Advertisement

Darstellung von Funktionen in Rechenautomaten

  • Roland Bulirsch
  • Josef Stoer
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 141)

Zusammenfassung

Programmgesteuerte Rechenautomaten in Verbindung mit einer der problemorientierten Programmierungssprachen wie ALGOL, FORTRAN usw. sind zu einem bedeutsamen Hilfsmittel für den rechnenden Ingenieur geworden. In diesem Zusammenhang ist es wichtig, gute numerische Verfahren zu finden, um effektive Programme für den Automaten erstellen zu können; es ist ein weitverbreiteter Irrtum zu glauben, daß es bei der Geschwindigkeit der modernen Rechenautomaten auf die Art der numerischen Methode nicht mehr ankomme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Abramowitz, M., and I. A. Stegun: Handbook of mathematical functions. New York: Dover 1965.Google Scholar
  2. [2]
    Bartky, W.: Numerical calculation of a generalized complete elliptic integral. Rev. Mod. Phys. 10, 264–269 (1938).Google Scholar
  3. [3]
    Bulirsch, R.: Numerical calculation of elliptic integrals and elliptic functions I, II. Numer. Math. 7, 78–90, 353-354 (1965).Google Scholar
  4. [4]
    Bulirsch, R.: Numerical calculation of the sine, cosine and Fresnel integrals. Numer. Math. 9, 380–385 (1967).MathSciNetCrossRefGoogle Scholar
  5. [5]
    Clenshaw, C. W.: Chebyshev series for mathematical functions. London: Her Majesty’s Stationery Office 1962.MATHGoogle Scholar
  6. [6]
    Clenshaw, C. W., G. F. Miller and M. Woodger: Algorithms for special functions I. Numer. Math. 4, 403–419 (1963).MathSciNetMATHGoogle Scholar
  7. [7]
    Clenshaw, C. W., and S.M. Picken: Chebyshev series for Bessel functions of fractional order. London: Her Majesty’s Stationery Office 1966.Google Scholar
  8. [8]
    Cody, W. J., and J. Stoer: Rational Chebyshev approximation using interpolation. Numer. Math. 9, 177–188 (1966).MATHGoogle Scholar
  9. [9]
    Cooley, J. W. and J. W. Tukey: An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19, 297–301 (1965).MathSciNetMATHGoogle Scholar
  10. [10]
    Davis, P. J.: Interpolation and approximation. New York: Blaisdell 1963MATHGoogle Scholar
  11. [11]
    Filippi, S.: Angenäherte Tschebyscheff-Approximation einer Stammfunktion — eine Modifikation des Verfahrens von Clenshaw und Curtis. Numer. Math. 6, 320–328 (1964).MathSciNetMATHGoogle Scholar
  12. [12]
    Garabedian, H. L.: Approximation of functions. Proceedings of the Symposium on approximation of functions. Amsterdam: Elsevier 1965.Google Scholar
  13. [13]
    Gargantini, I, and P. Henrici: A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21, 18–29 (1967).MathSciNetMATHGoogle Scholar
  14. [14]
    Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Review 9, 24–82 (1967).MathSciNetMATHGoogle Scholar
  15. [15]
    Goertzel, G.: An algorithm for the evaluation of finite trigonometric series. Amer. Math. Monthly 65, 34–35 (1958).MathSciNetMATHGoogle Scholar
  16. [16]
    Handscomb, D. C.: Methods of numerical approximation. Oxford: Pergamon 1966.MATHGoogle Scholar
  17. [17]
    Hastings, C.: Approximations for digital computers. Princeton: Princeton University Press 1955.MATHGoogle Scholar
  18. [18]
    Henrici, P., and P. Pfluger: Truncation error estimates for Stieltjes fractions. Numer. Math. 9. 120–138 (1966).MathSciNetMATHGoogle Scholar
  19. [19]
    Hornecker, G.: Evaluation approchée de la meilleure approximation poly-nomiale d’ordre n de f (x) sur un segment fini (a, b). Chiffres 1, 157-169 (1958), 4, 37-40 (1961).Google Scholar
  20. [20]
    Index by subject to algorithms, S. 21. Comm. ACM 7, 146-148 (1964).Google Scholar
  21. [21]
    Lyusternik, L. A., O. A. Chervonenkis and A. R. Yanpolskii: Handbook for computing elementary functions. Oxford: Pergamon 1965.MATHGoogle Scholar
  22. [22]
    Meinardus, G.: Approximation von Funktionen und ihre numerische Behandlung. Berlin/Göttingen/Heidelberg/New York: Springer 1964.Google Scholar
  23. [23]
    Murray, W.: Computation of Bessel functions. Teddington, England: National Physical Laboratory 1967.Google Scholar
  24. [24]
    National Physical Laboratory: Modern computing methods. London: Her Majesty’s Stationery Office 1961.Google Scholar
  25. [26]
    Perron, O.: Die Lehre von den Kettenbrüchen, Band I, 3. Aufl. Stuttgart: Teubner 1954.Google Scholar
  26. [26]
    Perron, O.: Die Lehre von den Kettenbrüchen, Band II, 3. Aufl. Stuttgart: Teubner 1957.Google Scholar
  27. [27]
    Reinsch, CH.: A note on trigonometric interpolation. Erscheint in Kürze.Google Scholar
  28. [28]
    Rice, J. R.: The approximation of functions. Vol. I — Linear theory. London: Addison Wesley 1964.MATHGoogle Scholar
  29. [29]
    Rutishauser, H.: Der Quotienten-Differenzen-Algorithmus. Basel: Birk-häuser 1957.MATHGoogle Scholar
  30. [30]
    Stetter, H. J.: Numerical approximations of Fourier-transforms. Numer. Math. 8, 235–249 (1966).MathSciNetMATHGoogle Scholar
  31. [31]
    Stieltjes, T. J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 8, 1–122 (1894) und 9, 1-47 (1894).MathSciNetGoogle Scholar
  32. [32]
    Thacher, H. C. JR.: Conversion of a power to a series of Chebyshev polynomials. Comm. ACM 1, l8l–182 (1964).Google Scholar
  33. [33]
    Wall, H. S.: Analytic theory of continued fractions. New York: Van Nostrand 1948.MATHGoogle Scholar
  34. [34]
    Werner, H.: Vorlesung über Approximationstheorie. Lecture Notes in Mathematics, Bd. 14. Berlin/Heidelberg/New York: Springer 1966.Google Scholar
  35. [35]
    Werner, H., J. Stoer and W. Bommas: Rational Chebyshev approximation. Numer. Math.Google Scholar
  36. [36]
    Wynn, P.: On a device for computing the em(Sn)-transformation. MTAC 10, 91–96 (1956).MathSciNetMATHGoogle Scholar
  37. [37]
    Wynn, P.: Continued fractions whose coefficients obey a non-commutative law of multiplication. Arch. Rat. Mech. Anal. 12, 273–312 (1963).MathSciNetMATHGoogle Scholar
  38. [38]
    Wynn, P.: On some recent developments in the theory and applications of continued fractions. J. Siam, Ser. B, Numer. Anal. 1, 177–197 (1964).MathSciNetGoogle Scholar
  39. [39]
    Snyder, M. A.: Chebyshev methods in numerical approximation. Englewood Cliffs: Prentice-Hall 1966.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin and Heidelberg 1968

Authors and Affiliations

  • Roland Bulirsch
    • 1
  • Josef Stoer
    • 1
  1. 1.München und La JollaDeutschland

Personalised recommendations