretion. Amer. J. Physiol. 204, 1065–1070 (1963).

    PubMed  CAS  Google Scholar 

  • Hess, R.: Die histochemische Analyse enzymatischer Vorgänge im Nierentubulus. In: Diurese und Diuretica. Hrsg. v. E. Buchborn und K.D. Bock, S. 121–142. Berlin-Göttingen-Heidelberg: Springer 1959.

    Google Scholar 

  • Hoeber, R.: Physikalische Chemie der Zelle und der Gewebe. 5. Aufl. Leipzig: Wilhelm Engelmann 1922.

    Google Scholar 

  • Hokin, L.E., and M.R. Hokin: The role of phosphatidic acid and phosphoinositide in transmembrane transport elicited by acetylcholine and other humoral agents. Int. Rev. Neurobiol. 2, 100–137 (1960a).

    Google Scholar 

  • ~ Studies on the carrier function of phosphatidic acid in sodium transport. I. The turnover of phosphatidic acid and phosphoinositide in the avian salt gland on stimulation of secretion. J. gen. Physiol. 44, 61–85 (1960b).

    Google Scholar 

  • Iacobellis, M., E. Muntwyler, and G. E. Griffin: Enzyme concentration changes in the kidneys of protein- and/or potassium-deficient rats. Amer. J. Physiol. 178, 477–482 (1954).

    PubMed  CAS  Google Scholar 

  • ~ Kidney glutaminase and carbonic anhydrase activity and tissue electrolyte composition in potassium-deficient dogs. Amer. J. Physiol. 183, 395–400 (1955).

    Google Scholar 

  • Karnovsky, M. J., and S. R. Himmelhoch: Histochemical localization of glutaminase I activity in kidney. Amer. J. Physiol. 201, 786–790 (1961).

    PubMed  CAS  Google Scholar 

  • Kean, E.L., P.H. Adams, R.W. Winters, and R.E. Davies: Energy metabolism of the renal medulla. Biochim. biophys. Acta (Amst.) 54, 474–478 (1961).

    Article  CAS  Google Scholar 

  • Keilin, D., and T. Mann: On the haematin compound of peroxidase. Proc. roy. Soc. B 122, 119–133 (1937).

    Google Scholar 

  • Kety, S.S., and C.F. Schmidt: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J. clin. Invest. 27, 476–483 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Kisch, B.: Biochemische Unterschiede zwischen Nierenrinde und Nierenmark. Biochem. Z. 277, 210–222 (1935).

    CAS  Google Scholar 

  • Kramer, K., u. P. Deetjen: Beziehungen des O2-Verbrauches der Niere zu Durchblutung und Glomerulusfiltrat bei Änderung des arteriellen Druckes. Pflügers Arch. ges. Physiol. 271, 782–796 (1960).

    Article  CAS  Google Scholar 

  • Kramer, K., K. Thurau u. P. Deetjen: Hämodynamik des Nierenmarks. I. Mitt. Capilläre Passagezeit, Blutvolumen, Durchblutung, Gewebshämatokrit und O2-Verbrauch des Nierenmarks in situ. Pflügers Arch. ges. Physiol. 270, 251–269 (1960).

    Article  CAS  Google Scholar 

  • Krane, S.M., and R. K, Crane: The accumulation of D-galactose against a concentration gradient by slices of rabbit kidney cortex. J. biol. Chem. 234, 211–216 (1959).

    PubMed  CAS  Google Scholar 

  • Lassen, N. A., O. Munck, and J.H. Thaysen: Oxygen consumption and sodium reabsorption in the kidney. Acta physiol. scand. 51, 371–384 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Lassen, U.V., and J.H. Thaysen: Correlation between sodium transport and oxygen consumption in isolated renal tissue. Biochim. biophys. Acta (Amst.) 47, 616–618 (1961).

    Article  CAS  Google Scholar 

  • LeFèvre, P.G.: Active transport through animal cell membranes. Wien: Springer 1955.

    Book  Google Scholar 

  • Levy, M.N.: Influence of variations in blood flow and of dinitrophenol on renal oxygen consumption. Amer. J. Physiol. 169, 937–942 (1959).

    Google Scholar 

  • Longley, J.B.: Alkaline phosphatase in the kidneys of aglomerular fish. Science 122, 594 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Lowell, D.J., S.A. Greenspon, C.A. Krakower, and J.A. Bain: Metabolic activity of renal cortical tubular epithelial cells. Amer. J. Physiol. 172, 709–717 (1953).

    PubMed  CAS  Google Scholar 

  • Lowry, O.H.: The quantitative histochemistry of the brain. Histological sympling. J. Histochem. Cytochem. 1, 420–428 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, C.F.W.: Beiträge zur Lehre vom Mechanismus der Harnsecretion. Marburg: Elwert 1843.

    Google Scholar 

  • Mattenheimer, H., and H. DeBruin: Glutaminases. An ultramicro method for the determination of glutaminase activity, and a reinvestigation of optimum assay conditions in the kidney of man, dog and rat. Enzymol. biol. clin. 4, 65–83 (1964).

