Advertisement

Abstract

The transfer of genetic material from one cell to another is accomplished in a variety of ways. The mode of transfer and the subsequent incorporation of the transferred material is a consequence of the basic structural organization of the genetic material in a given organism. In plants and animals, nucleus, the repository of genetic information is generally delimited by a membrane from the surrounding cytoplasm and the biologically important macromolecules are organized into complex structures, the chromosomes. Such genetic systems comprise the Eukaryotes, a group distinct from the simpler organisms referred to as the Prokaryotes, characterized by the absence of a conventional nucleus and the nuclear apparatus. The mechanics of both genetic systems, nevertheless, are based on the inherent properties and biochemical activity of a common macromolecule, DNA, which is the predominant carrier of genetic information. The major difference between the two types of systems lies in the presence of additional non-genic material, in the form of basic proteins and histones in the nuclei of Eukaryotes and it is this which is largely responsible for the organization of DNA into chromosome threads. The “nuclei” of the prokaryotes, including bacteria, possess the functional equivalent of a chromosome in the form of a single double-helical DNA molecule, free of histones and other proteinaceous material. In both systems, genetic exchange mechanisms can be interpreted in terms of the behaviour of a “linkage group”. In the following pages the bacterial linkage group will be referred to as the “bacterial chromosome”.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Adelberg, E. A., and S. N. Burns: Genetic variation in the sex factor of Escherichia coli. J. Bact. 79, 321–330 (1960).PubMedGoogle Scholar
  2. Adelberg, E. A., and J. Pittard: Chromosome transfer in bacterial conjugation. Bact. Rev. 29, 161–172 (1965).PubMedGoogle Scholar
  3. Afoldi, L. F., F. Jacob, E. L. Wollman et R. Mazé: Sur le déterminisme génétique de colicinogenie. C. R. Acad. Sci. (Paris) 246, 3531–3533 (1958).Google Scholar
  4. Amati, P.: Vegetative multiplication of colicinogenic factors after induction by E. coli. J. molec. Biol. 8, 239–246 (1964).PubMedGoogle Scholar
  5. Anderson, T. F.: In: The nature of bacterial surface (eds. A. A. Miles and N. W. Pirie), p. 76. Oxford: Blackwell Sci. Publ. 1949.Google Scholar
  6. Baron, L. S., W.F. Carey, and W. M. Spilman: Characteristics of a high frequency of recombination (Hfr) strain of Salmonella typhosa compatible with Salmonella, Shigella and Escherichia species. Proc. nat. Acad. Sci. (Wash.) 45, 976–983 (1959).Google Scholar
  7. Baron, L. S., and S. Falkow: Genetic transfer of episomic elements from Salmonella typhosa to Vibrio cholerae. Kec. Genet. Soc. Amer. 30, 59 (1961).Google Scholar
  8. Baron, L. S., W. M. Spilman, and W. F. Carey: Diploid heterozygous hybrids from matings between Escherichia coli and Salmonella typhosa. J. exp. Med. 112, 361–372 (1960).PubMedGoogle Scholar
  9. Berrah, G., and W. A. Konetzka: Selective and reversible inhibition of the synthesis of deoxyribonucleic acid by phenethylalcohol. J. Bact. 83, 738–744 (1962).PubMedGoogle Scholar
  10. Bhaskaran, K.: Genetic recombination in Vibrio cholerae. J. gen. Microbiol. 19, 71–75 (1958).PubMedGoogle Scholar
