Advertisement

Neurochemistry and Psychiatry

  • Heinrich Waelsch
  • Hans Weil-Malherbe
Chapter
  • 27 Downloads
Part of the Psychiatrie der Gegenwart book series (2042, volume 1 / 1 / B)

Abstract

The inclusion of a chapter on neurochemistry in a handbook of psychiatry attests to the ever-increasing appreciation of the need for understanding biochemical mechanisms in order to interpret disease processes of the nervous system. The interest in neurochemistry, fostered in some isolated centers of psychiatric research for many years, has become more general during the last decade.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

References To Table 2

  1. 1.
    Kety, S. S., and C. F. Schmidt: J. clin. Invest. 27, 476 (1948).Google Scholar
  2. 2.
    Scheinberg, P., and E. A. Stead: J. clin. Invest. 28, 1163 (1949).PubMedGoogle Scholar
  3. 3.
    Lassen, N. A., and O. Munck: Acta physiol. scand. 33, 30 (1955).PubMedGoogle Scholar
  4. 4.
    Kety, S. S., R. B. Woodford, M. H. Harmel, F. A. Freyhan, K. E. Appel and C. F. Schmidt: Amer. J. Psychiat. 104, 765 (1948).PubMedGoogle Scholar
  5. 5.
    Schmidt, C. F.: Pflügers Arch. ges. Physiol. 251, 571 (1949).Google Scholar
  6. 6.
    Kety, S. S., J. H. Hafkenschiel, W. A. Jeffers, I. H. Leopold and H. A. Shenkin: J. clin. Invest. 27, 511 (1948).Google Scholar
  7. 7.
    Kennedy, C.: Neurochemistry. p. 230. (Ed. S. R. Korey and J. I. Nürnberger) London: Cassell and Co. Ltd. 1956.Google Scholar
  8. 8.
    Sokoloff, L., D. K. Dastur, M. H. Lane and S. S. Kety: Unpublished data quoted by N. A. Lassen. Physiol. Rev. 39, 183 (1959).Google Scholar
  9. 9.
    Sokoloff, L.: Neurochemistry. p. 216. (Ed. S. R. Korey, and J. I. Nürnberger ). London: Cassell and Co. Ltd. 1956.Google Scholar
  10. 10.
    Heyman, A., J. L. Patterson, T. W. Duke and L. L. Battey: New Engl. J. Med. 249, 223 (1953).PubMedGoogle Scholar
  11. 11.
    Lassen, N. A., O. Munck and E. R. Tottey: Arch. Neurol. Psychiat. 77, 126 (1957).Google Scholar
  12. 12.
    Kety, S. S., H. A. Shenkin and C. F. Schmidt: J. clin. Invest. 27, 493 (1948).Google Scholar
  13. 13.
    Wechsler, R. L., R. D. Dripps, and S. S. Kety: Anaesthesiology 12, 308 (1951).Google Scholar
  14. 14.
    Scheinberg, P., E. A. Stead, E. S. Brannon, And J. V. Warren: J. clin. Invest. 29, 1139 (1950).PubMedGoogle Scholar
  15. 15.
    Lassen, N. A.: Physiol. Rev. 39, 183 (1959).PubMedGoogle Scholar

References To Table 3

  1. 1.
    Krebs, H. A., and H. Rosenhagen: Z. ges. Neurol. 134, 643 (1931).Google Scholar
  2. 2.
    Craig, F. N., and H. K. Beecher: J. Neurophysiol. 6, 135 (1943).Google Scholar
  3. 3.
    Heller, I. H., and K. A. C. Elliott: Canad. J. Biochem. 33, 395 (1955).PubMedGoogle Scholar
  4. 4.
    Weil-Malherbe, H.: Unpublished data.Google Scholar
  5. 5.
    Dixon, T. F., and A. Meyer: Biochem. J. 30, 1577 (1936).A. IntroductionPubMedGoogle Scholar

A. Introduction

  1. Berl, S., A. Lajtha and H. Waelsch: Cerebral compartments of glutamic acid meta-bolism. J. Neurochem. 7, 186 (1961a).Google Scholar
  2. Berl, S., G. Takagaki, D. D. Clarke and H. Waelsch: Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J. biol. Chem. 231, 2562 (1962).Google Scholar
  3. Berl, S., G. Takagaki and D. P. Purpura: Metabolic and pharmacological effects of injected amino acids and ammonia on cortical epileptogenic lesions. J. Neurochem. 7, 198 (1961).Google Scholar
  4. Edström, J. E., and H. Hyden: Ribonucleotide analysis of individual nerve cells. Nature (Lond.) 174, 128 (1954).Google Scholar
  5. Heller, I. H., and K. A. C. Elliott: Metabolism of normal brain and human gliomas in relation to cell type and density. Canad. J. Bioohem. 33, 395 (1955).Google Scholar
  6. Hyden, H.: Protein metabolism in the nerve cell during growth and function. Acta physiol. scand. 6, Suppl. 17, 5–136 (1943).Google Scholar
  7. Hyden, H.: Biochemical changes in glial cells and nerve cells at varying activity. In: Proceedings of the Fourth International Congress of Biochemistry. Volume III, Biochemistry of the central nervous system, pp. 64–89. ( F. Brücke, Ed. ), Pergamon Press 1959.Google Scholar
  8. Hyden, H.: The chemistry of single neurons. In: Biochemistry of the developing nervous system; pp. 358–371. ( H. Waelsch, Ed.), New York: Academic Press Inc. 1955.Google Scholar
  9. Lowry, O. H.: A study of the nervous system with quantitative histochemical methods. In: Biochemistry of the developing nervous system, pp. 350–357. ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955.Google Scholar
  10. Lowry, O. H.: Quantitative analysis of single nerve cell bodies. In: Ultrastructure and cellular chemistry of neural tissue. 69–76. ( H. Waelsch, Ed.). New York: Hoeber-Harper 1957.Google Scholar
  11. Lowry, O. H., N. R. Roberts, and M. W. Chang: The analysis of single cells. J. biol. Chem. 222, 97 (1956a).PubMedGoogle Scholar
  12. Lowry, O. H., N. R. Roberts, K. Y. Leiner, M. Wu, A. L. Farr, and R. W. Albers: The quantitative histochemistry of brain. J. biol. Chem. 207, 39 (1954).PubMedGoogle Scholar
  13. Lowry, O. H., N. R. Roberts, and C. Lewis: The quanti-tative histochemistry of the retina. J. biol. Chem. 220, 879 (1956b).PubMedGoogle Scholar
  14. Mcilwain, H.: Substances which support respiration and metabolic response to electrical impulses in human cerebral tissues. J. Neurol. Neurosurg. Psychiat. 16, 257 (1953).PubMedGoogle Scholar
  15. Nürnberger, J. I., And M. W. Gordon: The cell density of neural tissue. In: Ultrastructure and cellular chemistry of neural tissue, pp. 100–138. ( H. Waelsch, Ed.). New York: Hoeber-Harper 1957.Google Scholar
  16. Palay, S. L., and G. E. Palade: The fine structure of neurons. J. biophys. biochem. Cytol. 1, 69–88 (1955).PubMedGoogle Scholar
  17. Pope, A.: Application of quantitative histochemical methods to the study of the nervous system. J. Neuropath, exp. Neurol. 14, 39 (1955).Google Scholar
  18. Pope, A.: The relationship of neurochemistry to the microscopic anatomy of the nervous system. In: The biochemistry of the developing nervous system, pp. 341–349. ( H. Waelsch, Ed.), New York: Academic Press Inc. 1955.Google Scholar
  19. Pope, A., H. H. Hess, And J. N. Allen: Quantitative histo-chemistry of proteolytic and oxidative enzymes in human cerebral cortex and brain tumors. In: Ultrastructure and cellular chemistry of neural tissue, pp. 182–194. ( H. Waelsch, Ed.). New York: Hoeber-Harper 1957.Google Scholar
  20. Pope, A., H. H. Hess, J. R. Ware, and R. H. Thomson: Intralaminar distribution of cytochrome oxidase and DPN in rat cerebral cortex. J. Neurophysiol. 19, 259 (1956).PubMedGoogle Scholar
  21. Waelsch, H.: An attempt at integration of structure and metabolism in the nervous system. In: Structure and function of the cerebral cortex. Elsevier Publishing Company, 1960.Google Scholar
  22. Waelsch, H.: Compartmentalized biosynthetic reactions in the central nervous system. In Regional Neurochemistry (S. S. Kety and J. Elkes, Eds); p. 57. London: Pergamon Press Ltd. 1961.Google Scholar
  23. Waelsch, H., and A. Lajtha: Protein metabolism in the nervous svstem. Physiol. Rev. 41, 709 (1961).PubMedGoogle Scholar

B. The brain barrier systems

  1. Bakay, L.: The blood-brain barrier: with special regard to the use of radioactive isotopes. Springfield, Illinois: Charles C. Thomas 1956.Google Scholar
  2. Bakay, L.: Dynamic aspects of the blood-brain barrier. In: Metabolism of the nervous system. 136–150. ( D. Richter, Ed.), London: Pergamon Press 1957.Google Scholar
  3. Bakay, L., T. F. Hueter, H. T. Ballantine, Jr., and D. Sosa: Ultrasonically produced changes in the blood-brain barrier. A. M. A. Arch. Neurol. Psychiat. 76, 457–467 (1956).Google Scholar
  4. Berl, S., G. Takagaki And D. P. Purpura: Metabolic and pharmacological effects of injected amino acids and amoniam on cortical epileptogenic lesions. J. Neurochem. 7, 198 (1961).Google Scholar
  5. Brierley, J. B.: The blood-brain barrier: structural aspects. In: Metabolism of the nervous system, 121–135. ( D. Richter, Ed.). London: Pergamon Press Ltd. 1957.Google Scholar
  6. Davson, H.: A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J. Physiol. (Lond.) 129, 111–183 (1955).Google Scholar
  7. Edström, R.: An explanation of the blood-brain barrier phenomenon. Acta psychiat. scand. 33, 403–416 (1958).Google Scholar
  8. Green, J. B.: Recent advances in the chemistry of cerebrospinal fluid. J. nerv. ment. Dis. 127, 359–373 (1958).PubMedGoogle Scholar
  9. Quadbeck, G., And H. Helmchen: Steigerung des Phosphat-Übertrittes vom Blut in das Zentralnervensystem nach schweren Gehirnerschütterungen bei der Katze. Z. Naturforsch. 10b, 328–331 (1955).Google Scholar
  10. Sweet, W. H., G. L. Brownell, J. A. Scholl, D. R. Bowsher, P. Benda, and E. E. Strickley: The formation, flow and absorption of cerebrospinal fluid; newer concepts based on studies with isotopes. In: Neurology and psychiatry in childhood. Res. Publ. Ass. nerv. ment. Dis. 34, 101–159 (1954).Google Scholar
  11. Sweet, W. H., And H. B. Locksley: Formation, flow, and re- absorption of cerebrospinal fluid in man. Proc. Soc. exp. Biol. (N. Y.) 84, 397–402 (1953).Google Scholar
  12. Waelsch, H.: The turnover of components of the developing brain; the blood-brain barrier. In: Biochemistry of the developing nervous system. 187–201. ( H. Waelsch, Ed.) New York: Academic Press Inc. 1955.Google Scholar
  13. Wakim, K. G., and G. A. Fleisher: The effect of experimental cerebral infarction on transaminase activity in serum, cerebrospinal fluid, and infarcted tissue. Proc. Mayo Clin. 31, 391–399 (1956).Google Scholar
  14. Weil-Malherbe, H., J. Axelrod, and R. Tomchick: Blood-brain barrier for adrenaline. Science 129, 1226–1227 (1959).PubMedGoogle Scholar
  15. Wislocki, G. B., and E. H. Ledtjc: Vital staining of the hematoencephalic barrier by silver nitrate and trypan blue, and cytological comparisons of the neurohypophysis, pineal body, area postrema, intercolumnar tubercle and supra-optic crest. J. comp. Neurol. 96, 371–414 (1952).PubMedGoogle Scholar