    CAS  Google Scholar 

  • Mattenheimer, H., V.E. Pollak, and H. DeBruin: Quantitative histochemistry of the nephron. IX. Distribution and activity of various enzymes in the kidney of the dog. Enzymol. biol. clin. 4, 107–120 (1964).

    CAS  Google Scholar 

  • McCann, W.P.: Quantitative histochemistry of the dog nephron. Amer. J. Physiol. 185, 372–376 (1956).

    PubMed  CAS  Google Scholar 

  • Milne, M.D., B.H. Smbner, and M.A. Crawford: Non-ionic diffusion and the excretion of weak acids and bases. Amer. J. Med. 24, 709–729 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Mudge, G.H.: Clinical patterns of tubular dysfunction. Amer. J. Med. 24, 785–804 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, T.F.: Renal function as affected by experimental unilateral kidney lesions. II. The effect of cyanide. Biochem. J. 45, 112–115 (1949).

    CAS  Google Scholar 

  • Oliver, J.: When is the kidney not a kidney? J. Urol. (Baltimore) 63, 373–402 (1950).

    Google Scholar 

  • Pitts, R.F.: A comparison of the renal reabsorptive processes for several amino acids. Amer. J. Physiol. 140, 535–547 (1944).

    CAS  Google Scholar 

  • Über aktive Transportmechanismen in den Tubuli der Niere. Klin. Wschr. 33, 365–370 (1955).

    Google Scholar 

  • Quastel, J.H., and W.R. Wooldridge: Some properties of dehydrogenating enzymes of bacteria. Biochem. J. 22, 689–702 (1928).

    PubMed  CAS  Google Scholar 

  • Rector, F.C., and J. Orloff: The effect of the administration of sodium bicarbonate and ammonium chloride on the excretion and production of ammonia. The absence of alterations in the activity of renal ammonia producing enzymes in the dog. J. clin. Invest. 38, 366–372 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Rector, F.C., D.W. Seldin, and J.H. Copenhaver: The mechanism of ammonia excretion during ammonium chloride acidosis. J. clin. Invest. 34, 20–26 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Rector, F.C., D.W. Seldin, A.D. Roberts, and J.H. Copenhaver: Relation of ammonia excretion to urine pH. Amer. J. Physiol. 179, 353–358 (1954).

    PubMed  CAS  Google Scholar 

  • Richterich, R.: Enzymopathologie. Enzyme in Klinik und Forschung. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • ~ Enzy- matische Vorgänge bei der Harnbereitung: Biochemie. In: Diurese und Diuretica. Hrsg. v. Buchborn und K.D. Bock, S. 91–120. Berlin-Göttingen-Heidelberg: Springer 1959.

    Google Scholar 

  • ~ Physico-chemical factors determining ammonia excretion. Helv. physiol. pharmacol. Acta 20, 326–345 (1962).

    Google Scholar 

  • Richterich, R., u. H.E. Franz: Das isolierte Glomerulum der Rattenniere. II. Enzymmuster des Energie-Stoffwechsels (C-Raum). Biochem. Z. 334, 149–167 (1961).

    PubMed  CAS  Google Scholar 

  • Richterich, R., and L. Goldstein: Renal ammonia production as a model for the study of enzyme adaptation in animals. Experientia (Basel) 18, 30–35 (1957).

    Article  Google Scholar 

  • Richterich, R., P. Schafroth, and H. Aebi: A study of lactic dehydrogenase isoenzyme pattern of human tissues by adsorption-elution on sephadex-DEAE. Clin. chim. Acta 8, 178–192 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, L.E., S.J. Downing, and S. Segal: Competitive inhibition of dibasic amino acid transport in rat kidney. J. biol. Chem. 237, 2265–2270 (1962).

    PubMed  CAS  Google Scholar 

  • Rosenberg, T.: The concept and definition of active transport. In: Active transport and secretion. New York: Academic Press 1954.

    Google Scholar 

  • Ryberg, C.: The importance of sodium ions for the excretion of ammonium and hydrogen ions in the urine. Acta physiol. scand. 15, 161–172 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Sartorius, O.W., J.C. Roemmelt, and R.F. Pitts: Renal regulation of acid-base balance in man; nature of renal compensations in ammonium chloride acidosis. J. clin. Invest. 28, 423–439 (1949).

    Article  CAS  Google Scholar 

  • Schafroth, P., u. R. Richterich: Das isolierte Glomerulum der Rattenniere. IV. Enzymmuster der Endoxydation. Enzymol. biol. clin. 3, 165–183 (1963).

    CAS  Google Scholar 

  • Schwartz, W. B., A. Falbriard, and A.S. Relman: An analysis of bicarbonate reabsorption during partial inhibition of carbonic anhydrase. J. clin. Invest. 37, 744–751 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Seevers, M. H., F. E. Shideman, L.A. Woods, J.R. Weeks, and W.T. Kruse: Dehydroacetic acid (DAH). II. General pharmacology and mechanism of action. J. Pharmacol, exp. Ther. 99, 69–83 (1950).