  11. Recombination of characters between mutant stocks of Vibrio cholerae, strain 162. J. gen. Microbiol. 23, 47-54 (1960).Google Scholar
  12. Bhaskaran, K., and S. S. Iyer: Genetic recombination in Vibrio cholerae. Nature (Lond.) 189, 1030 (1961).Google Scholar
  13. Bonhoeffer, F., and A. Gierer: On the growth mechanism of bacterial chromosome. J. molec. Biol. 7, 534–540 (1963).PubMedGoogle Scholar
  14. Bouck, N., and E. A. Adelberg: The relationship between DNA synthesis and conjugation in Escherichia coli. Biochem. biophys. Res. Commun. 11, 24–27 (1963).Google Scholar
  15. Brinton, C. C.: Les filaments capsulaires de Escherichia coli et leurs manifestations biologiques. Experientia (Basel) 13, 55 (1957).Google Scholar
  16. Brinton, C. C., and L. S. Baron: Transfer of piliation from Escherichia coli to Salmonella typhosa by genetic recombination. Biochim. biophys. Acta (Amst.) 42, 298–311 (1960).Google Scholar
  17. Brinton, C. C., A. Buzzell, and M.A. Lauffer: Electrophoresis and phage susceptibility studies on a filament-producing variant of the E. coli B bacterium. Biochim. biophys. Acta (Amst.) 15, 533–542 (1954).Google Scholar
  18. Brinton, C. C., and M. J. Stone: Chemical composition of bacterial pili — a fibrous protein. Bact. Proc. 96 (1961).Google Scholar
  19. Brinton jr., C. C.: Non-flagellar appendages of bacteria. Nature (Lond.) 183, 782–786 (1959).Google Scholar
  20. Brinton jr., C. C., P. Gemski jr., and J. Carnahan: A new type of bacterial pilus genetically controlled by the fertility factor of Escherichia coli K 12 and its role in chromosome transfer. Proc. nat. Acad. Sci. (Wash.) 52, 776–783 (1964).Google Scholar
  21. Brinton jr., C. C., P. Gemski jr., S. Falkow, and C. S. Baron: Location of the piliation factor on the chromosome of Escherichia coli. Biochem. biophys. Res. Commun. 5, 293–298 (1961).Google Scholar
  22. Cairn, J.: The bacterial chromosome and its manner of replication as seen by autoradiography. J. molec. Biol. 6, 208–213 (1963).Google Scholar
  23. Campbell, A.: Episomes. Advanc. Genet. 11, 101–146 (1962).Google Scholar
  24. Cavalli-Sforza, L. L.: La sessulita nei batteri. Boll. Ist. sieroter. milan. 29, 281–289 (1950).PubMedGoogle Scholar
  25. Cavalli-Sforza, L. L., and J. L. Jinks: Observations on the genetic and mating system of E. coli K 12. Proc. 9th Intern. Congr. Genetics, Bellagio 1953, p. 967-969.Google Scholar
  26. Cavalli-Sforza, L. L., J. Lederberg, and E. M. Lederberg: An infective factor controlling sex compatibility in Bacterium coli. J. gen. Microbiol. 8, 89–103 (1953).Google Scholar
  27. Clowes, R. C.: Colicine factors as fertility factors in bacteria: Escherichia coli K-12. Nature (Lond.) 190, 988–989 (1961).Google Scholar
  28. Clowes, R.C., and D. Rowley: Some observations on linkage effects in genetic recombination in E. coli K 12. J. gen. Microbiol. 11, 250–260 (1954).PubMedGoogle Scholar
  29. Crawford, E.M., and R.F. Gesteland: The adsorption of bacteriophage R-17. Virology 22, 165–167 (1964).Google Scholar
  30. Dettori, R., G. A. Maccacro, and G. L. Piccinin: Sex-specific bacteriophages of Escherichia coli K 12. G. Microbiol. 9, 141–150 (1961).Google Scholar
  31. De Witt, W., and D. R. Helinski: Characterization of colicinogenic factor E 1 from a non-induced and mitomycine C-induced Proteus strain. J. molec. Biol. 13, 692–703 (1965).Google Scholar
  32. Dove, W. F., and J. J. Weigle: Intracellular state of the chromosome of Bacteriophage Lambda. I. The eclipse of infectivity of the bacteriophage DNA. J. molec. Biol. 12, 620–629 (1965).PubMedGoogle Scholar
  33. Driskell-Zamenhof, P. J., and E. A. Adelberg: Studies on the chemical nature and size of sex factors of Escherichia coli K 12. J. molec. Biol. 6, 483–497 (1963).Google Scholar
  34. Duguid, J. P., and R. R. Gillies: Fimbriae and adhesive properties in dysentry bacilli. J. Path. Bact. 74, 397–411 (1957).Google Scholar
  35. Fimbriae and haemagglutinating activity in Salmonella, Klebsiella, Proteus and Chromobacterium. J. Path. Bact. 75, 519-529 (1958).Google Scholar
  36. Duguid, J. P., I. W. Smith, G. Dempster, and P. N. Edmonds: Non-flagellar filamentous appendages (“Fimbriae”) and haemagglutinating activity in Bacterium coli. J. Path. Bact. 70, 335–348 (1955).PubMedGoogle Scholar
  37. Falkow, S., and L. S. Baron: Episomic elements in a strain of Salmonella typhosa. J. Bact. 84, 581–589 (1962).PubMedGoogle Scholar
  38. Falkow, S., R. V. Citarella, J. A. Wohlhieter, and T. Watanabe: The molecular nature of R-factors. J. molec. Biol. 17, 102–116 (1966).PubMedGoogle Scholar
  39. Falkow, S., J. Marmur, W. F. Carey, W. M. Spilman, and L. S. Baron: Episomic transfer between Salmonella typhosa and Serratia marcescens. Genetics 46, 703–706 (1961).PubMedGoogle Scholar
  40. Falkow, S., J. A. Wohlhieter, R. V. Citarella, and L. S. Baron: Transfer of episomic elements to Proteus. I. Transfer of F-linked chromosomal determinants. J. Bact. 87, 209–219 (1964).Google Scholar
  41. Fisher, K. W.: The role of krebs cycle in conjugation in Escherichia coli K-12. J. gen. Microbiol. 16, 120–135 (1957).PubMedGoogle Scholar
  42. Fredericq, P.: The colicins. Ann. Rev. Microbiol. 11, 7–22 (1957).Google Scholar
  43. The biological replication of macromolecules, p. 104. Cambridge: Cambridge University Press 1958.Google Scholar
  44. On the nature of colicinogenic factors: a review. J. theor. Biol. 4, 159-165 (1963).Google Scholar
  45. Ganesan, A. T., and G. Lederberg: A cell-membrane bound fraction of bacterial DNA. Biochem. biophys. Res. Commun. 18, 824–834 (1965).Google Scholar
  46. Gross, J.: Conjugation in bacteria. In: I. C. Gunsalus and R. Y. Stanier (ed.), The bacteria, vol.5. New York: Academic Press 1964.Google Scholar
  47. Gross, J. D., and L. Caro: Genetic transfer in the bacterial mating. What mechanism insured the orderly transfer of DNA. Science 150, 1679–1684 (1965).PubMedGoogle Scholar
  48. DNA transfer in bacterial conjugation. J. molec. Biol. 16, 269-284 (1966).Google Scholar
  49. Hakura, A., N. Otsuji, and V. Hirota: A temperate phage specific for female strains of Escherichia coli K-12. J. gen. Microbiol. 35, 69–73 (1964).PubMedGoogle Scholar
  50. Harada, K., M. Suzuki, H. Kameda, and S. Mitsuhashi: On the drug resistance of enteric bacteria. 2. Transmission of the drug resistance among Enterobacteriaceae. Jap. J. exp. Med. 30, 289–299 (1960).PubMedGoogle Scholar
  51. Hayes, W.: Genetic recombination in E. coli K 12: Analysis of the stimulating effect of ultraviolet light. Nature (Lond.) 169, 1017–1018 (1952a).Google Scholar
  52. Genetic recombination in Bact. coli K 12: unidirectional transfer of genetic material. Nature (Lond.) 169, 118-119 (1952b).Google Scholar
  53. Observations on a transmissible agent determining sexual differentiation in Bact. coli. J. gen. Microbiol. 8, 72-88 (1953a).Google Scholar
  54. Mechanism of genetic recombination in E. coli. Cold Spr. Harb. Symp. quant/ Biol. 18, 75-93 (1953b).Google Scholar
  55. The kinetics of the mating process in Escherichia coli. J. gen. Microbiol. 16, 97-119 (1957).Google Scholar
  56. Conjugation in Escherichia coli. Brit. med. Bull. 18, 36-40 (1962).Google Scholar
  57. The genetics of bacteria and their viruses. Oxford: Blackwell Sci. Publ. 1965.Google Scholar
  58. Hewitt, R., and D. Billen: Reorientation of chromosome replication after exposure to ultraviolet light of Escherichia coli. J. molec. Biol. 13, 40–53 (1965).PubMedGoogle Scholar
  59. Hirota, Y.: Mutants of the F factor in Escherichia coli K-12. Rec. Genet. Soc. Amer. 28, 75 (1959).Google Scholar
  60. The effect of acridine dyes on mating type factors in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 46, 57-64 (1960).Google Scholar
  61. Hirota, Y., and T. Iijima: Acriflavine as an effective agent for eliminating F factors in Escherichia coli K 12. Nature (Lond.) 180, 655–656 (1957).Google Scholar
  62. Hirota, Y., K. Nisklmura, F. Orskov, and I. Orskov: Effect of drug-resistance factor R on the F properties of Escherichia coli. J. Bact. 87, 341–351 (1964).PubMedGoogle Scholar
  63. Hirota, Y., and P. H. A. Sneath: F’ and F mediated transduction in E. coli K-12. Jap. J. Genet. 36, 307–318 (1961).Google Scholar
  64. Holland, I. B.: A bacteriocin specifically affecting DNA synthesis in Bacillus megaterium. J. molec. Biol. 12, 429–438 (1965).PubMedGoogle Scholar
  65. Holloway, B. W.: Genetic recombination in Pseudomonas aeruginosa. J. gen. Microbiol. 13, 572–581 (1955).PubMedGoogle Scholar
  66. Holloway, B. W., and B. Fargie: Fertility factors and genetic linkage in Pseudomonas aeruginosa. J. Bact. 80, 362–368 (1960).PubMedGoogle Scholar
  67. Holloway, B.W., and P.A. Jennings: An infectious fertility factor for Pseudomonas aeruginosa. Nature (Lond.) 181, 855–856 (1958).Google Scholar
  68. Horiuchi, K., and E. A. Adelberg: Growth of male specific bacteriophage in Proteus mirabilis harboring F-genotes derived from Escherichia coli. J. Bact. 89, 1231–1236 (1965).PubMedGoogle Scholar
  69. Houwink, A. L., and W. van Iterson: Macromolecular mono-layer in the cell wall of Spirillum spec. Biochim. biophys. Acta (Amst.) 10, 360–366 (1953).Google Scholar
  70. Iijima, T.: Transfer of a colicinogenic factor with multiple resistance factor in Escherichia coli K 12. Jap. J. Genet. 37, 183–193 (1962).Google Scholar
  71. Ippen, K. A., and R.C. Valentine: An assay for the male substance (F-pili) of Escherichia coli K-12. Biochem. biophys. Res. Commun. 21, 21–27 (1965).PubMedGoogle Scholar
  72. Jacob, F., et E. A. Adelberg: Transfert de charactères génétiques par incorporation au facteur sexuel d’Escherichia coli. C. R. Acad. Sci. (Paris) 249, 189–191 (1959).Google Scholar
  73. Jacob, F., et S. Brenner: Sur la régulation de la synthèse du DNA chez les bactéries l’hypothèse du réplicon. C. R. Acad. Sci. (Paris) 256, 289–300 (1963).Google Scholar
  74. Jacob, F., S. Brenner, and F. Cuzin: On the regulation of replication in bacteria. Cold Spr. Harb. Symp. quant. Biol. 28, 329–348 (1963).Google Scholar
  75. Jacob, F., A. Lwoff, A. Seminovitch et E. L. Wollman: Définition de quelques termes relatifs à la lysogénie. Ann. Inst. Pasteur 84, 222–224 (1953).Google Scholar
  76. Jacob, F., P. Schaeffer, and E. L. Wollman: Episomic elements in bacteria. Symp. Soc. gen. Microbiol. 10, 67–91 (1960).Google Scholar
  77. In: W. Hayes and R. C. Clowes (ed.), Microbial genetics. Tenth Symp. of the Society for General Microbiology held at the Royal Institution London, April 1960, p. 67. Cambridge: Cambridge University Press 1960.Google Scholar
  78. Jacob, F., L. Siminovitch et E. L. Wollman: Sur la biosynthèse d’une colicine et sur son mode d’action. Ann. Inst. Pasteur 83, 295–315 (1952).Google Scholar
  79. Jacob, L., et E. L. Wollman: Etapes de la recombinaison génétique chez E. coli K 12. C. R. Acad. Sci. (Paris) 240, 2566–2568 (1955).Google Scholar
  80. Recombinaison génétique et mutants de fertilité chez E. coli K 12. C. R. Acad. Sci. (Paris) 242, 303-306 (1956a).Google Scholar
  81. Sur les processus de conjugaison et de recombinaison chez Escherichia coli. I. L’induction par conjugaison au induction zygotique. Ann. Inst. Pasteur 91, 486-510 (1956).Google Scholar
  82. Analyse des groupes de liaison génétique de différentes souches donatrices. C. R. Acad. Sci. (Paris) 245, 1840-1843 (1957).Google Scholar
  83. Les épisomes, éléments génétique ajoutés. C. R. Acad. Sci. (Paris) 247, 154-156 (1957).Google Scholar
  84. Sexuality and the genetics of bacteria. New York: Academic Press 1961.Google Scholar
  85. Lark, C., and K. G. Lark: Evidence for two distinct aspects of the mechanisms regulating chromosome replication in Escherichia coli. J. molec. Biol. 10, 120–136 (1964).PubMedGoogle Scholar
  86. Lark, K. G., and R. Bird: Premature chromosome replication induced by thymine starvation: Restriction of replication to one of the two partially completed replicas. J. molec. Biol. 13, 607–610 (1965).PubMedGoogle Scholar
  87. Lark, K. G., and C. Lark: Regulation of chromosome replication in Escherichia coli: Alternate replication of two chromosomes at slow growth rates. J. molec. Biol. 13, 105–126 (1965).PubMedGoogle Scholar
  88. Lavallé, R., et F. Jacob: Sur la sensibilité des épisomes sexuel et colicinogène d’E. coli K 12 à la désintégration du radiophosphore. C. R. Acad. Sci. (Paris) 252, 1678–1680 (1961).Google Scholar
  89. Lebek, G.: Übertragung der Mehrfachresistenz gegen Antibiotika und Chemotherapeutika von E. coli auf andere Spezies gramnegativer Bakterien. Zbl. Bakt., I. Abt. Orig. 189, 213–223 (1963).Google Scholar
  90. Lederberg, J.: Prevalence of E. coli strains exhibiting genetic recombination. Scienfce 114, 68–69 (1951).Google Scholar
  91. Extranuclear transmission of the F compatibility factor in E. coli. Abstr. 7th Int. Congr. Microbiol., Stockholm 1958, p. 59-60.Google Scholar
  92. Lederberg, J., L. L. Cavalli, and E. M. Lederberg: Sex compatibility in E. coli. Genetics 37, 720–730 (1952).PubMedGoogle Scholar
  93. Loeb, T.: Isolation of a bacteriophage specific for the F, F+ and Hfr mating types of Escherichia coli K 12. Science 131, 932–933 (1960).PubMedGoogle Scholar
  94. Loeb, T., and N.D. Zinder: A bacteriophage containing RNA. Proc. nat. Acad. Sci. (Wash.) 47, 282–289 (1961).Google Scholar
  95. Luria, S. E.: Host induced modifications of bacterial viruses. Cold Spr. Harb. Symp. quant. Biol. 18, 237–244 (1953).Google Scholar
  96. Luria, S. E., and J. W. Burroits: Hybridization between Escherichia coli and Shigella. J. Bact, 74, 461–467 (1957).PubMedGoogle Scholar
  97. Luzzati, D., et M. R. Chevallier: Induction par carence en thymine, de la production de colicine par des bacteries colicogenes thymine-exigeantes. Ann. Inst. Pasteur 107, 152–162 (1964).Google Scholar
  98. Maaløe, O.: The control of normal DNA replication in bacteria. Cold Spr. Harb. Symp. quant. Biol. 26, 45–52 (1961).Google Scholar
  99. Maccacaro, G. A.: Cell surface and fertility in Escherichia coli. Nature (Lond.) 176, 125–126 (1955).Google Scholar
  100. Maccacaro, G. A., e R. Dettori: Studi sulle fimbrie batteriche. IV. Metabolismo ossidativo e fermentativo in cellule fimbriate e efimbriate. G. Microbiol. 7, 52–68 (1959).Google Scholar
  101. Makela, P. H.: Hfr males in Salmonella abony. Genetics 48, 423–429 (1963).PubMedGoogle Scholar
  102. Makela, P. H., J. Lederberg, and E. M. Lederberg: Patterns of sexual recombination in enteric bacteria. Genetics 47, 1427–1439 (1962).PubMedGoogle Scholar
  103. Matney, T. S., E. P. Goldsmith, N. S. Erwin, and R. N. Scrogg: A preliminary map of genomic sites for F-attachment in Escherichia coli K 12. Biochem. biophys. Res. Commun. 17, 278–281 (1964).PubMedGoogle Scholar
  104. Morse, M. L., E. M. Lederberg, and J. Lederberg: Transductional heterogenotes in Escherichia coli. Genetics 41, 758–779 (1956).PubMedGoogle Scholar
  105. Nakaya, R., A. Nakamura, and Y. Murata: Resistance transfer agents in Shigella. Biochem. biophys. Res. Commun. 3, 654–659 (1960).PubMedGoogle Scholar
  106. Nishimura, Y., and Y. Hirota: Genetic analyses of conjugal fertility (F-mating) and mutants of sex factor in Escherichia coli K 12. Jap. J. Genet. 37, 403 (1962).Google Scholar
  107. Ørskov, L, and F. Ørskov: An antigen termed F+ occurring in F+ E. coli strains. Acta path, microbiol. scand. 48, 37–46 (1960).Google Scholar
  108. Ozeki, H.: Abortive transduction in purine requiring mutants of Salmonella typhimurium. Genetic studies with bacteria. Carnegie Inst. Wash. Publ. 612, 97–106 (1956).Google Scholar
  109. Ozeki, H., and S. Howarth: Colicine factors as fertility factors in bacteria. Nature (Lond.) 190, 986–988 (1961).Google Scholar
  110. Pittard, J., and E. A. Adelberg: Gene transfer by F’ strains of Escherichia coli K 12. III. An analysis of the recombination events occurring in the F’ male and in the zygote. Genetics 49, 995 (1964).PubMedGoogle Scholar
  111. Pittard, J., J. S. Loutit, and E. A. Adelberg: Gene transfer by F’ strains of Escherichia coli K 12. I. Delay in initiation of chromosome transfer. J. Bact. 85, 1394–1401 (1963).PubMedGoogle Scholar
  112. Prell, H.H.: DNA transfer from prophage to phage progeny after zygotic induction. J. molec. Biol. 13, 329–339 (1965).PubMedGoogle Scholar
  113. Pritchard, R. H., and K. G. Lark: Induction of replication by thymine starvation at the chromosome origin in Escherichia coli. J. molec. Biol. 9, 288–307 (1964).PubMedGoogle Scholar
  114. Richter, A.: Complementary determinants of an Hfr phenotype in E. coli K 12. Genetics 42, 391 (1957).Google Scholar
  115. Attachment of wild types F to factor to a pecific chromosomal region in a variant strain of Escherichia coli K 12: the phenomenon of episome alteration. Genet. Res. 2, 333-345 (1961).Google Scholar