C. Energy metabolism

  1. Abood, L. G., E. Brunngraber, and M. Taylor: Glycolytic and oxidative phosphorylative studies with intact and disrupted brain mitochondria. J. biol. Chem. 234, 1307 (1959).PubMedGoogle Scholar
  2. Abood, L. G., and A. Geiger: Breakdown of proteins and lipids during glucose-free perfusion of the cat’s brain. Amer J. Physiol. 182, 557 (1955).Google Scholar
  3. Abood, L. G., R. W. Gerard, And S. Ochs: Electrical stimulation of metabolism of homogenates and particulates. Amer. J. Physiol. 171, 134 (1952).PubMedGoogle Scholar
  4. Acs, G., R. Balazs, and F. B. Straub: Synthesis of adenosine-triphosphate in slices of brain cortex. Chem. Abstr. 48, 8923 (1954).Google Scholar
  5. Adams, J. E., H. A. Harper, G. S. Gordan, M. Hutchin, and R. C. Bentinck: Cerebral metabolism of glutamic acid in multiple sclerosis. Neurology (Minnesota). 5, 100 (1955).Google Scholar
  6. Allweis, C., and J. Magnes: The uptake and oxidation of glucose by the perfused cat brain. J. Neurochem. 2, 326 (1958).PubMedGoogle Scholar
  7. Ashford, C. A., and K. C. Dixon: The effect of potassium on the glucolysis of brain tissue with reference to the Pasteur effect. Biochem. J. 29, 157–168 (1935).PubMedGoogle Scholar
  8. Berger, M.: Metabolic reactivity of brain and liver mitochondria towards chlorpromazine. J. Neurochem. 2, 30–36 (1957).PubMedGoogle Scholar
  9. Berl, S., D. D. Clarke, G. Takagaki, D. P. Purpura And H. Waelsch: Carbon dioxide fixation in brain in vivo. Fed. Proc. 20, No. 1 (1961).Google Scholar
  10. Berl, S., G. Takagaki, D. D. Clarke And H. Waelsch: Carbon dioxide fixation in the brain. J. biol. Chem. 231, 2510 (1962).Google Scholar
  11. Bloom, B.: Catabolism of glucose by mammalian tissues. Proc. Soc. exp. Biol. (N. Y.) 88, 317 (1955).Google Scholar
  12. Boszormenyi-Nagy, I., and F. J. Gerty: Difference between the phosphorus metabolism of erythrocytes of normals and of patients suffering from schizophrenia. J. nerv. ment. Dis. 121, 53 (1955).PubMedGoogle Scholar
  13. Boszor-Menyi-Nagy, I., F. J. Gerty, and J. Kueber: Correlation between an anomaly of the intracellular metabolism of adenosine nucleotides and schizophrenia. J. nerv. ment. Dis. 124, 413 (1956).Google Scholar
  14. Braceland, F. J., L. J. Meduna, and J. A. Vaichulis: Delayed action of insulin in schizophrenia. Amer. J. Psychiat. 102, 108 (1945).Google Scholar
  15. Brody, T. M., and J. A. Bain: Barbiturates and oxidative phosphorylation. J. Pharmacol, exp. Ther. 110, 148 (1954).Google Scholar
  16. Cheng, S. C., and H. Waelsch: Carbon dioxide fixation in lobster nerve. Science in press, 1962.Google Scholar
  17. Danziger, L.: Anoxia and compounds causing mental disorders in man. Dis. nerv. Syst. 6, 365 (1945).PubMedGoogle Scholar
  18. Davies, P. W., and A. Remond: Oxygen consumption of the cerebral cortex of the cat during metrazol convulsions. Res. Publ. Ass. nerv. ment. Dis. 26, 205–217 (1947).Google Scholar
  19. Dawson, J., R. P. Hullin, And A. Pool: Variations in the blood levels of acetoin and butane- 2:3-diol in normal individuals and mental patients. J. ment. Sci. 100, 536–542 (1954).PubMedGoogle Scholar
  20. Dawson, J., R. P. Hullin, and B. M. Crockett: Metabolic variations in manic-depressive psychosis. J. ment, Sci. 102, 168–177 (1956).Google Scholar
  21. Dickens, F.: Metabolism of normal and tumour tissue. XV. The respiratory quotient of brain cortex. Biochem. J. 30, 661–664 (1936).PubMedGoogle Scholar
  22. Dipietro, D., and S. Weinhouse: Glucose oxidation in rat brain slices and homogenates. Arch. Biochem. Biophys. 80, 268 (1959).Google Scholar
  23. Dolivo, M., and M. G. Larrabee: Metabolism of glucose and oxygen in a mammalian sympathetic ganglion at reduced temperature and varied PH. J. Neurochem. 3, 72 (1958).PubMedGoogle Scholar
  24. Doust, J. W. Lovett: Spectroscopic and photo-electric oximetry in schizophrenia and other psychiatric states. J. ment. Sci. 98, 143–160 (1952).PubMedGoogle Scholar
  25. Elliott, K. A. C., and I. H. Heller: Metabolism of neurones and glia. In: The metabolism of the nervous system, p. 286–290. (Ed. D. Richter ). New York: Pergamon Press 1957.Google Scholar
  26. Elliott, K. A. C., and N. Henderson: Metabolism of brain tissue slices and suspensions from various mammals. J. Neurophysiol. 11, 473 (1948).PubMedGoogle Scholar
  27. Findlay, M., W. L. Magee, and R. J. Rossiter: Incorporation of radioactive phosphate into lipids and pentosenucleic acid of cat brain slices. The effect of inorganic ions. Biochem. J. 58, 236 (1954).PubMedGoogle Scholar
  28. Freeman, H., J. M. Looney, R. G. Hoskins, And C. G. Dyer: Results of insulin and epinephrine tests in schizophrenia. Arch. Neurol. Psychiat. (Chicago) 49, 195 (1943).Google Scholar
  29. Freeman, H., and R. Zaborenke: Relation of changes in carbohydrate metabolism to psychotic states. Arch. Neurol. Psychiat. (Chicago) 61, 569 (1949).Google Scholar
  30. Frohman, C. E., N. P. Czajkowski, E. D. Luby, J. S. Gottlieb And R. Senf: Further evidence of a plasma factor in schizophrenia. Arch. gen. Psychiat. 3, 263 (1960).Google Scholar
  31. Frohman, C. E., L. K. Latham, P. G. S. Beckett and J. S. Gottlieb: Evidence of a plasma factor in schizophrenia. Arch, gen. Psychiat, 3, 255 (1960).Google Scholar
  32. Frohman, C. E., E. D. Luby, G. Tourney, P. G. S. Beckett and J. S. Gottlieb: Steps toward the isolation of a serum factor in schizophrenia. Amer. J. Psychiat. 117, 401 (1960).PubMedGoogle Scholar
  33. Frohman, C. E., G. Tourney, P. G. S. Beckett, H. Lees, L. K. Latham, and J. S. Gottlieb: Biochemical identification of schizophrenia. Arch. gen. Psychiat. 4, 405 (1961).Google Scholar
  34. Gallagher, C. H., J. D. Judah, and K. R. Rees: Glucose oxidation by brain mitochondria. Biochem. J. 62, 436 (1956).PubMedGoogle Scholar
  35. Gatt, S., and E. Racker: Regulatory mechanisms in carbohydrate metabolism. II. Pasteur effect in reconstructed systems. J. biol. Chem. 234, 1024 (1959).PubMedGoogle Scholar
  36. Gayet, J.: Physical reactivity of liver and brain cortex mitochondria. Nature (Lond.) 182, 941 (1958).Google Scholar
  37. Geiger, A.: Correlation of brain metabolism and function by use of a brain perfusion method in situ. Physiol. Rev. 38, 1 (1958).PubMedGoogle Scholar
  38. Geiger, A., and J. Magnes: Isolation of cerebral circulation and perfusion of brain in the living cat. Amer. J. Physiol. 149, 517–537 (1947).PubMedGoogle Scholar
  39. Geiger, A., J. Magnes, and R. S. Geiger: Survival of the perfused cat’s brain in the absence of glucose. Nature (Lond.) 170, 754 (1952).Google Scholar
  40. Geiger, A., J. Magnes, R. M. Taylor, and M. Veralli: Effect of blood constituents on uptake of glucose and on metabolic rate of the brain in perfusion experiments. Amer. J. Physiol. 177, 138–149 (1954).PubMedGoogle Scholar
  41. Geiger, A., and S. Yamasaki: Cytidine and uridine requirements of the brain. J. Neurochem. 1, 93 (1956).PubMedGoogle Scholar
  42. Gey, K. F.: The concentration of glucose in rat tissues. Biochem. J. 61, 145–150 (1956).Google Scholar
  43. Geyer, R. P., L. W. Matthews, and F. G. Stare: Metabolism of emulsified trilaurin (-C1400-) and octanoic acid (-C1400-) by rat tissue slices. J. biol. Chem. 180, 1037–1045 (1949).PubMedGoogle Scholar
  44. Ghosh, J. J., and J. H. Quastel: Narcotics and brain respiration. Nature (Lond.) 174, 28 (1954).Google Scholar
  45. Gibbs, E. L., W. G. Lennox, and F. A. Gibbs: Bilateral internal jugular blood: comparison of A-V differences, oxygen-dextrose ratios, and respiratory quotients. Amer. J. Psychiat. 102, 184–190 (1945).Google Scholar
  46. Goldfarb, W., and J. Wortis: Availability of sodium pyruvate for human brain oxidations. Proc. Soc. exp. Biol. (N. Y.) 46, 121–123 (1941).Google Scholar
  47. Gordan, G. S.: Influence of steroids on cerebral metabolism in man. Recent Progr. Hormone Res. 12, 153–174 (1956).Google Scholar
  48. Gordan, G. S., F. M. Estess, J. E. Adams, K. M. Bowman, And A. Simon: Cerebral oxygen uptake in chronic schizophrenic reaction. Arch. Neurol. Psychiat. (Chicago) 73, 544 (1955).Google Scholar
  49. Gore, M. B. R., and H. Mcil-Wain: Effects of some inorganic salts on the metabolic response of sections of mammalian cerebral cortex to electrical stimulation. J. Physiol. 117, 471 (1952).PubMedGoogle Scholar
  50. Gottlieb, J. S., C. E. Frohman, P. G. S. Beckett, G. Tourney, and R. Senf: Production of high energy phosphate bonds in schizophrenia. A. M. A. Arch. gen. Psychiat. 1, 243 (1959).Google Scholar
  51. Gottlieb, J. S., C. E. Frohman, G. Tourney, And P. G. S. Beckett: Energy transfer systems in schizophrenia. Arch. Neurol. Psychiat. (Chicago) 81, 505 (1959).Google Scholar
  52. Greengard, O., and H. Mc-Ilwain: Anticonvulsants and the metabolism of separated mammalian cerebral tissues. Biochem. J. 61, 61 (1955).PubMedGoogle Scholar
  53. Grenell, R. G., J. Mendelson, and W. D. Mcelroy: Neuronal metabolism and ATP synthesis in narcosis. J. cell. comp. Physiol. 46, 143 (1955).Google Scholar
  54. Haavaldsen, R., O. Lingjaerde, and O. Walaas: Disturbances of carbohydrate metabolism in schizophrenics. The effect of serum fractions from schizophrenics on glucose uptake of rat diaphragm in vitro. Confin. neurol. (Basel) 18, 270–279 (1958).Google Scholar
  55. Heald, P. J.: Rapid changes in creatine phosphate level in cerebral cortex slices. Biochem. J. 57, 673–679 (1954).PubMedGoogle Scholar
  56. Heald, P. J.: Effects of electrical pulses on the distribution of radioactive phosphate in cerebral tissues. Biochem. J. 63, 242 (1956).PubMedGoogle Scholar
  57. Heald, P. J.: The incorporation of phosphate into cerebral phosphoprotein promoted by electrical impulses. Biochem. J. 66, 659 (1957).PubMedGoogle Scholar
  58. Heller, I. H., and K. A. C. Elliott: The metabolism of normal brain and human gliomas in relation to cell type and density. Canad. J. Biochem. 33, 395–403 (1955).PubMedGoogle Scholar
  59. Henneman, D. H., M. D. Altschule, and R. M. Goncz: Carbohydrate metabolism in brain disease. II. Glucose metabolism in schizophrenic, manic-depressive and involutional psychoses. Arch, intern Med. 94, 402–416 (1954).Google Scholar
  60. Hesselbach, M. L., and H. G. Dubuy: Localization of glycolytic and respiratory enzyme systems on isolated mouse brain mitochondria. Proc. Soc. exp. Biol. (N. Y.) 83, 62–65 (1953).Google Scholar
  61. Himwich, H. E.: Brain metabolism and cerebral disorders. Baltimore: The Williams & Wilkins Co. 1951.Google Scholar
  62. Himwich, W. A., And H. E. Himwich: Pyruvic acid exchange of the brain. J. Neurophysiol. 9, 133–136 (1946).PubMedGoogle Scholar
  63. Hokin, M. R., and L. E. Hokin: The synthesis of phosphatidic acid from diglyceride and adenosine triphosphate in extracts of brain microsomes. J. biol. Chem. 234, 1381 (1959a).PubMedGoogle Scholar
  64. Hokin, L. E., and M. R. Hokin: Evidence for phosphatidic acid as the sodium carrier. Nature (Lond.) 184, 1068 (1959b).Google Scholar
  65. Holmgren, H., and S. Wohlfahrt: Blutzuckerstudien bei Geisteskranken und psychisch Abnormen. Acta psychiat. (Kbh.) Suppl. 31 (1944).Google Scholar
  66. Hoskin, F. C. G.: Chemical stimulation and modification of glucose metabolism by brain. Arch. Biochem. Biophys. 91, 43 (1960).PubMedGoogle Scholar
  67. Hyden, H.: Biochemical changes in glia cells and nerve cells at varying activity. IVth Internat. Congr. Biochem., Vol. III. Biochemistry of the central nervous system. London: Pergamon Press 1958.Google Scholar
  68. Jasper, H., and T. C. Erickson: Cerebral blood flow and pH in excessive cortical discharge induced by metrazol and electrical stimulation. J. Neurophysiol. 4, 333–347 (1941).Google Scholar
  69. Johnson, M. K.: The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparations. Biochem. J. 77, 610 (1960).PubMedGoogle Scholar
  70. Kennedy, C.: The cerebral metabolic rate in children. In: Neurochemistry p. 230–238. (Eds. S. R. Korey and J. I. Nürnberger) London: Cassell and Co. Ltd. 1956.Google Scholar
  71. Kerr, S. E., and M. Ghantus: The carbohydrate metabolism of brain. II. The effect of varying the carbohydrate and insulin supply on the glycogen, free sugar and lactic acid in mammalian brain. J. biol. Chem. 116, 9–20 (1936).Google Scholar
  72. Kety, S. S.: Quantitative determination of cerebral blood flow in man. Meth. med. Res. 1, 204 (1948).Google Scholar
  73. Kety, S. S.: Discussion in: Metabolic and toxic diseases of the nervous system. Proc.Ass.Res. nerv. ment. Dis. 32,362–363 (1953).Google Scholar
  74. Kety, S. S.: The general metabolism of the brain in vivo. In: The metabolism of the nervous system, p. 221–237. (Ed. D. Richter) New York: Pergamon Press 1957.Google Scholar
  75. Kety, S. S., and C. F. Schmidt: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J. clin. Invest. 27, 476–483 (1948).Google Scholar
  76. Kety, S. S., R. B. Woodford, M. H. Harmel, F. A. Freyhan, K. E. Appel, And C. F. Schmidt: Cerebral blood flow and metabolism in schizophrenia. The effects of barbiturate seminarcosis, insulin coma, and electroshock. Amer. J. Psychiat. 104, 765 (1948).PubMedGoogle Scholar
  77. Kimura, Y., And K. Ito: Effect of sodium azide on the carbohydrate metabolism of brain tissue in presence and absence of the potassium effect. Sci. Papers Coll. gen. Educ. Univ. Tokyo 4, 57–70 (1954).Google Scholar
  78. Kimura, Y., and T. Niwa: Inhibitory effect of malonate on the respiration of brain tissue, with special reference to the potassium effect. Nature (Lond.) 171, 881 (1953).Google Scholar
  79. Klein, J. R., R. Hur-Witz, and N. S. Olsen: Distribution of intravenously injected fructose and glucose between blood and brain. J. biol. Chem. 164, 509–512 (1946).PubMedGoogle Scholar
  80. Klein, J. R., and N. S. Olsen: Distribution of intravenously injected glutamate, lactate, pyruvate and succinate between blood and brain. J. biol. Chem. 167, 1–5 (1947).PubMedGoogle Scholar
  81. Korey, S. R., and M. Orchen: Relative respiration of neuronal and glial cells. J. Neurochem, 3, 277 (1959).PubMedGoogle Scholar
  82. Krebs, H. A., L. V. Eggleston, and C. Terner: In vitro measurements of the turnover rate of potassium in brain and retina. Biochem. J. 48, 530–537 (1951).PubMedGoogle Scholar
  83. Kunz, H. A.: Comparative investigations on the oxidation of pyruvate in liver and brain mitochondria. Biochem. biophys. Acta 28, 104 (1958).PubMedGoogle Scholar
  84. Lajtha, A., S. Berl, and H. Waelsch: Amino acid and protein metabolism of the brain. IV. The metabolism of glutamic acid. J. Neuroohem. 3, 322 (1959).Google Scholar
  85. Landau, W. M., W. H. Freygang Jr., L. P. Roland, L. Sokoloff, and S. S. Kety: The local circulation of the living brain; values in the unanesthetized and anesthetized cat. Trans. Amer. neurol. Ass. 80, 125 (1955).Google Scholar
  86. Larrabee, M. G.: Oxygen consumption of excised sympathetic ganglia at rest and in activity. J. Neurochem. 2, 81 (1958).PubMedGoogle Scholar
  87. Lassen, N. A., and O. Munck: The cerebral blood flow in man determined by the use of radioactive krypton. Acta physiol. scand. 33, 30 (1955).PubMedGoogle Scholar
  88. Levy, L., And R. M. Featherstone: The effect of xenon and nitrous oxide on in vitro guinea pig brain respiration and oxidative phosphorylation. J. Pharmacol, exp. Ther. 110, 221 (1954).Google Scholar
  89. Lewis, J. L., And H. Mcilwain: The action of some ergot derivatives, mescaline and dibenamine on the metabolism of separated mammalian cerebral tissues. Biochem. J. 57, 680–684 (1954).PubMedGoogle Scholar
  90. Li, C. L., And H. Mcilwain: Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J. Physiol. 139, 178–190 (1957).PubMedGoogle Scholar
  91. Lingjaerde, O.: Adrenocortical functions in the insane. Acta psychiat. suppl. 80, 202 (1953).Google Scholar
  92. Lingjaerde, O.: Failure in the utilization of carbohydrates in mental disease. Acta psychiat. suppl. 106, 302 (1956).Google Scholar
  93. Lisovskaya, N. P.: Phosphoproteins and the processes of metabolism in the brain. Dokl. Acad. Nauk SSSR 95, 1033 (1954); Chem. Abstr. 48, 9509 (1954).Google Scholar
  94. Lohr, K., and W. O. Schümann: Presence of a hyperglycaemia-inducing material in the urine. Z. ges. exp. Med. 122, 374 (1953).PubMedGoogle Scholar
  95. Lynen, F.: Fatty acid metabolism. In. Metabolism of the nervous system, p. 381–395. (Ed. D. Richter ). New York: Pergamon Press 1957.Google Scholar
  96. Macfarlane, M. G., And H. Weil-Malherbe: Changes in phosphate distribution during anaerobic glycolysis in brain slices. Biochem. J. 35, 1–6 (1941).PubMedGoogle Scholar
  97. Maddock, S., J. E. Hawkins, And E. Holmes: Inadequacy of substances of “glucose cycle” for maintenance of normal cortical potentials during hypoglycaemia produced by hepatectomy with abdominal evisceration. Amer. J. Physiol. 125, 551–565 (1939).Google Scholar
  98. Magee, W. L., J. F. Berry, and R. J. Rossiter: Effect of chlorpromazine and azacyclonol on the labelling of phosphatides in brain slices. Biochim. biophys. Acta 21, 408 (1956).PubMedGoogle Scholar
  99. Mann, F. C., and T. B. Magath: Studies on the physiology of the liver. III. The effect of administration of glucose in the condition following total exstirpation of the liver. Arch, intern Med. 30, 171–181 (1922).Google Scholar
  100. Mayer-Gross, W.: The diagnostic significance of certain tests of carbohydrate metabolism in psychiatric patients and the question of “oneirophrenia”. J. ment. Sci. 98, 683–686 (1952).PubMedGoogle Scholar
  101. Mayer-Gross, W., and J. W. Walker: The effect of L-glutamic acid and other amino-acids in hypoglycaemia. Biochem. J. 44, 92–97 (1949).Google Scholar
  102. McFarland, R. A., and H. Goldstein: The biochemistry of manic-depressive psychosis. Amer. J. Psychiat. 96, 21 (1939).Google Scholar
  103. McIlwain, H.: The effect of depressants on the metabolism of stimulated cerebral tissues. Biochem. J. 53, 403–412 (1953).PubMedGoogle Scholar
  104. McIlwain, H.: Biochemistry and the central nervous system. Boston: Little, Brown and Co. 1955.Google Scholar
  105. McIlwain, H.: Electrical influences and speed of chemical change in the brain. Physiol. Rev. 36, 355–375 (1956).PubMedGoogle Scholar
  106. McIlwain, H.: Characterization of naturally occurring materials which restore excitability to isolated cerebral tissues. Biochem. J. 78, 24 (1961).PubMedGoogle Scholar
  107. McIlwain, H., L. Büchel, And J. D. Cheshire: The inorganic phosphate and phosphocreatine of brain especially during metabolism in vitro. Biochem. J. 48, 12–20 (1951).PubMedGoogle Scholar
  108. McIlwain, H., and M. A. Tresize: The glucose, glycogen and aerobic glycolysis of isolated cerebral tissues. Biochem. J. 63, 250 (1956).PubMedGoogle Scholar
  109. Meduna, L. J.: Oneirophrenia. Urbana: The University of Illinois Press 1950.Google Scholar
  110. Meduna, L. J., F. J. Gerty, and V. G. Urse: Biochemical disturbances in mental disorders. I. Anti-insulin effect of blood in cases of schizophrenia. Arch. Neurol. Psychiat. 47, 38 (1942)Google Scholar
  111. Meduna, L. J., and J. A. Vaichulis: A hyperglycemic factor in the urine of so-called schizophrenics. Dis. nerv. Syst. 9, 248 (1948).PubMedGoogle Scholar
  112. Meyerhof, O.: The rates of glycolysis of glucose and fructose in extracts of brain. Arch. Biochem. 13, 485–487 (1947).PubMedGoogle Scholar
  113. Morgan, M. S., and F. J. Pilgrim: Concentration of a hyperglycaemic factor from the urine of schizophrenics. Proc. Soc. exp. Biol. (N. Y.) 79, 106–111 (1952).Google Scholar
  114. Moya, F., J. Dewar, M. Macintosh, S. Hirsch, And R. Townsend: Hyperglycemic action and toxicity of the urine of schizophrenic patients. Canad. J. Biochem. 36, 505 (1958).PubMedGoogle Scholar
  115. Nadeau, G., and Y. Rouleau: Insulin tolerance in schizophrenics. J. clin. exp. Psychopath. 14, 69 (1953).PubMedGoogle Scholar
  116. Narayanaswami, A., and H. McIlwain: Electrical pulses and the metabolism of cell-free cerebral preparations. Biochem. J. 57, 663–666 (1954).PubMedGoogle Scholar
  117. Nürn-Berger, J. I., And M. W. Gordon: The cell density of neural tissues: direct counting method and possible applications as a biologic referent. In: Ultrastructure and cellular chemistry of neural tissue, p. 100–138. (Ed. H. Waelsch ). New York: Hoeber-Harper 1957.Google Scholar
  118. Olkon, D. M.: Capillary structure in patients with schizophrenia. Arch. Neurol. Psychiat. (Chicago) 42, 652–663 (1939).Google Scholar
  119. Opitz, E.: Energieumsatz des Gehirns in situ unter aeroben und anaeroben Bedingungen. In: Die Chemie und der Stoffwechsel des Nervengewebes. 3.Coli. Ges. physiol. Chem. p. 66–108 (1952).Google Scholar
  120. Orstrom, A., and O. Skaug: The isolation from the blood of chronic schizophrenic patients of compounds active in radioactive phosphate turnover. Acta psychiat. scand. 25, 437 (1950).Google Scholar
  121. Perutz, A.: Turnover of the ether soluble plasma phosphatides in schizophrenia. Acta psychiat. scand. 26, 411 (1951).Google Scholar
  122. Pryce, I. G.: The relationship between glucose tolerance body weight and clinical state in melancholia. J. ment. Sci. 104, 1079 (1958).PubMedGoogle Scholar
  123. Raaflaub, J.: Die Metallpufferfunktion der Adenosinphosphate. Helv. physiol. pharmacol. Acta 14, 304 (1956).PubMedGoogle Scholar
  124. Reiner, J. M.: Carbohydrate metabolism in tissue homogenates. Arch. Biochem. 12, 327–338 (1947).PubMedGoogle Scholar
  125. Reiss, J. M., M. Reiss, and A. Wyatt: Action of thyroid hormones on brain metabolism of new born rats. Proc. Soc. exp. Biol. (N. Y.) 93, 19–22 (1956).Google Scholar
  126. Richter, D.: Brain metabolism and cerebral function. Biochem. Soc. Symp. 8, 62–76 (1952).Google Scholar
  127. Rodnight, R., H. Mcilwain, and M. A. Tresize: Analysis of arterial and cerebral venous blood from the rabbit. J. Neurochem. 3, 209 (1959).PubMedGoogle Scholar
  128. Sacks, W.: Cerebral oxidation of fumarate-2-C14 in normal human subjects. J. appl. Physiol. 9, 43 (1956).PubMedGoogle Scholar
  129. Sacks, W.: Cerebral metabolism of butyrate-l-C14 in normal human subjects. Fed. Proc. 16, 240 (1957).Google Scholar
  130. Schmidt, C. F., And J. P. Hendrix: The circulation of the brain and spinal cord. Res. Publ. Ass. nerv, ment. Dis. 18, 229–276 (1938).Google Scholar
  131. Schmitt, C. O.: The structure and properties of nerve membranes. In: The metabolism of the nervous system, p. 35–51. (Ed. D. Richter ). New York: Pergamon Press 1957.Google Scholar
  132. Schwerin, P., S. P. Bessman, and H. Waelsch: The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse. J. biol. Chem. 184, 37–44 (1950).PubMedGoogle Scholar
  133. Sebrell, W. H.: The mental and neurological aspects of vitamin B complex deficiency. Res. Publ. Ass. Res. nerv. ment. Dis. 22, 113–121 (1943).Google Scholar
  134. Sebrell, W. H., Jr., and K. Schwarz: The role of B-vitamins in the metabolism of the nervous system. Res. Publ. Ass. nerv. ment. Dis. 32, 174–183 (1953).Google Scholar
  135. Seltzer, H. S., S. Eisenberg, And C. W. Sensenbach: Cerebral and peripheral carbohydrate utilization during amelioration of hypoglycemic symptoms by fructose. J. Lab. clin. Med. 50, 953 (1957).Google Scholar
  136. Selye, H.: The physiology and pathology of exposure to stress; a treatise based on the concepts of the general-adaptation syndrome and the diseases of adaptation. Montreal: Acta 1950.Google Scholar
  137. Shattock, F. M.: The somatic manifestations of schizophrenia. A clinical study of their significance. J. ment. Sci. 96, 32–142 (1950).Google Scholar
  138. Siebert, D., K. H. Baessler, R. Hannover, E. Adloff U. R. Beyer: Enzymaktivitäten in isolierten Zellkernen in Abhängigkeit von der mitotischen Aktivität. Biochem. Z. 334, 388 (1961).Google Scholar
  139. Sokoloff, L.: Relation of cerebral circulation and metabolism to mental activity. In: Neurochemistry. p. 216–229. (Eds. S. R. Korey, and J. I. Nürnberger ). London: Cassell and Co. Ltd. 1956.Google Scholar
  140. Sokoloff, L., S. Perlin, C. Kornetsky, And S. S. Kety: The effects of D-lysergic acid diethylamide on cerebral circulation and over-all metabolism. Ann. N. Y. Acad. Sci. 66, 468–477 (1957).PubMedGoogle Scholar
  141. Spillane, J. D.: Nutritional disorders of the nervous system. Baltimore: Williams and Wilkins Co. 1947.Google Scholar
  142. Spirtes, M. A., and E. Brunner: Induced fructolysis in normal rat brain cortex slices. Fed. Proc. 18, 447 (1959).Google Scholar
  143. Streicher, E.: Effect of anesthetic and convulsant drugs on P32 exchange in rat brain. Fed. Proc. 13, 146 (1954).Google Scholar
  144. Tagnon, R. F., and J. Corvilain: Utilization of fructose by the nervous system in man. J. clin. Endocrin. 19, 509 (1959).Google Scholar
  145. Terner, C.: The effects of phosphate acceptors, p-nitro-phenol and arsenate on respiration, phosphorylation and Pasteur effect in cell-free suspensions. Biochem. J. 64, 523–532 (1956).PubMedGoogle Scholar
  146. Thorn, W.: Über die anaerobe Glykolyse des Warmblütergehirns in situ. Biochem. Z. 321, 361–367 (1951).PubMedGoogle Scholar
  147. Thorn, W., W. Isselhard, and B. Mul-Dener: Glykogen-, Glucose- und Milchsäuregehalt in Warmblüterorganen, bei unterschiedlicher Versuchsanordnung und anoxischer Belastung mit Hilfe optischer Fermentteste ermittelt. Biochem. Z. 331, 545–562 (1959).PubMedGoogle Scholar
  148. Thorn, W., and H. A. Raszkowski: Über den Verlauf der anaeroben Glykolyse in situ bei verschiedenen Körpertemperaturen gemessen am Kaninchenhirn. Biochem. Z. 323, 21–27 (1952).PubMedGoogle Scholar
  149. Tower, D. B.: The effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubated in vitro. J. Neurochem. 3, 185 (1958).PubMedGoogle Scholar
  150. Tschirgi, R. D., R. W. Gerard, H. Jenerick, L. L. Boyarsky, And J. Z. Hearon: Metabolism of the rat spinal cord functioning in isolation. Fed. Proc. 8, 166 (1949).Google Scholar
  151. Tsukada, Y., G. Takagaki, And S. Hirano: Incorporation of radioactive phosphate into protein-bound phosphorus fractions of brain slices in reference to its relation to the metabolic activity. J. Biochem. (Tokyo) 45, 489–501 (1958).Google Scholar
  152. Utena, H., And T. Ezoe: Studies on the carbohydrate metabolism in brain tissue of schizophrenic patients. Reports I and II. The aerobic metabolism of glucose. Psychiat. Neurol, jap. 52, 204–250 (1951).Google Scholar
  153. Utena, H., T. Ezoe, And N. Kato: Biochemical studies on addiction due to -phenylisopropylmethylamine. I. Tissue distribution and excretion of the amine. II. Effect on glucose metabolism in brain tissue. Psychiat. Neurol, jap. 57, 1–3 (1955).Google Scholar
  154. Vignais, P. M., C. H. Gallagher, And I. Zabin: Activation and oxidation of long chain fatty acids by rat brain. J. Neurochem. 2, 283 (1958).PubMedGoogle Scholar
  155. Vladimirov, G. E., And J. N. Rubel: The turnover of hexosemonophosphate in the brain and the effect of stimulation, narcosis and hypothermia. In: Metabolism of the nervous system p. 263–266. (Ed. D. Richter ). New York: Pergamon Press 1957.Google Scholar
  156. Volk, M. E., R. H. Millington, and S. Weinhouse: Oxidation of endogenous fatty acids of rat tissues in vitro. J. biol. Chem. 195, 493 (1952).PubMedGoogle Scholar
  157. Wang, R. I. H., and R. R. Sonnenschein: pH of cerebral cortex during induced convulsions. J. Neurophysiol. 18, 130 (1955).PubMedGoogle Scholar
  158. Weil-Malherbe, H.: The action of glutamic acid in hypoglycaemic coma. J. ment. Sci. 95, 930–944 (1949).PubMedGoogle Scholar
  159. Weil-Malherbe, H.: Der Energiestoffwechsel Des Nervengewebes Und Scen Zusammenhang Mit Der Funktion. In: Die Chemie und der Stoffwechsel des Nervengewebes. 3. Coli. Ges. physiol. Chem. 1952, p. 41–65.Google Scholar
  160. Weil-Malherbe, H., and A. D. Bone: Studies on hexokinase. 1. The hexokinase activity of rat brain extracts. Biochem. J. 49, 339–347 (1951).PubMedGoogle Scholar
  161. Weil-Malherbe, H., and A. D. Bone: Activators and inhibitors of hexokinase in human blood. J. ment. Sci. 97, 635–662 (1951).PubMedGoogle Scholar
  162. Weil-Malherbe, H., and A.D. Bone: The concentration of adrenaline-like substances in blood during insulin hypoglycaemia. J. ment. Sci. 98, 565–578 (1952).PubMedGoogle Scholar
  163. Wilson, W. P., J. F. Schieve, and P. Scheinberg: Effect of series of electric shock treatments on cerebral blood flow and metabolism. Arch. Neurol. Psychiat. (Chicago) 68, 651–654 (1952).Google Scholar
  164. Wortis, J., K. M. Bowman, W. Goldfarb, J. F. Fazekas, and H. E. Himwich: Availability of lactic acid for brain oxidations. J. Neurophysiol. 4, 243–249 (1941).Google Scholar

D. Metabolism of nitrogenous compounds

  1. Acs, G., A. Neidle, And H. Waelsch: Brain ribosomes and amino acid incorporation. Biochem. biophys. Acta 50, 403 (1961).PubMedGoogle Scholar
  2. Abood, L.G., and A. Geiger: Breakdown of proteins andlipids during glucose-free perfusion of the cat’s brain. Amer. J. Physiol. 182, 557–560 (1955).PubMedGoogle Scholar
  3. Abood, L. G., F. A. Gibbs, and E. Gibbs: Comparative study of blood ceruloplasmin in schizophrenia and other disorders. A.M. A. Arch. Neurol. Psychiat. 77, 643–645 (1957).Google Scholar
  4. Acs, G., R. Baläzs, and E. B. Straub: Metabolism in slices of brain cortex. The level of adenosine triphosphate and its changes under the influence of glutamic acid. Ukrain. Biokhim. Zhur. 25, 17–27 (1953).Google Scholar
  5. Adams, J. E., H.A. Harper, G. S. Gordon, M. Hutchin, and R. C. Bentinck: Cerebral metabolism of glutamic acid in multiple sclerosis. Neurology 5, 100–107 (1955).PubMedGoogle Scholar
  6. Ajmone-Marsan, C., M. G. F. Fuortes, and F. Marossero: Influence of ammonium chloride on the electrical activity of the brain and spinal cord. EEG Clin. Neurophys. 1, 291–298 (1949).Google Scholar
  7. Akerfeldt, S.: Oxidation of N,N-dimethyl-p-phenylenediamine by serum from patients with mental disease. Science 125, 117–119 (1957).PubMedGoogle Scholar
  8. Albers, R. W., and R. A. Salvador: Succinic semialdehyde oxidation by a soluble dehydrogenase from brain. Science 128, 359–360 (1958).PubMedGoogle Scholar
  9. Albert, K., P. Hoch, and H.Waelsch: Glutamic acid and mental deficiency. J. nerv. ment. Dis. 114, 471–491 (1951).PubMedGoogle Scholar
  10. Ansell, G. B., and D. Richter: A note on the free amino acid content of rat brain. Biochem. J. 57, 70–73 (1954).PubMedGoogle Scholar
  11. Awapara, J., A. J. Landua, R. Fuerst, and B. Seale: Free y-aminobutyric acid in brain. J. biol. Chem. 187, 35–39 (1950).PubMedGoogle Scholar
  12. Awapara, J., and B. Seale: Distribution of transaminases in rat organs. J. biol. Chem. 194, 497–502 (1952).PubMedGoogle Scholar
  13. Bargmann, W., and E. Scharrer: The site of origin of the hormones of the posterior pituitary. Amer. Sci. 39, 255–259 (1951).Google Scholar
  14. Bazemore, A. W., K. A. C. Elliott, And E. Florey: Isolation of factor I. J. Neurochem. 1, 334–339 (1957).Google Scholar
  15. Beloff-Chain, A., R. Cantanzaro, E. B. Chain, I. Masi, and F. Pocchiari: Fate of uniformly labeled C14-glucose in brain slices. Proc. roy. Soc. B 144, 22–28 (1955).Google Scholar
  16. Benitez, D., G. R. Pscheidt, and W. E. Stone: Formation of ammonium ion in the cerebrum in fluoroacetate poisoning. Amer. J. Physiol. 170, 488–492 (1954).Google Scholar
  17. Berl, S., And H. Waelsch: Determination of glutamic acid, glutamine, glutathione and y-aminobutyric acid and their distribution in brain tissue. J. Neurochem. 3, 161–169 (1958).PubMedGoogle Scholar
  18. Berl, S., D. P. Purpura, M. Girado, and H. Waelsch: Amino acid metabolism in epileptogenic and non-epileptogenic lesions of the neocortex (cat). J. Neurochem. 4, 311 (1959).PubMedGoogle Scholar
  19. Berl, S., D. P. Purpura, O. Gonzalez-Monteagudo, And H. Waelsch: Effects of injected amino acids on metabolic changes occurring in epileptogenic and non-epileptogenic lesions of the cerebral cortex. In: Inhibition in the nervous system and y-aminobutyric acid. ( E. Roberts, Ed.). London: Pergamon Press 1960b.Google Scholar
  20. Berl, S., F. Takagaki, D. D. Clarke, And H. Waelsch: Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J. biol. Chem. 237, 2562 (1962).PubMedGoogle Scholar
  21. Bessman, J. P.: Ammonia and coma. In chemical pathology of the nervous system, p. 370. ( J. Folch-Pi, Ed.) London: Pergamon Press Ltd. 1961.Google Scholar
  22. Bessman, S. P., J. Rossen, and E. C. Layne: y-Aminobutyric acid Glutamic Acid Transamination In Brain. J. Biol. Chem. 201, 385–391 (1953).PubMedGoogle Scholar
  23. Bessman, S. P., and A. N. Bessman: The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. clin. Invest. 34, 622–628 (1955).PubMedGoogle Scholar
  24. Bessman, S. P.: Ammonia metabolism in animals. In: Inorganic nitrogen metabolism. 408–437. ( W. D. McElroy and B. Glass, Eds.), Baltimore, Maryland: Johns Hopkins Press 1956.Google Scholar
  25. Block, W.: In-vitro-Versuche zum Einbau von 14C-Mescalin und 14C-ß-Phenyl-athylamin in Proteine. Hoppe-Seylers Z. physiol. Chem. 296, 1 (1954).PubMedGoogle Scholar
  26. Block, W., K. Block, and B. Patzig: Zur Physiologie des 14C-radioaktiven Mescalins im Tierversuch. Hoppe-Seylers Z. physiol. Chem. 290, 160 (1952).PubMedGoogle Scholar
  27. Braganca, B. M., P. Faulkner, and J. H. Quastel: Effects of inhibitors of glutamine synthesis on the inhibition of acetylcholine synthesis in brain slices by ammonia ions. Biochim. biophys. Acta 10, 83–88 (1953).PubMedGoogle Scholar
  28. Brattgard, S. O.: The importance of adequate stimulation for the chemical composition of retinal ganglion cells during early po3t-natal develop-Ment. Acta Radiol. (Stockh.) Suppl. 96, (1952).Google Scholar
  29. Busch, H.: Studies on the metabolism of pyruvate-2-C14 in tumor-bearing rats. Cancer Res. 15, Suppl. 3, 365 (1955).PubMedGoogle Scholar
  30. Busch, H., M. H. Goldberg, and D. C. Anderson: Substrate effects on metabolic patterns of pyruvate- 2-C14 in tissue slices. Cancer Res. 16, 175 (1956).PubMedGoogle Scholar
  31. Caspersson, T.: The relations between nucleic acid and protein synthesis. Symp. Soc. Exp. Biol. 1. Nucleic acid, 127–151 (1947).Google Scholar
  32. Chirigos, M. A., P. Greengard, and S. Uden-Friend: Uptake of tyrosine by rat brain in vivo. J. biol. Chem. 235, 2075 (1960).PubMedGoogle Scholar
  33. Clarke, D. D., M. J. Mycek, A. Neidle, And H. Waelsch: The incorporation of amines into protein. Arch. Biochem. 79, 338 (1959).Google Scholar
  34. Clarke, D. D., A. Neidle, N. K. Sarkar, and H. Waelsch: Metabolic activity of protein amide groups. Arch. Biochem. 71, 277–279 (1957).PubMedGoogle Scholar
  35. Clark, G. M., and B. Eiseman: Studies in ammonia metabolism. IV. Biochemical changes in brain tissue of dogs during ammonia induced coma. New Engl. J. Med. 259, 178–180 (1958).PubMedGoogle Scholar
  36. Clouet, D. H.: On the apparent fixation of serotonin in mitochondrial proteins. Abstract in: Proceedings of the Fourth International Congress of Biochemistry, p. 184. Pergamon Press 1958.Google Scholar
  37. Clouet, D. H., and D. Richter: The incorporation of (35S) labelled methionine into the proteins of the rat brain. J. Neurochem. 3, 219–229 (1959).PubMedGoogle Scholar
  38. Clouet, D.H., and H. Waelsch: The recovery of Cholinesterase in the nervous system of the frog after inhibition. J. Neurochem. 8, 201 (1961).PubMedGoogle Scholar
  39. Crane, R. K., and E. G. Ball: Factors affecting the fixation of C1402 by animal tissues. J. biol. Chem. 188, 819–832 (1951).PubMedGoogle Scholar
  40. Davison, A. N.: Metabolically inert proteins of the central and peripherial nervous system, muscle and tendon. Biochem. J. 78, 272 (1961).PubMedGoogle Scholar
  41. Dawson, R. M. C.: Studies on the glutamine and glutamic acid content of the rat brain during insulin hypoglycaemia. Biochem. J. 47, 386–395 (1950).PubMedGoogle Scholar
  42. Dawson, R. M. C.: The metabolism and glutamic acid content of rat brain in relation to thiopentane anaesthesia. Biochem. J. 49, 138–144 (1951).PubMedGoogle Scholar
  43. Dawson, R. M. C., and R. A. Peters: Observations upon the behaviour of some phosphate esters in brain at the start of convulsions induced by fluorocitrate and fluoroacetate. Biochim. biophys. Acta 16, 254–257 (1955).PubMedGoogle Scholar
  44. Dingman, W., and M. B. Sporn: The penetration of proline and proline derivatives into brain. J. Neurochem. 4, 148–153 (1959).PubMedGoogle Scholar
  45. Dingman, W., And M. B. Sporn: The incorporation of 8-azaguanine into rat brain RNA and its effect on maze-learning by the rat: an inquiry into the biochemical basis of memory. J. Psychiatric. Res. 1, 1 (1961).Google Scholar
  46. Dingman, W., M. B. Sporn, and R. K. Da Vies: The chemical fractionation of rat brain proteins. J. Neurochem. 4, 154–160 (1959).PubMedGoogle Scholar
  47. Einarson, L.: Structural changes and functional disturbances in the nervous system. Anatomiske Skrifter 1, 27–51 (1954).Google Scholar
  48. Einarson, L.: Cytological aspects of nucleic acid metabolism. In: Metabolism of the nervous system. 403–420. ( D. Richter, Ed.), London: Pergamon Press 1957.Google Scholar
  49. Eiseman, B., W. Bakewell, and G. Clark: Studies in ammonia metabolism. I. Ammonia metabolism and glutamate therapy in hepatic coma. Amer. J. Med. 20, 890–895 (1956).PubMedGoogle Scholar
  50. Elliot, W. H.: Studies on the enzymic synthesis of glutamine. Biochem. J. 49, 106–112 (1951).Google Scholar
  51. Elliott, K. A. C.: The relation of ions to metabolism in brain. Canad. J. Biochem. 33, 466 (1955).PubMedGoogle Scholar
  52. Findlay, M., W. L. Magee, and R. J. Rossiter: Incorporation of radioactive phosphate into lipids and pentosenucleic acid of cat brain slices. The effect of inorganic ions. Biochem. J. 58, 236–243 (1954).PubMedGoogle Scholar
  53. Flock, E. V., M. A. Block, J. H. Grindlay, F. C. Mann, and J. L. Bollman: Changes in free amino acids of brain and muscle after total hepatectomy. J. biol. Chem. 200, 529–536 (1953).PubMedGoogle Scholar
  54. Florey, E.: Über einen nervösen Hemmungsfaktor in Gehirn und Rückenmark. Naturwissenschaften 40, 295–296 (1953).Google Scholar
  55. Fürst, S., A. Lajtha, and H. Waelsch: Amino acid and protein metabolism of the brain. III. Incorporation of lysine into the proteins of various brain areas and their cellular fractions. J. Neurochem. 2, 216–225 (1958).PubMedGoogle Scholar
  56. Gaitonde, M. K.: The rate of (35S) methionine and (35S) cystine into proteolipids and proteins of rat brain. Biochem. J. 80, 277 (1961).PubMedGoogle Scholar
  57. Gaitonde, M. K., and D. Richter: The uptake of 35S into rat tissues after injection of (35S) methionine. Biochem. J. 59, 690–696 (1955).PubMedGoogle Scholar
  58. Gaitonde, M. K., and D. Richter: The metabolic activity of the proteins of the brain. Proc. roy. Soc. 145, 83–99 (1956).Google Scholar
  59. Geiger, A., J. Magnes, and J. Dobkin: Non-carbohydrate sources of excess energy utilized by the brain during convulsions. Fed. Proc. 13, 52–53 (1954).Google Scholar
  60. Geiger, A.: Correlation of brain metabolism and function by the use of a brain perfusion method in situ. Physiol. Rev. 38, 1–20 (1959).Google Scholar
  61. Gjessing, R.: Disturbances of somatic functions in catatonia with a periodic course, and their compensation. J. ment. Sci. 84, 608–621 (1938).Google Scholar
  62. Gjessing, R.: Beiträge zur Kenntnis der Pathophysiologic periodisch katatoner Zustände, IV. Mitteilung. Versuch einer Ausgleichung der Funktionsstörungen. Arch. Psychiat. Nervenkr. 109, 525–595 (1939).Google Scholar
  63. Gore, M. B. R., And H. Mcilwain: Effects of some inorganic salts on the metabolic response of sections of mammalian cerebral cortex to electrical stimulation. J.Physiol. ll7, 471–483 (1952).Google Scholar
  64. Gray, I., J. M. Johnston, And C. W. Spearing: Biochemical response to trauma. V. Glutamine, glutamic acid, ammonia in the brain. Fed. Proc. 15, 265 (1956).Google Scholar
  65. Guha, S. R., and J. J. Ghosh: Glutamine transaminase activity in rat brain. Ann. Biochem. exp. Med. 19, 33–36 (1959).Google Scholar
  66. Haber, C., And L. Said El: Glutamic acid in neural activity. Fed. Proc. 7, 47 (1948).PubMedGoogle Scholar
  67. Hamberger, C. A., And H. Hyden: Cytochemical changes in the cochlear ganglion caused by acoustic stimulation and trauma. Acta oto-laryng. (Stockh.) Suppl. 61, (1945).Google Scholar
  68. Hamberger, C. A., And H. Hyden: Production of nucleoproteins in the vestibular ganglion. Acta otolaryng. (Stockh.) Suppl. 75, 53–81 (1949a).Google Scholar
  69. Hamberger, C. A., and H. Hyden: Transneuronal chemical changes in Deiters nucleus. Acta otolaryng. (Stockh.) Suppl. 75, 82–113 (1949b).Google Scholar
  70. Heath, R. G., S. Martens, B. E. Leach, M. Cohen, and C. Angel: Effect on behavior in humans with the administration of taraxein. Amer. J. Psychiat. 114, 14–24 (1957).PubMedGoogle Scholar
  71. Heath, R. G., B. E. Leach, L. W. Byers, S. Martens, And C. A. Feigley: Pharmacological and biological psychotherapy. Amer. J. Psychiat. 114, 683–689 (1958).PubMedGoogle Scholar
  72. Heinz, E.: Exchangeability of glycine accumulated by carcinoma cells. J. biol. Chem. 225, 305–315 (1957).PubMedGoogle Scholar
  73. Heinz, E., and P. M. Walsh: Exchange diffusion, transport, and intracellular level of amino acids in Ehrlich carcinoma cells. J. biol. Chem. 233, 1488–1493 (1958).PubMedGoogle Scholar
  74. Himwich, H. E., and W. A. Himwich: The permeability of the blood-brain barrier to glutamic acid in the developing rat. In: Biochemistry of the developing nervous system. 202–206. ( H. Waelsch, Ed.), New York: Academic Press 1955.Google Scholar
  75. Hyden, H.: Protein metabolism in the nerve cell during growth and function. Acta Physiol, scand. 6, Suppl. 17, 5–136 (1943).Google Scholar
  76. Hyden, H.: The nucleoproteins in virus reproduction. Cold Spr. Harb. Symp. quant. Biol. 12, 104–114 (1947).Google Scholar
  77. Hyden, H., S. Lovtrup, And A. Pigon: Cytochrome oxidase and succin-oxidase activities in spinal ganglion cells and in glial Capsula cells. J. Neurochem. 2, 304–311 (1958).PubMedGoogle Scholar
  78. Hyden, H.: Biochemical changes in glial cells and nerve cells at varying activity. In: Proceedings of the Fourth International Congress of Biochemistry. Vol. Ill: Biochemistry of the central nervous system. 64–89. ( F. Brücke, ed.), London: Pergamon Press Ltd. 1959.Google Scholar
  79. Hyden, H., And A. Pigon: A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters’ nucleus. J. Neuro chem. 6, 57 (1960).Google Scholar
  80. Irreverre, F., and R. L. Evans: Isolation of y-guanidinobutyric acid from calf brain. J. biol. Chem. 234, 1438–1440 (1959).PubMedGoogle Scholar
  81. Kamin, H., and P. Handler: The metabolism of parenterally administered amino acids. II. Urea synthesis. J. biol. Chem. 188, 193–205 (1951).PubMedGoogle Scholar
  82. Katzman, R., and P. H. Leiderman: Brain potassium exchange in normal adult and immature rats. Amer. J. Physiol. 175, 263–270 (1953).PubMedGoogle Scholar
  83. Kety, S. S.: Biochemical theories of schizophrenia. Science 129, 1528–1532 and 1590–1596 (1959).Google Scholar
  84. Keup, W.: Die Biochemie der Schizophrenie, Eine kritische Stellungnahme. Mschr. Psychiat. Neurol. 128, 56–90 (1954).Google Scholar
  85. Killam, K. F., And J. A. Bain: Convulsant hydrazides I. In vitro and in vivo inhibition of vitamin B6 enzymes by convulsant hydrazides. J. Pharmacol, exp. Ther. 119, 255–262 (1957).Google Scholar
  86. Killam, K. F., S. R.Dasgupta, And E. K. Killam: Studies of the action of convulsant hydrazides as Vitamin B6 antagonists in the central nervous system. In: Inhibition in the nervous system and y-aminobutyric acid ( E. Roberts, Ed.). London: Pergamon Press 1960.Google Scholar
  87. Klingmüller, V.: Biochemie, Physiologie und Klinik der Glutaminsäure. Aulendorf/Württ.: Cantor 1955.Google Scholar
  88. Koechlin, B. A.: On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its ion pattern. J. biophys. biochem. Cytol. 1, 511–529 (1955).PubMedGoogle Scholar
  89. Koenig, E., and G. B. Koelle: Mode of regeneration of acetylcholinesterase in cholinergic neurons following irreversible inactivation. J. Neurochem. 8, 169 (1961).PubMedGoogle Scholar
  90. Koransky, W.: Fraktionierte Darstellung von Nucleotiden aus dem Gehirn von Ratten im Ruhezustand und im Krampfanfall. Naunyn-Schmiedebergs Arch. exp. Path. Pharmakol. 228, 140–143 (1956).Google Scholar
  91. Korey, S. R., B. De Braganza, And D. Nachmansohn: Choline acetylase. V. Esterification and transacetylations. J. biol. Chem. 189, 705–715 (1951).PubMedGoogle Scholar
  92. Krebs, H. A.: Metabolism of amino-acids. IV. The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem. J. 29, 1951–1959 (1935).PubMedGoogle Scholar
  93. Krebs, H.A., L. V. Eggleston, and R. Hems: Distribution of glutamine and glutamic acid in animal tissues. Biochem. J. 44, 159–163 (1949).Google Scholar
  94. Lajtha, A.: Amino acid and protein metabolism of the brain. II. The uptake of L-lysine by brain and other organs of the mouse at different ages. J. Neurochem. 2, 209–215 (1958).PubMedGoogle Scholar
  95. Lajtha, A.: Amino acid and protein metabolism of the brain. V. Turnover of leucine in mouse tissues. J. Neurochem. 3, 358–365 (1959).PubMedGoogle Scholar
  96. Lajtha, A.: Protein metabolism in peripheral nerve. In: Chemical pathology of the nervous system. ( J. Folch, Ed.). London: Pergamon Press. Ltd. 1960.Google Scholar
  97. Lajtha, A., S. Berl, and H. Waelsch: Amino acid and protein metabolism of the brain. IV. The metabolism of glutamic acid. J. Neurochem. 3, 322–332 (1959).PubMedGoogle Scholar
  98. Lajtha, A., S. Berl, And H. Waelsch: Compartmentalization of glutamic acid metabolism in the central nervous system. In: Inhibition in the central nervous system and y-aminobutyric acid ( E. Roberts, Ed.). London: Pergamon Press Ltd. 1960.Google Scholar
  99. Lajtha, A., S. Fürst, A. Gerstein, And H. Waelsch: Amino acid and protein metabolism of the brain. I. Turnover of free and protein bound lysine in brain and other organs. J. Neurochem. 1, 289–300 (1957a).Google Scholar
  100. Lajtha, A., S.Fürst, and H. Waelsch: The metabolism of the proteins of the brain. Experientia (Basel) 13, 168–172 (1957b).Google Scholar
  101. Lajtha, A., And P. Mela: The exchange of free amino acids between plasma and brain. J. Neurochem. 7, 210 (1961).Google Scholar
  102. Lajtha, A., P. Mela, And H. Waelsch: Manganese dependent glutamotransferase, J. biol. Chem. 205, 553 (1953).PubMedGoogle Scholar
  103. Lajtha, A., and J. Toth: Uptake and transport of amino acids by the brain. J. Neurochem. 8, 216 (1961).PubMedGoogle Scholar
  104. Leach, B. E., M. Cohen, R. G. Heath, and S. Martens: Studies of the role of ceruloplasmin and albumin in adrenaline metabolism. A. M. A. Arch. Neurol. Psychiat. 76, 635–642 (1956).Google Scholar
  105. Maurer, W.: Untersuchungen zur Größe des Eiweißumsatzes von Plasma- und Organeiweiß. Wien. Z. inn. Med. 38, 28 (1957).Google Scholar
  106. Mcilwain, H.: Glutamic acid and glucose as substrates for mammalian brain. J. ment. Sci. 97, 674–680 (1951).PubMedGoogle Scholar
  107. McIlwain, H.: Phosphates of brain during in vitro metabolism: Effects of oxygen, glucose, glutamate, and calcium and potassium salts. Biochem. J. 52, 289–295 (1952).PubMedGoogle Scholar
  108. McIlwain, H.: Substances which support respiration and metabolic response to electrical impulses in human cerebral tissues. J. Neurol. Neurosurg. Psychiat. 16, 257–266 (1953).PubMedGoogle Scholar
  109. McIlwain, H., P. J. W. Ayres, and O. Forda: Metabolic response to electrical stimulation in separated portions of human cerebral tissues. J. ment. Sci. 68, 265–272 (1952).Google Scholar
  110. McIlwain, H., And M. B. R. Gore: Induced loss in cerebral tissues of respiratory response to electrical impulses, and its partial restoration by additional substrates. Biochem. J. 54, 305–312 (1953).PubMedGoogle Scholar
  111. McKhann, G. M., R. W. Albers, L. Sokoloff, O. Mickelsen, and D. B. Tower: The quantitative significance of the y-aminobutyric acid pathway in cerebral oxidative metabolism. In: Inhibition in the nervous system and y-amino-butyric acid (GABA). ( E. Roberts, ed.). London: Pergamon Press Ltd. 1959.Google Scholar
  112. Magee, W. L., and R. J. Rossiter: Chemical studies of peripheral nerve during Wallerian degeneration. 6. Incorporation of radioactive phosphate into pentosenucleic acid and phospholipin in vitro. Biochem. J. 58, 243–249 (1954).PubMedGoogle Scholar
  113. Meister, A., and S. V. Tice: Transamination from glutamine to a-keto acids. J. biol. Chem. 187, 173–187 (1950).PubMedGoogle Scholar
  114. Misani, F., and L. Reiner: Studies on nitrogen trichloride treated prolamines. VIII. Synthesis of the toxic factor. Arch. Biochem. 27, 234–235 (1950).PubMedGoogle Scholar
  115. Mycek, M. J., D. D. Clarke, A. Neidle, and H. Waelsch: Amine incorporation into insulin as catalyzed by transglutaminase. Arch. Biochem. 84, 528 (1959).PubMedGoogle Scholar
  116. Mycek, M. J., and H. Waelsch: Enzymatic hydrolysis of protein amide groups. Fed. Proc. 19, 336 (1960).Google Scholar
  117. Nechaeva, G. A., N. V. Sadikova, And V. A. Skvortsevich: Renewal of amino acids of protein under different functional states. Vop. Biokhim. Nervnoi Sistemy Sbornik 1957,31–39; Chem. Abstr. 53, 1500b (1959).Google Scholar
  118. Ochs, S., and E. Burger: Movement of substance proximo-distally in nerve axon as studied with spinal cord injection of radioactive phosphorus. Amer. J. Physiol. 194, 499–506 (1958).PubMedGoogle Scholar
  119. Palay, S. L., and G. E. Palade: The fine structure of neurons, J. biophys. biochem. Cytol. 1, 69–88 (1955).PubMedGoogle Scholar
  120. Palladin, A. V.: Proteins of the nervous system under various conditions. In: Metabolism of the nervous system (D. Richter, Ed.), 456–458. London: Pergamon Press Ltd. 1957.Google Scholar
  121. Palladin, A. V., V. V. Belik, N. M. Polyakova, and T. P. Silich: Proteins of the nervous system. Vop. Biokhim. Nervnoi. Sistemy Sbornik 1959, 9–30. Chem. Abstr. 53, 1499h (1959).Google Scholar
  122. Palladin, A. V., And N. Vertaimer: Protein renewal in the central nervous system in different functional states. Dokl. Akad. Nauk SSSR 102, 319–321 (1955); Chem. Abstr. 49, 14971g (1955).PubMedGoogle Scholar
  123. Pisano, J. J., C. Mitoma, And S. Udenfriend: Biosynthesis of y-guanidinobutyric acid from y-aminobutyric acid and arginine. Nature (Lond.) 180, 1125–1126 (1957).Google Scholar
  124. Pisano, J. J., J. D. Wilson, L. Cohne, D. Abraham, And S. Udenfriend: Isolation of y-aminobutyrylhistidine (homocarnosine) from brain. J. biol. Chem. 236, 499 (1961).PubMedGoogle Scholar
  125. Price, J. C., H. Waelsch, and T. J. Putnam: dl-glutamic acid hydrochloride in treatment of petit mal and psychomotor Scezures. J. Amer. med. Ass. 122, 1153–1156 (1943).Google Scholar
  126. Purpura, D. P., S. Berl, O. Gonzalez-Monteagudo, And A. Wyatt: Brain amino acid changes during methoxypyridoxine-induced Scezures (cat). In: Inhibition in the nervous system and y-aminobutyric acid (E. Roberts, Ed.). London: Pergamon Press 1960.Google Scholar
  127. Purpura, D. P., M. Girado, and H. Grundfest: Selective blockade of excitatory synapses in the cat brain by y-aminobutyric acid. Science 125, 1200–1201 (1957).PubMedGoogle Scholar
  128. Purpura, D. P., M. Girado, and H. Grundfest: Central synaptic effects of co-guanidino acids and amino acid derivatives. Science 127, 1179–1181 (1958).PubMedGoogle Scholar
  129. Purpura, D. P., M. Girado, T. G. Smith, D. A. Callan and H. Grundfest: Structure-activity determinants of pharmacological effects of amino acids and related compounds on central synapses. J. Neurochem. 3, 238–238 (1959).PubMedGoogle Scholar
  130. Richter, D., and R. M. C. Dawson: The ammonia and glutamine content of the brain. J. biol. Chem. 176, 1199–1210 (1948).PubMedGoogle Scholar
  131. Roberts, E., and H. M. Bregoff: Transamination of y-amino-butyric acid and a-alanine in brain and liver. J. biol. Chem. 201,393–398 (1953).–Google Scholar
  132. Roberts, E., And S. Frankel: y-Aminobutyric acid in brain: its formation from glutamic Acid. J. Biol. Chem. 187, 55–63 (1950).Google Scholar
  133. Robins, E., K. Smith, and I. P. Lowe: IN: Neuro-pharmacology, Transactions of the Fourth Conference of the Josiah Macy, Jr. Foundation. New York: 1957.Google Scholar
  134. Ruisseau, J. P. Du, J. P. Greenstein, M. Winitz, and S. M. Birnbaum: Studies on the metabolism of free amino acids and related compounds in vivo. VI. Free amino acid levels in the tissues of rats protected against ammonia toxicity. Arch. Biochem. 68, 161–171 (1957).Google Scholar
  135. Sachs, H.: Vasopressin biosynthesis. Biochim. biophys. Acta 34, 572–573 (1959).PubMedGoogle Scholar
  136. Samuels, A. J., L. L. Boyarsky, and R. W. Gerard: Distribution, exchanges and migration of phosphate compounds in the nervous system. Amer. J. Physiol. 164, 1–15 (1951).PubMedGoogle Scholar
  137. Sarkar, N. K., D. D. Clarke, and H. Waelsch: An enzymically catalyzed incorporation of amines into proteins. Biochim. biophys. Acta 25, 451 (1957).PubMedGoogle Scholar
  138. Scheinberg, I. H., A. G. Morell, R. S. Harris, and A. Berger: Concentration of ceruloplasmin in plasma of schizo-phrenic patients. Science 126, 925–926 (1957).PubMedGoogle Scholar
  139. Schurr, P. E., H. T. Thompson, L. M. Henderson, J. N. Williams Jr., and C. A. Elvehjem: The determination of free amino acids in rat tissues. J. biol. Chem. 182, 39–45 (1950).Google Scholar
  140. Schwerin, P., S. P. Bessman, and H. Waelsch: The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse. J. biol. Chem. 184, 37–44 (1950).PubMedGoogle Scholar
  141. Shapot, V. S.: Brain metabolism in relation to the functional state of the central nervous system. In: Metabolism of the nervous system. 257–262. ( D. Richter, Ed.). London: Pergamon Press 1957.Google Scholar
  142. Silber, R. H.: The free amino acids of lobster nerve. J. cell. comp. Physiol. 18, 21–30 (1941).Google Scholar
  143. Speck, J. F.: The enzymatic synthesis of glutamine, a reaction utilizing adenosine triphosphate. J. biol. Chem. 179, 1405–1426 (1949).PubMedGoogle Scholar
  144. Sporn, M. B., W. Dingman, and A. Defalco: A method for studying metabolic pathways in the brain of the intact animal. The conversion of proline to other amino acids. J. Neurochem. 4, 141–147 (1959).PubMedGoogle Scholar
  145. Stern, J. R., L. V. Eggleston, R. Hems, and H. A. Krebs: Accumulation of glutamic acid in isolated brain tissue. Biochem. J. 44, 410–418 (1949).Google Scholar
  146. Strecker, H. J.: Glutamic dehydrogenase. Arch. Biochem. 46, 128–140 (1953).PubMedGoogle Scholar
  147. Takagaki, G., S. Berl, D. D. Clarke, D. P. Purpura, and H. Waelsch: Glutamic acid metabolism in brain and liver during infusion with ammonia labelled with nitrogen-15. Nature (Lond.) 189, 326 (1961).Google Scholar
  148. Takagaki, G., S. Hirano,And Y. Nagata: Some observations on the effect of D-glutamate on the glucose metabolism and the accumulation of potassium ions in brain cortex slices. J. Neurochem. 4, 124 (1959).PubMedGoogle Scholar
  149. Tallan, H. H., S. Moore, and W. H. Stein: Studies on the free amino acids and related compounds in the tissues of the cat. J. biol. Chem. 211, 927–939 (1954).PubMedGoogle Scholar
  150. Tallan, H. H., S. Moore, and W. H. Stein: L-Cystathionine in human brain. J. biol. Chem. 230, 707–716 (1958).PubMedGoogle Scholar
  151. Tashiro, S.: Studies of alkaligenesis in tissues. I. Ammonia production in the nerve fiber during excitation. Amer. J. Physiol. 60, 519–543 (1922).Google Scholar
  152. Terner, C., L. V. Eggleston, and H. A. Krebs: The role of glutamic acid in the transport of potassium in brain and retina. Biochem. J. 47, 139–149 (1950).PubMedGoogle Scholar
  153. Thorn, W., and J. Heimann: The effects of anoxia, ischaemia, asphyxia and reduced temperature on the ammonia level in the brain and other organs. J. Neurochem. 2, 166–177 (1958).PubMedGoogle Scholar
  154. Torda, C.: Effect of convulsion-inducing agents on the acetylcholine content and on the electrical activity of the brain. Amer. J. Physiol. 173, 179–183 (1953).PubMedGoogle Scholar
  155. Tower, D. B.: Nature and extent of the biochemical lesion in human epileptogenic cerebral cortex. Neurology 5, 113–130 (1955).PubMedGoogle Scholar
  156. Tower, D. B.: Glutamic metabolism in the mammalian central nervous system. In: Proceedings of the Fourth International Congress of Biochemistry, Vol. Ill: Biochemistry of the central nervous system. 213–250. ( F. Brücke, Ed.) London: Pergamon Press Ltd. 1959.Google Scholar
  157. Tower, D. B.: The administration of y-aminobutyric acid to man: systemic effects and anticonvulsant action. In: Inhibition in the nervous system and y-amino-butyric acid ( E. Roberts, Ed.), London: Pergamon Press 1960.Google Scholar
  158. Tsukada, Y., And G. Takagaki: Ammonia-formation systems in brain tissue, Nature (Lond.) 173, 1138 (1954).Google Scholar
  159. Tsukada, Y., G. Takagaki, S. Sugimoto, and S. Hirano: Changes in the ammonia and glutamine content of the rat brain induced by electric shock. J. Neurochem. 2, 295–303 (1958).PubMedGoogle Scholar
  160. Ungar, G., E. Aschheim, S. Psychoyqs, And D. V. Romano: Reversible changes of protein configuration in stimulated nerve structures. J. gen. Physiol. 40, 635–652 (1957).PubMedGoogle Scholar
  161. Ungar, G., And D. V. Romano: Sulfhydryl groups in resting and stimulated rat brain; their relationship with protein structure. Proc. Soc. exp. Biol. (N. Y.) 97, 324–326 (1958).Google Scholar
  162. Vladimirova, E. A.: Changes in the content of preformed ammonia in the hemispheres of the cerebrum of rats under conditions of block caused by the action of conditional irritants. Dokl. Akad. Nauk SSSR 95, 905–908 (1954); Chem. Abstr. 48, 9509e (1954).PubMedGoogle Scholar
  163. Vladimirova, E. A.: The ammonia and glutamine content of the cerebral hemispheres of rats in conditioned reflex stimulation and inhibition. Akad. Nauk SSSR 1956, 440–448; Chem. Abstr. 51, 11526e (1957).Google Scholar
  164. Vladimirov, G. E.: Functional biochemistry of the brain. Fiziol. Zhur. SSSR 39, 3–16 (1953); Chem. Abstr. 47, 4983e (1953).Google Scholar
  165. Vladimirov, G. E., and A. P. Urinson: Glycine metabolism in the cerebral tissue of the rat in normal resting and in amytal-induced sleep. Biochemistry 22, 665–670 (1957).Google Scholar
  166. Vrba, R.: Beitrag zum Studium des Gehirnmetabolismus im Zusammenhang mit körperlicher Anstrengung. III. Über Ammoniak-Bildung Und Strukturale Eiweißveränderungen Im Gehirn. Physiol. Bohemoslov. 4, 397–408 (1955).Google Scholar
  167. Vrba, R., and J. Folbergrova: Observations on endogenous metabolism in brain in vitro and in vivo. J. Neurochem. 4, 338–349 (1959).Google Scholar
  168. Waelsch, H.: Glutamic acid and cerebral function. Advanc. Protein Chem. 6, 301–341 (1951).Google Scholar
  169. Waelsch, H.: Certain aspects of intermediary metabolism of glutamine, asparagine and glutathione. Advanc. Enzymol. 13, 237 (1952).Google Scholar
  170. Waelsch, H.: Metabolism of proteins and amino acids. In: Metabolism of the nervous system. 431–447. ( D. Richter, Ed.), London: Pergamon Press 1957.Google Scholar
  171. Waelsch, H.: Some aspects of amino acid and protein-metabolism of the nervous system. J. nerv. ment. Dis. 126, 33–39 (1958).PubMedGoogle Scholar
  172. Waelsch, H.: Some problems of metabolism in relation to the structure of the nervous system. In: Proceedings of the Fourth International Congress of Biochemistry. Vol. Ill; Biochemistry of the central nervous system. 36–45. ( F. Brücke, Ed.), London: Pergamon Press Ltd. 1959.Google Scholar
  173. Waelsch, H.: An attempt at integration of structure and metabolism in the nervous system. In: Structure and function of the cerebral cortex. Elsevier Publishing Company 1960.Google Scholar
  174. Waelsch, H.: Com-partmentalized biosynthetic reactions in the central nervous system. In Regional Neurochemistry (S. S. Kety and J. Elkes, Eds); p. 57. London: Pergamon Press Ltd. 1961.Google Scholar
  175. Waelsch, H., and A. Lajtha: Protein metabolism in the nervous system. Physiol. Rev. 41, 709 (1961).PubMedGoogle Scholar
  176. Waelsch, H., P. Owades, H. K. Miller, and E. Borek: Glutamic acid antimetabolites: The sulfoxide derived from methionine. J. biol. Chem. 166, 273–281 (1946).PubMedGoogle Scholar
  177. Webster Jr., L. T., and G. J. Gabuzda: Ammonium uptake by the extremities and brain in hepatic coma. J. clin. Invest. 37, 414–424 (1958).PubMedGoogle Scholar
  178. Weil-Malherbe, H.: Studies on brain metabolism. I. The metabolism of glutamic acid in brain. Biochem. J. 30, 665–676 (1936).PubMedGoogle Scholar
  179. Weil-Malherbe, H.: Observations on tissue glycolysis. Biochem. J. 32, 2257–2275 (1938).PubMedGoogle Scholar
  180. Weil-Malherbe, H., and A. C. Drysdale: Ammonia formation in brain. III. The role of the protein amide groups and of hexosamines. J. Neurochem. 1, 250–255 (1957).PubMedGoogle Scholar
  181. Weil-Malherbe, H., and R. H. Green: Ammonia formation in brain. 1. Studies on slices and suspension. Biochem. J. 61, 210–218 (1955a).PubMedGoogle Scholar
  182. Weil-Malherbe, H., And R. H. Green: Ammonia formation in brain. 2. Brain adenylic deaminase. Biochem. J. 61, 218–224 (1955b).PubMedGoogle Scholar
  183. Weiss, P., And H. B. Hiscoe: Experiments in the mechanism of nerve growth. J. exp. Zool. 107, 315–395 (1948).PubMedGoogle Scholar
  184. Winnick, T., R. E. Winnick, R. Acher, and C. Fromageot: Amino acids and peptides of posterior pituitary and hypothalamus tissues. Biochim. biophys. Acta 18, 488 (1955).PubMedGoogle Scholar
  185. Winterstein, H., and E. Hirschberg: Über Ammoniakbildung im Nervensystem. Biochem. Z. 156, 138 (1925).Google Scholar