    CAS  Google Scholar 

  • Shannon, J.A.: Renal tubular excretion. Physiol. Rev. 19, 63–93 (1939).

    Google Scholar 

  • Shideman, F.E., R.C. Rathbun, and F. Stoneman: Inhibition of the renal tubular transport of p-aminohippurate (PAH) and phenolsulfonphthalein (PSP) as affected by acetate. Amer. J. Physiol. 170, 31–37 (1952).

    PubMed  CAS  Google Scholar 

  • Shideman, F.E., and R.M. Rene: Succinat oxidation and Krebs cycle as an energy source for renal tubular transport mechanisms. Amer. J. Physiol. 166, 104–112 (1951).

    PubMed  CAS  Google Scholar 

  • Slyke, D.D. van, C.P. Rhoads, A. Hiller, and A.S. Alving: Relationships between urea excretion, renal blood flow, renal oxygen consumption, and diuresis. The mechanism of urea excretion. Amer. J. Physiol. 109, 336–374 (1934).

    Google Scholar 

  • Smith, H.W.: The kidney, structure in health and disease. New York: Oxford University Press 1951.

    Google Scholar 

  • ~ From fish to philosopher. Boston: Little, Brown 1954.

    Google Scholar 

  • ~ Principles of renal physiology. New York: Oxford University Press 1956.

    Google Scholar 

  • Taggart, J.Y.: Some biochemical features of tubular transport mechanisms. In: CIBA Foundation Symposium on the kidney. Edit, by A. A. G. Lewis and G.E.W. Wolstenholme, p. 65. London: Churchill 1954.

    Chapter  Google Scholar 

  • ~ Renal transport of p-aminohippurate labeled with oxygen-18. Science 124, 401–402 (1956).

    Google Scholar 

  • ~ Mechanism of renal tubular transport. Amer. J. Med. 24, 774–784 (1958).

    Google Scholar 

  • Taggart, J.V., and R.P. Forster: Renal tubular transport: effect of 2, 4-dinitrophenol and related compounds on phenol red j transport in the isolated tubules of the flounder. Amer. J. Physiol. 161, 167–172 (1950).

    PubMed  CAS  Google Scholar 

  • Taggart, J.V., L. Silverman, and E.M. Trayner: Influence of renal electrolyte composition on the tubular excretion of p-aminohippurate. Amer. J. Physiol. 173, 345–350 (1953).

    PubMed  CAS  Google Scholar 

  • Terroux, K.G., P. Sekelj, and A.S.V. Burgen: Oxygen consumption and blood flow in the submaxillary gland of the dog. Canad. J. Biochem. 37, 5–15 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, K.J.: Das Nierenmark. Struktur, Stoffwechsel und Funktion. Ergebn. Physiol. 50, 433–489 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Vries, A. de, S. Kochwa, J. Lazebnik, M. Frank, and M. Djaldetti: Glycinuria, a hereditary disorder associated with nephrolithiasis. Amer. J. Med. 23, 408–415 (1957).

    Article  Google Scholar 

  • Waldman, R.H., and H.B. Burch: Rapid method for study of enzyme distribution in rat kidney. Amer. J. Physiol. 204, 749–752 (1963).

    PubMed  CAS  Google Scholar 

  • Weil, L., and J.O. Ely: Investigation in enzymatic histochemistry. I. Distribution of arginase activity in rabbit kidney. J. biol. Chem. 112, 565–577 (1935/36).

    Google Scholar 

  • Weil, L., and R.K. Jennings: Investigation in enzymatic histochemistry. III. Distribution of enzymes in rabbit kidney. J. biol. Chem. 139, 421–432 (1941).

    CAS  Google Scholar 

  • Wilbrandt, W.: Secretion and transport of non-electrolytes. In- Active transport and secretion. New York: Academic Press 1954.

    Google Scholar 

  • ~ Permeabilität, aktiver Transport und Trägermechanismus. Dtsch. med. Wschr. 82, 1153–1158 (1957).

    Google Scholar 

  • Wood, F.J.Y.: Ammonium chloride acidosis. Clin. Sci. 14, 81–89 (1955).

    PubMed  CAS  Google Scholar 

  • Zerahn, K.: Oxygen consumption and active sodium transport in the isolated and short- circuited frog skin. Acta physiol. scand. 36, 300–318 (1956).

    Article  PubMed  CAS  Google Scholar 

  • ~ Oxygen consumption and active sodium transport in isolated amphibian skin under varying experimental conditions. Aarhus: Universitetsforlaget 1958.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richterich, R. (1968). Zellstoffwechsel und Enzymologie der Niere. In: Schwiegk, H., et al. Nierenkrankheiten. Handbuch der Inneren Medizin, vol 8 / 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95038-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95038-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95039-1

  • Online ISBN: 978-3-642-95038-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics