Advertisement

Zellstoffwechsel und Enzymologie der Niere

  • R. Richterich
Part of the Handbuch der Inneren Medizin book series (INNEREN, volume 8 / 0)

Zusammenfassung

Suchen wir in einem Lehrbuch der Biochemie nach nierenspezifischen biochemischen Prozessen, so werden wir enttäuscht. Es ist bis heute kein Stoffwechselvorgang bekannt, der sich ausschließlich in der Niere abspielt. Wie ist es nun aber erklärbar, daß die Niere mit denselben Enzymen, wie sie in der Leber vorkommen, so unerhört spezialisierte Transportaufgaben zu erfüllen vermag ? Diese Frage kann heute nicht beantwortet werden, vor allem weil unsere Methoden zur Erforschung des Stoffwechsels der Nierenzellen viel zu grob und zu undifferenziert sind. Die Unzulänglichkeiten der Methoden gehen aus folgendem Vergleich hervor: Analysieren wir den Leberstoffwechsel mit Hilfe von Schnitten oder Homogenaten, so dürfen wir das Resultat als ziemlich repräsentativ für „die Leberzelle” betrachten. Bei der gesunden und erst recht bei der kranken Niere haben wir es aber mit einem Organgemisch zu tun, einem Konglomerat langgezogener und ineinander verschlungener Orgänchen, den Nephronen. Auch für den Biochemiker gilt, was Oliver (1950) unter dem Titel “When is a kidney not a kidney?” den Physiologen kritisch vorwarf:

“There is no ‘kidney’, either structural of functional in chronic renal disease. The only useful or meaningful purpose of the word ist to designate a mass of tissue which, except in topographical anatomic or surgical problems, has no significance until we analyze its constituents. And then it vanishes into the disparity of thousands of fantastically altered organs of strange design and anomalous behavior … Liquidate the ‘kidney’ and entitle the next symposium ‘The Nephrons in Health and Disease’.”

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Andres, R., G. Cader, and K.L. Zierler: The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state. Measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J. clin. Invest. 35, 671–682 (1956).PubMedCrossRefGoogle Scholar
  2. Atchley, D.W., R.F. Loeb, D.W. Richards, E.M. Benedict, and M.E. Driscoll: On diabetic acidosis; detailed study of electrolyte balances following withdrawal and reestablishment of insulin therapy. J. clin. Invest. 12, 297–326 (1933).PubMedCrossRefGoogle Scholar
  3. Barclay, J.A., and I.D. Singh: The isolated renal glomerulus. Acta med. scand. 154, 483–490 (1956).PubMedCrossRefGoogle Scholar
  4. Barker, E.S., A.P. Crosley, and J.K. Clark: Respiratory quotients of human kidney in vivo. J. appl. Physiol. 18, 815–817 (1963).PubMedGoogle Scholar
  5. Berliner, R. W., T. J. Kennedy, and J. Orloff: Relationship between acidification of the urine and potassium metabolism. Effect of carbonic anhydrase inhibition on potassium excretion. Amer. J. Med. 11, 274–282 (1951).PubMedCrossRefGoogle Scholar
  6. Berliner, R.W., and J. Orloff: Carbonic anhydrase inhibitors. Pharmacol. Rev. 8, 137–174 (1956).PubMedGoogle Scholar
  7. Bernheim, F.: Note on the action of copper and Phenylhydrazine on certain dehydrogenases. J. biol. Chem. 133, 485–489 (1940).Google Scholar
  8. Beyer, K.H., R.H. Painter, and V.D. Wiebelhaus: Enzymatic factors in renal tubular secretion of phenol red. Amer. J. Physiol. 161, 259–267 (1950).PubMedGoogle Scholar
  9. Bing, R. J., A. Siegel, I. Ungar, and M. Gilbert: Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Amer. J. Med. 16, 504–515 (1954).PubMedCrossRefGoogle Scholar
  10. Bosáčková, J.: The transport of inorganic ions and p-aminohippurate in isolated cells of the renal cortex of the rabbit. Biochim. biophys. Acta (Amst.) 71, 345–354 (1963).CrossRefGoogle Scholar
  11. Browne, M. J., M.W. Pitts, and R.F. Pitts: Alkaline phosphatase activity in kidneys of glomerular and aglomerular marine teleosts. Biol. Bull. 99, 152–156 (1950).PubMedCrossRefGoogle Scholar
  12. Cameron, G., and R. Chambers: Direct evidence of fundtion in kidney of an early human fetus. Amer. J. Physiol. 123, 482–485 (1938).Google Scholar
  13. Cargill, W. H., and J. B. Hickam: The oxygen consumption of the normal and the diseased human kidney. J. clin. Invest. 28, 526–532 (1949).PubMedCrossRefGoogle Scholar
  14. Chambers, R., L.V. Beck, and M. Belkin: Secretion in tissue cultures. I. Inhibition of phenol red accumulation in the chick kidney. J. cell. comp. Physiol. 6, 425–439 (1935).CrossRefGoogle Scholar
  15. Chambers, R., and G. Cameron: Intracellular hydrion concentration studies. VII. The secreting cells of the mesonephros in the chick. J. cell. comp. Physiol. 2, 99–103 (1932).CrossRefGoogle Scholar
  16. Chambers, R., and R.T. Kempton: Indications of function of the chick mesonephros in tissue culture with phenol red. J. cell. comp. Physiol. 8, 131–160 (1933).CrossRefGoogle Scholar
  17. Clark, J.K., and H.G. Barker: Studies of renal oxygen consumption in man. I. The effect of tubular loading (PAH), water diuresis and osmotic (mannitol) diuresis. J. clin. Invest. 30, 745–750 (1951).PubMedCrossRefGoogle Scholar
  18. Cohen, J. J.: High respiratory quotient of dog kidney in vivo. Amer. J. Physiol. 199, 560–568 (1960).PubMedGoogle Scholar
  19. Copenhaver, J.H., and R.P. Forster: Displacement characteristics of intracellularly accumulated p-aminohippurate in a mammalian renal transport system in vitro. Amer. J. Physiol. 195, 327–330 (1958).PubMedGoogle Scholar
  20. Cross, R. J., and J.V. Taggart: Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Amer. J. Physiol. 161, 181–190 (1950).PubMedGoogle Scholar
  21. Crumpler, H.R., C.E. Dent, H. Harris, and R.G. Westall: β:-aminoisobutyric acid (α-methyl-ß- alanine): a new amino-acid obtained from human urine. Nature (Lond.) 167, 307–308 (1951).CrossRefGoogle Scholar
  22. Davies, B.M. A., and J. Yudkin: Role of glutaminase in the production of urinary ammonia. Nature (Lond.) 167, 117 (1951).CrossRefGoogle Scholar
  23. ~ Studies in biochemical adaptation. Origin of urinary ammonia as indicated by effect of chronic acidosis and alkalosis on some renal enzymes in rat. Biochem. J. 52, 407–412 (1952).Google Scholar
  24. Deetjen, P., u. K. Kramer: Na-Rückresorption und O2-Verbrauch der Niere. Klin. Wschr. 88, 680 (1960).PubMedCrossRefGoogle Scholar
  25. Dent, C.E., and H. Harris: Genetics of “cystinuria”. Ann. Eugen. (Lond.) 16, 60–87 (1951).CrossRefGoogle Scholar
  26. Dickens, F., and H. Weil-Malherbe: Metabolism of normal and tumour tissue; note on metabolism of medulla of kidney. Biochem. J. 30, 659–660 (1936).PubMedGoogle Scholar
  27. Eggleton, M.G., J.R. Pappenheimer, and F.R. Winton: The influence of diuretics on the osmotic work done and on the efficiency of the isolated kidney of the dog. J. Physiol. (Lond.) 97, 363–382 (1940).Google Scholar
  28. Evered, D.F.: The excretion of amino acids by the human. A quantitative study with ion-exchange chromatography. Biochem. J. 62, 416–427 (1956).PubMedGoogle Scholar
  29. Føiling, A.: On the mechanism of ammonium chloride acidosis. Acta med. scand. 71, 221–279 (1929).CrossRefGoogle Scholar