  116. Rownd, R., R. Nakaya, and A. Nakamura: Molecular nature of the drug resistance factors of the Enterobacteriaceae. J. molec. Biol. 17, 376–393 (1966).PubMedGoogle Scholar
  117. Scaife, J., and D. Gross: The mechanism of chromosome mobilization by an F-prime factor in Escherichia coli K12. Genet. Res. 4, 328 (1962).Google Scholar
  118. Silvers, S.D.: The transfer of material during mating in Escherichia coli. J. molec. Biol. 6, 349–360 (1963).Google Scholar
  119. Smith, S. M., and B. A. D. Stocker: Colicinogeny and recombination. Brit. med. Bull. 18, 46–51 (1962).PubMedGoogle Scholar
  120. Sneath, P. H. A.: Sex factors as episomes. Brit. med. Bull. 18, 41–45 (1962).PubMedGoogle Scholar
  121. Sneath, P. H. A., and H. Lederberg: Inhibition by periodate of mating in Escherichia coli. Proc. nat, Acad. Sci. (Wash.) 47, 86–90 (1961).Google Scholar
  122. Tatum, E.L.: X-ray induced mutant strain of E. coli. Proc. nat. Acad. Sci. (Wash.) 31, 215–219 (1945).Google Scholar
  123. Taylor, A.L., and E. A. Adelberg: Evidence for a closed linkage group in Hfr males of Escherichia coli K12. Biochem. biophys. Res. Commun. 5, 400–404 (1961).Google Scholar
  124. Valentine, R, C., and M. Strand: Complexes of F-pili and RNA bacteriophage. Science 148, 511–513 (1965).PubMedGoogle Scholar
  125. Watanabe, T.: Infective heredity of multiple drug resistance in bacteria. Bact. Rev. 27, 87–115 (1963).PubMedGoogle Scholar
  126. Watanabe, T., and T. Fusakawa: “Resistance transfer factor” an episome in Enterobacteriaceae. Biochem. biophys. Res. Commun. 3, 660–665 (1960).Google Scholar
  127. Episome-mediated transfer of drug resistance in Enterobacteriaceae. IV. Interaction between resistance transfer factor and F-factor in Escherichia coli K12. J. Bact. 83, 727-735 (1962).Google Scholar
  128. Watanabe, T., T. Fusakawa, and T. Takano: Conversion of male bacteria of Escherichia coli K 12 to resistance of f phages by infection with the episome “resistance transfer factor”. Virology 17, 218–219 (1962).Google Scholar
  129. Watanabe, T., and M. Okada: New type of sex factorspecific bacteriophage of Escherichia colt. J. Bact. 87, 727–736 (1964).PubMedGoogle Scholar
  130. Wendt, L. W., K. A. Ippen, and R.C. Valentine: General properties of F-pili. Biochem. biophys. Res. Commun. 23, 375–380 (1966).PubMedGoogle Scholar
  131. Wohlhieter, J. A., C. C. Brinton jr., and L. S. Baron: Utilization of carbohydrates and metabolic intermediates by piliated and nonpiliated bacteria. J. Bact. 84, 416–421 (1962).PubMedGoogle Scholar
  132. Wohlhieter, J. A., S. Falkow, R. V. Citarella, and L. S. Baron: Characterization of DNA from a Proteus strain harboring an episome. J. molec. Biol. 9, 576–588 (1964).PubMedGoogle Scholar
  133. Wollman. E. L., et F. Jacob: Sur les processus de conjugaison et de recombinaison chez E. coli. V. Le mécanisme du transfert de material génétique. Ann. Inst, Pasteur 95, 641–666 (1958).Google Scholar
  134. Yoshikawa, H., and N. Sueoka: Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc. nat. Acad. Sci. (Wash.) 49, 559 (1963).Google Scholar
  135. Zinder, N. D., R. C. Valentine, N. Roger, and W. Stoeckenius: f 1, a rod-shaped male-specific bacteriophage that contains DNA. Virology 20, 638–640 (1963).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1967

Authors and Affiliations

  • M. Kapoor

There are no affiliations available

Personalised recommendations