  30. Forster, R.P.: Use of thin kidney slices and isolated renal tubules for direct study of cellular transport kinetics. Science 108, 65–67 (1948).PubMedCrossRefGoogle Scholar
  31. Forster, R.P., and J. H. Copenhaver: Intracellular accumulation as an active process in a mammalian renal transport system in vitro. Energy dependence and competitive phenomena. Amer. J. Physiol. 186, 167–171 (1956).PubMedGoogle Scholar
  32. Forster, R.P., and J.V. Taggart: Use of isolated renal tubules for the examination of metabolic processes associated with active cellular transport. J. cell, comp. Physiol. 36, 251–270 (1950).CrossRefGoogle Scholar
  33. Foulkes, E.C., and B.F. Miller: Steps in p-aminohippurate transport by kidney slices. Amer. J. Physiol. 196, 86–92 (1959).PubMedGoogle Scholar
  34. Gamble, J.L., K.D. Blackfan, and B. Hamilton: A study of the diuretic action of acid producing salts. J. clin. Invest. 1, 359–388(1925).PubMedCrossRefGoogle Scholar
  35. Grupp, G., u. K. Hierholzer: Verbrauch von Nierengewebe verschiedener Zonen. Z. Biol. 109, 197–202 (1957).PubMedGoogle Scholar
  36. György, P., W. Keller u. Th. Breme: Nierenstoffwechsel und Nierenentwicklung. Biochem. Z. 200, 356–366 (1928).Google Scholar
  37. Harris, E.J.: Transport and accumulation in biological systems. New York: Academic Press 1956.Google Scholar
  38. Harris, H.: Renal aminoaciduria. Brit. med. Bull. 13, 26–28 (1957).PubMedGoogle Scholar
  39. Hemingway, A., and H.J. Phelps: The carbohydrate metabolism of the kidney. J. Physioli (Lond.) 80, 369–376 (1934).Google Scholar
  40. Herms, W., and R.L. Malvin: Effect of metabolic inhibitors on urine osmolality and electrolyte excretion. Amer. J. Physiol. 204, 1065–1070 (1963).PubMedGoogle Scholar
  41. Hess, R.: Die histochemische Analyse enzymatischer Vorgänge im Nierentubulus. In: Diurese und Diuretica. Hrsg. v. E. Buchborn und K.D. Bock, S. 121–142. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  42. Hoeber, R.: Physikalische Chemie der Zelle und der Gewebe. 5. Aufl. Leipzig: Wilhelm Engelmann 1922.Google Scholar
  43. Hokin, L.E., and M.R. Hokin: The role of phosphatidic acid and phosphoinositide in transmembrane transport elicited by acetylcholine and other humoral agents. Int. Rev. Neurobiol. 2, 100–137 (1960a).Google Scholar
  44. ~ Studies on the carrier function of phosphatidic acid in sodium transport. I. The turnover of phosphatidic acid and phosphoinositide in the avian salt gland on stimulation of secretion. J. gen. Physiol. 44, 61–85 (1960b).Google Scholar
  45. Iacobellis, M., E. Muntwyler, and G. E. Griffin: Enzyme concentration changes in the kidneys of protein- and/or potassium-deficient rats. Amer. J. Physiol. 178, 477–482 (1954).PubMedGoogle Scholar
  46. ~ Kidney glutaminase and carbonic anhydrase activity and tissue electrolyte composition in potassium-deficient dogs. Amer. J. Physiol. 183, 395–400 (1955).Google Scholar
  47. Karnovsky, M. J., and S. R. Himmelhoch: Histochemical localization of glutaminase I activity in kidney. Amer. J. Physiol. 201, 786–790 (1961).PubMedGoogle Scholar
  48. Kean, E.L., P.H. Adams, R.W. Winters, and R.E. Davies: Energy metabolism of the renal medulla. Biochim. biophys. Acta (Amst.) 54, 474–478 (1961).CrossRefGoogle Scholar
  49. Keilin, D., and T. Mann: On the haematin compound of peroxidase. Proc. roy. Soc. B 122, 119–133 (1937).Google Scholar
  50. Kety, S.S., and C.F. Schmidt: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J. clin. Invest. 27, 476–483 (1948).PubMedCrossRefGoogle Scholar
  51. Kisch, B.: Biochemische Unterschiede zwischen Nierenrinde und Nierenmark. Biochem. Z. 277, 210–222 (1935).Google Scholar
  52. Kramer, K., u. P. Deetjen: Beziehungen des O2-Verbrauches der Niere zu Durchblutung und Glomerulusfiltrat bei Änderung des arteriellen Druckes. Pflügers Arch. ges. Physiol. 271, 782–796 (1960).CrossRefGoogle Scholar
  53. Kramer, K., K. Thurau u. P. Deetjen: Hämodynamik des Nierenmarks. I. Mitt. Capilläre Passagezeit, Blutvolumen, Durchblutung, Gewebshämatokrit und O2-Verbrauch des Nierenmarks in situ. Pflügers Arch. ges. Physiol. 270, 251–269 (1960).CrossRefGoogle Scholar
  54. Krane, S.M., and R. K, Crane: The accumulation of D-galactose against a concentration gradient by slices of rabbit kidney cortex. J. biol. Chem. 234, 211–216 (1959).PubMedGoogle Scholar
  55. Lassen, N. A., O. Munck, and J.H. Thaysen: Oxygen consumption and sodium reabsorption in the kidney. Acta physiol. scand. 51, 371–384 (1961).PubMedCrossRefGoogle Scholar
  56. Lassen, U.V., and J.H. Thaysen: Correlation between sodium transport and oxygen consumption in isolated renal tissue. Biochim. biophys. Acta (Amst.) 47, 616–618 (1961).CrossRefGoogle Scholar
  57. LeFèvre, P.G.: Active transport through animal cell membranes. Wien: Springer 1955.CrossRefGoogle Scholar
  58. Levy, M.N.: Influence of variations in blood flow and of dinitrophenol on renal oxygen consumption. Amer. J. Physiol. 169, 937–942 (1959).Google Scholar
  59. Longley, J.B.: Alkaline phosphatase in the kidneys of aglomerular fish. Science 122, 594 (1955).PubMedCrossRefGoogle Scholar
  60. Lowell, D.J., S.A. Greenspon, C.A. Krakower, and J.A. Bain: Metabolic activity of renal cortical tubular epithelial cells. Amer. J. Physiol. 172, 709–717 (1953).PubMedGoogle Scholar
  61. Lowry, O.H.: The quantitative histochemistry of the brain. Histological sympling. J. Histochem. Cytochem. 1, 420–428 (1953).PubMedCrossRefGoogle Scholar
  62. Ludwig, C.F.W.: Beiträge zur Lehre vom Mechanismus der Harnsecretion. Marburg: Elwert 1843.Google Scholar
  63. Mattenheimer, H., and H. DeBruin: Glutaminases. An ultramicro method for the determination of glutaminase activity, and a reinvestigation of optimum assay conditions in the kidney of man, dog and rat. Enzymol. biol. clin. 4, 65–83 (1964).Google Scholar
  64. Mattenheimer, H., V.E. Pollak, and H. DeBruin: Quantitative histochemistry of the nephron. IX. Distribution and activity of various enzymes in the kidney of the dog. Enzymol. biol. clin. 4, 107–120 (1964).Google Scholar
  65. McCann, W.P.: Quantitative histochemistry of the dog nephron. Amer. J. Physiol. 185, 372–376 (1956).PubMedGoogle Scholar
  66. Milne, M.D., B.H. Smbner, and M.A. Crawford: Non-ionic diffusion and the excretion of weak acids and bases. Amer. J. Med. 24, 709–729 (1958).PubMedCrossRefGoogle Scholar
  67. Mudge, G.H.: Clinical patterns of tubular dysfunction. Amer. J. Med. 24, 785–804 (1958).PubMedCrossRefGoogle Scholar
  68. Nicholson, T.F.: Renal function as affected by experimental unilateral kidney lesions. II. The effect of cyanide. Biochem. J. 45, 112–115 (1949).Google Scholar
  69. Oliver, J.: When is the kidney not a kidney? J. Urol. (Baltimore) 63, 373–402 (1950).Google Scholar
  70. Pitts, R.F.: A comparison of the renal reabsorptive processes for several amino acids. Amer. J. Physiol. 140, 535–547 (1944).Google Scholar
  71. Über aktive Transportmechanismen in den Tubuli der Niere. Klin. Wschr. 33, 365–370 (1955).Google Scholar
  72. Quastel, J.H., and W.R. Wooldridge: Some properties of dehydrogenating enzymes of bacteria. Biochem. J. 22, 689–702 (1928).PubMedGoogle Scholar
  73. Rector, F.C., and J. Orloff: The effect of the administration of sodium bicarbonate and ammonium chloride on the excretion and production of ammonia. The absence of alterations in the activity of renal ammonia producing enzymes in the dog. J. clin. Invest. 38, 366–372 (1959).PubMedCrossRefGoogle Scholar
  74. Rector, F.C., D.W. Seldin, and J.H. Copenhaver: The mechanism of ammonia excretion during ammonium chloride acidosis. J. clin. Invest. 34, 20–26 (1955).PubMedCrossRefGoogle Scholar
  75. Rector, F.C., D.W. Seldin, A.D. Roberts, and J.H. Copenhaver: Relation of ammonia excretion to urine pH. Amer. J. Physiol. 179, 353–358 (1954).PubMedGoogle Scholar
  76. Richterich, R.: Enzymopathologie. Enzyme in Klinik und Forschung. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  77. ~ Enzy- matische Vorgänge bei der Harnbereitung: Biochemie. In: Diurese und Diuretica. Hrsg. v. Buchborn und K.D. Bock, S. 91–120. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  78. ~ Physico-chemical factors determining ammonia excretion. Helv. physiol. pharmacol. Acta 20, 326–345 (1962).Google Scholar
  79. Richterich, R., u. H.E. Franz: Das isolierte Glomerulum der Rattenniere. II. Enzymmuster des Energie-Stoffwechsels (C-Raum). Biochem. Z. 334, 149–167 (1961).PubMedGoogle Scholar
  80. Richterich, R., and L. Goldstein: Renal ammonia production as a model for the study of enzyme adaptation in animals. Experientia (Basel) 18, 30–35 (1957).CrossRefGoogle Scholar
  81. Richterich, R., P. Schafroth, and H. Aebi: A study of lactic dehydrogenase isoenzyme pattern of human tissues by adsorption-elution on sephadex-DEAE. Clin. chim. Acta 8, 178–192 (1963).PubMedCrossRefGoogle Scholar
  82. Rosenberg, L.E., S.J. Downing, and S. Segal: Competitive inhibition of dibasic amino acid transport in rat kidney. J. biol. Chem. 237, 2265–2270 (1962).PubMedGoogle Scholar
  83. Rosenberg, T.: The concept and definition of active transport. In: Active transport and secretion. New York: Academic Press 1954.Google Scholar
  84. Ryberg, C.: The importance of sodium ions for the excretion of ammonium and hydrogen ions in the urine. Acta physiol. scand. 15, 161–172 (1948).PubMedCrossRefGoogle Scholar
  85. Sartorius, O.W., J.C. Roemmelt, and R.F. Pitts: Renal regulation of acid-base balance in man; nature of renal compensations in ammonium chloride acidosis. J. clin. Invest. 28, 423–439 (1949).CrossRefGoogle Scholar
  86. Schafroth, P., u. R. Richterich: Das isolierte Glomerulum der Rattenniere. IV. Enzymmuster der Endoxydation. Enzymol. biol. clin. 3, 165–183 (1963).Google Scholar
  87. Schwartz, W. B., A. Falbriard, and A.S. Relman: An analysis of bicarbonate reabsorption during partial inhibition of carbonic anhydrase. J. clin. Invest. 37, 744–751 (1958).PubMedCrossRefGoogle Scholar
  88. Seevers, M. H., F. E. Shideman, L.A. Woods, J.R. Weeks, and W.T. Kruse: Dehydroacetic acid (DAH). II. General pharmacology and mechanism of action. J. Pharmacol, exp. Ther. 99, 69–83 (1950).Google Scholar
  89. Shannon, J.A.: Renal tubular excretion. Physiol. Rev. 19, 63–93 (1939).Google Scholar
  90. Shideman, F.E., R.C. Rathbun, and F. Stoneman: Inhibition of the renal tubular transport of p-aminohippurate (PAH) and phenolsulfonphthalein (PSP) as affected by acetate. Amer. J. Physiol. 170, 31–37 (1952).PubMedGoogle Scholar
  91. Shideman, F.E., and R.M. Rene: Succinat oxidation and Krebs cycle as an energy source for renal tubular transport mechanisms. Amer. J. Physiol. 166, 104–112 (1951).PubMedGoogle Scholar
  92. Slyke, D.D. van, C.P. Rhoads, A. Hiller, and A.S. Alving: Relationships between urea excretion, renal blood flow, renal oxygen consumption, and diuresis. The mechanism of urea excretion. Amer. J. Physiol. 109, 336–374 (1934).Google Scholar
  93. Smith, H.W.: The kidney, structure in health and disease. New York: Oxford University Press 1951.Google Scholar
  94. ~ From fish to philosopher. Boston: Little, Brown 1954.Google Scholar
  95. ~ Principles of renal physiology. New York: Oxford University Press 1956.Google Scholar
  96. Taggart, J.Y.: Some biochemical features of tubular transport mechanisms. In: CIBA Foundation Symposium on the kidney. Edit, by A. A. G. Lewis and G.E.W. Wolstenholme, p. 65. London: Churchill 1954.CrossRefGoogle Scholar
  97. ~ Renal transport of p-aminohippurate labeled with oxygen-18. Science 124, 401–402 (1956).Google Scholar
  98. ~ Mechanism of renal tubular transport. Amer. J. Med. 24, 774–784 (1958).Google Scholar
  99. Taggart, J.V., and R.P. Forster: Renal tubular transport: effect of 2, 4-dinitrophenol and related compounds on phenol red j transport in the isolated tubules of the flounder. Amer. J. Physiol. 161, 167–172 (1950).PubMedGoogle Scholar
  100. Taggart, J.V., L. Silverman, and E.M. Trayner: Influence of renal electrolyte composition on the tubular excretion of p-aminohippurate. Amer. J. Physiol. 173, 345–350 (1953).PubMedGoogle Scholar
  101. Terroux, K.G., P. Sekelj, and A.S.V. Burgen: Oxygen consumption and blood flow in the submaxillary gland of the dog. Canad. J. Biochem. 37, 5–15 (1959).PubMedCrossRefGoogle Scholar
  102. Ullrich, K.J.: Das Nierenmark. Struktur, Stoffwechsel und Funktion. Ergebn. Physiol. 50, 433–489 (1959).PubMedCrossRefGoogle Scholar
  103. Vries, A. de, S. Kochwa, J. Lazebnik, M. Frank, and M. Djaldetti: Glycinuria, a hereditary disorder associated with nephrolithiasis. Amer. J. Med. 23, 408–415 (1957).CrossRefGoogle Scholar
  104. Waldman, R.H., and H.B. Burch: Rapid method for study of enzyme distribution in rat kidney. Amer. J. Physiol. 204, 749–752 (1963).PubMedGoogle Scholar
  105. Weil, L., and J.O. Ely: Investigation in enzymatic histochemistry. I. Distribution of arginase activity in rabbit kidney. J. biol. Chem. 112, 565–577 (1935/36).Google Scholar
  106. Weil, L., and R.K. Jennings: Investigation in enzymatic histochemistry. III. Distribution of enzymes in rabbit kidney. J. biol. Chem. 139, 421–432 (1941).Google Scholar
  107. Wilbrandt, W.: Secretion and transport of non-electrolytes. In- Active transport and secretion. New York: Academic Press 1954.Google Scholar
  108. ~ Permeabilität, aktiver Transport und Trägermechanismus. Dtsch. med. Wschr. 82, 1153–1158 (1957).Google Scholar
  109. Wood, F.J.Y.: Ammonium chloride acidosis. Clin. Sci. 14, 81–89 (1955).PubMedGoogle Scholar
  110. Zerahn, K.: Oxygen consumption and active sodium transport in the isolated and short- circuited frog skin. Acta physiol. scand. 36, 300–318 (1956).PubMedCrossRefGoogle Scholar
  111. ~ Oxygen consumption and active sodium transport in isolated amphibian skin under varying experimental conditions. Aarhus: Universitetsforlaget 1958.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • R. Richterich

There are no affiliations available

Personalised recommendations