E. Lipids

  1. Abood, L. G., and A. Geiger: Breakdown of proteins and lipids during glucose-free perfusion of the cat’s brain. Amer. J. Physiol. 182, 557–560 (1955).PubMedGoogle Scholar
  2. Adams, R. D., And E. P. Richardson: The chemistry of demyelination. In: Chemical pathology of the nervous system (J. Folch, Ed.), Proceedings of the Third International Neurochemical Symposium. London: Pergamon Press. In press.Google Scholar
  3. Ansell, G. B., and R. M. C. Dawson: Ethanolamine O-phosphoric acid in rat brain. Biochem. J. 50, 241–246 (1951).PubMedGoogle Scholar
  4. Blix, G.: Zur Kenntnis der schwefelhaltigen Lipoidstoffe des Gehirns. Über Cerebronschwefelsäure. Hoppe-Seylers Z. physiol. Chem. 219, 82–98 (1933).Google Scholar
  5. Blix, G.: Über die Kohlenhydratgruppen des Submaxillarismucins. Hoppe-Seylers Z. physiol. Chem. 240, 43–45 (1936).Google Scholar
  6. Blix, G.: Einige Beobachtungen über eine hexosaminhaltige Substanz in der Protagon-Fraktion des Gehirns. Skand. Arch. Physiol. 80, 46–51 (1938).Google Scholar
  7. Blix, G., L. Svennerholm, And I. Werner: The isolation of Chondrosamine from gangliosides and from submaxillary mucin. Acta chem. scand. 6, 358–362 (1952).Google Scholar
  8. Bodian, D., and D. Dziewiat- Kowski: The disposition of radioactive phosphorus in normal, as compared with regenerating and degenerating nervous tissue. J. cell. Comp. Physiol. 35, 155–177 (1950).Google Scholar
  9. Brady, R. O., and G. J. Koval: The enzymatic synthesis of sphingosine. J. biol. Chem. 233, 26–31 (1958).PubMedGoogle Scholar
  10. Brante, G.: Filter paper chromatography in lipid analysis. Upsala Läk.-Foren, Förh. 53, 301–308 (1948).PubMedGoogle Scholar
  11. Burton, R. M., M. A. Sodd, And R. O. Brady: The incorporation of galactose into galactolipides. J. biol. Chem. 233, 1053–1060 (1958).PubMedGoogle Scholar
  12. Carter, H. E., And F. L. Greenwood: Biochemistry of the sphingolipides. VII. Structure of the cerebrosides. J. biol. Chem. 199, 283–288 (1952).PubMedGoogle Scholar
  13. Chibnall, A. C., S. H. Piper, and E. F. Williams: The fatty acids of phrenosin and kerasin. Biochem. J. 30, 100–114 (1936).PubMedGoogle Scholar
  14. Davison, A. N., And M. Wajda: Metabolism of myelin lipids: estimation and separation of brain lipids in the developing rabbit. J. Neurochem. In press.Google Scholar
  15. Dawson, R. M. C.: Studies on the labelling of brain phospholipids with radioactive phosphorus. Biochem. J. 57, 237–245 (1954).PubMedGoogle Scholar
  16. Dawson, R. M. C.: Studies on the phosphorylcholine of rat liver. Biochem. J. 62, 693–696 (1956).PubMedGoogle Scholar
  17. Dawson, R. M. C., and D. Richter: Phosphorus metabolism of the brain. Proc. roy. Soc. 137 B, 252–267 (1950).Google Scholar
  18. Dittmer, J. C., and R. M. C. Dawson: The isolation Of A New Lipid, Triphosphoinositide, And Monophosphoinositide From Ox Brain. Biochem. J. 81, 535 (1961).PubMedGoogle Scholar
  19. Donaldson, H.: The Rat. Memoirs. Wistar Inst. Anat. Biol. 6, 228–233 (1924).Google Scholar
  20. Ehrlich, G., and H. Waelsch: The position of the higher fatty acid metabolism of rat muscle. J. biol. Chem. 168, 195–202 (1946).Google Scholar
  21. Findlay, M., W. L. Magee, and R. J. Rossiter: Incorporation of radioactive phosphate into lipids and pentosenucleic acid of cat-brain slices. The effect of inorganic ions. Biochem. J. 58, 236–242 (1954).PubMedGoogle Scholar
  22. Folch, J.: Brain cephalin, a mixture of phosphatides. Separation from it of phosphatidyl serine, phosphatidyl ethanolamine, and a fraction containing an inositol phosphatide. J. biol. Chem. 146, 35–44 (1942).Google Scholar
  23. Folch, J.: The chemical structure of phosphatidyl serine. J. biol. Chem. 174, 439–450 (1948).PubMedGoogle Scholar
  24. Folch, J., S. Arsove, and J. A. Meath: Isolation of brain strandin. A new type of large molecule tissue component. J. biol. Chem. 191, 819–831 (1951).PubMedGoogle Scholar
  25. Fries, B. A., G. W. Changus, and I. L. Chaikoff: Radioactive phosphorus as an indicator of phospholipoid metabolism. IX. The influence of age on the phospholipid metabolism of various parts of the central nervous system of the rat. The comparative phospholipid activity of various parts of the central nervous system of the rat. J. biol. Chem. 182, 23–34 (1940).Google Scholar
  26. Fries, B. A., H. Schachner, and I. L. Chaikoff: The in vitro formation of phospholipid by brain and nerve with radioactive phosphorus as indicator. J. biol. Chem. 144, 59–66 (1942).Google Scholar
  27. Geiger, A., S. Yamasaki, and R. Lyons: Changes in nitrogenous compounds of brain produced by stimulation of short duration. Amer. J. Physiol. 184, 239–243 (1956).PubMedGoogle Scholar
  28. Gibson, D. M., E. B. Tictchener, and S. J. Wakil: Studies on the mechanism of fatty acid synthesis. V. Bicarbonate requirement for the synthesis of longchain fatty acids. Biochim. biophys. Acta 30, 376–383 (1958).PubMedGoogle Scholar
  29. Gottschalk, A.: Neuraminic acid; the functional group of some biologically active mucoproteins. Yale J. Biol. Med. 28, 525–537 (1956).Google Scholar
  30. Hokin, M. R., and L. E. Hokin: Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J. biol. Chem. 203, 967–977 (1953).PubMedGoogle Scholar
  31. Hokin, L. E., and M. R. Hokin: Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. biophys. Acta. 18, 102–110 (1955).PubMedGoogle Scholar
  32. Kennedy, E. P., and S. B. Weiss: The function of cytidine coenzymes in the biosynthesis of phospholipides. J. biol. Chem. 222, 193–214 (1956a).PubMedGoogle Scholar
  33. Kennedy, E. P., and S. B. Weiss: The enzymatic synthesis of triglycerides. J. Amer. chem. Soc. 78, 3550 (1956b).Google Scholar
  34. Klenk, E.: Über die Cerebroside des Gehirns. Hoppe-Seylers Z. physiol. Chem. 166, 268–286 (1927).Google Scholar
  35. Klenk, E.: Neuraminic acid, the cleavage product of a new brain lipoid. Hoppe-Seylers Z. physiol. Chem. 268, 50–58 (1941).Google Scholar
  36. Klenk, E.: Incorporation of 14C-labelled acetate into some lipids of nervous tissue. In: Metabolism of the nervous system. 369–398. ( D. Richter, Ed.). London: Pergamon Press 1957.Google Scholar
  37. Klenk, E., and H. Faillard: Zur Kenntnis der Fettsäuren der Gehirncerebroside. Die Konstitution der ungesättigten Oxysäuren. Hoppe-Seylers Z. physiol. Chem. 292, 268–275 (1953).PubMedGoogle Scholar
  38. Korey, S. R., And M. Orchen: Plasmologens of the nervous system. Arch. Biochem. 83. In press.Google Scholar
  39. Kornberg, A., and W. E. Pricer Jr.: Enzymatic synthesis of the coenzyme and derivatives of long chain fatty acids. J. biol. Chem. 204, 329–343 (1953a).PubMedGoogle Scholar
  40. Kornberg, A., and W. E. Pricer Jr.: Enzymatic esterification of a-glycerophosphate by long chain fatty acids. J. biol. Chem. 204, 345–357 (1953b).PubMedGoogle Scholar
  41. Lees, M., J. Folch, G. H. Sloane Stanley, and S. Carr: A simple procedure for the preparation of brain sulphatides. J. Neurochem. 4, 9–18 (1959).PubMedGoogle Scholar
  42. Lindberg, O., and L. Ernster: The turnover of radioactive phosphate injected into the subarachnoid space of the brain of the rat. Biochem. J. 46, 43–47 (1950).PubMedGoogle Scholar
  43. Lynen, F.: Fatty acid metabolism. In: Metabolism of the nervous system. 381–398. ( D. Richter, Ed.). London: Pergamon Press 1957.Google Scholar
  44. Lynen, F., and S. Ochoa: Enzymes of fatty acid metabolism. Biochim. biophys. Acta 12, 299–314 (1953).PubMedGoogle Scholar
  45. Mcconnell, P., and R. G. Sinclair: Evidence of selection in the building up of brain lecithins and cephalins. J. biol. Chem. 118, 131–136 (1937).Google Scholar
  46. Mcmillan, P. J., G. W. Douglas, and R. A. Mortensen: Incorporation of C14 of acetate -1-C14 and pyruvate-2-C14 into brain cholesterol in the intact rat. Proc. Soc. exp. Biol. (N. Y.) 96, 738–740 (1957).Google Scholar
  47. Mcmurray, W. C., J. F. Berry, and R. J. Rossiter: Labelling of phospholipid phosphorus in rat-brain mitochondria. Biochem. J. 66, 629–633 (1957).PubMedGoogle Scholar
  48. Magee, W. L., J. F. Berry, and R. J. Rossiter: Effect of chlorpromazine and azacyclonol on the labelling of phosphatides in brain slices. Biochim. biophys Acta 21, 408–409 (1956).PubMedGoogle Scholar
  49. Magee, W. L., And R. J. Rossiter: Chemical studies of peripheral nerve during Wallerian degeneration. 6. Incorporation of radioactive phosphate into pentosenucleic acid and phospholipin in vitro. Biochem. J. 58, 243–249 (1954).PubMedGoogle Scholar
  50. Majno, G., And M. L. Karnovsky: A biochemical and morphologic study of myelination and demyelination. I. Lipide biosynthesis in vitro by normal nervous tissue. J. exp. Med. 107, 475–496 (1958).PubMedGoogle Scholar
  51. Moser, H., And M. L. Karnovsky: Studies on the bio-synthesis of cerebroside galactose. Neurology (Minneap.) 8, Suppl. 1, 81–83 (1958).Google Scholar
  52. Bach and S. Udenfriend: The distribution of serotonin, 5-hydroxytryptophane decarboxylase and monoamine oxidase in brain. J. Neurochem. 1, 272 (1957).Google Scholar
  53. Bogoch, S.: Effect of synthetic diet low in aromatic amino acids on schizophrenic patients. Arch. Neurol. Psychiat. (Chicago) 78, 539 (1957).Google Scholar
  54. Brengelmann, J. D., C. M. B. Pare, And M. Sandler: Alleviation of the psychological effects of LSD in man by 5-hydroxytryptophan. J. ment. Sci. 104, 1237 (1958).PubMedGoogle Scholar
  55. Brome, B. B., J. S. Olin, R. G. Kuntzman, and P. A. Shore: Possible interrelationship between release of brain norepinephrine and serotonin by reserpine. Science 125, 1293 (1957).Google Scholar
  56. Brodie, B. B., A. Pletscher, And P. A. Shore: Possible role of serotonin in brain function and in reserpine action. J. Pharmacol. 116, 9 (1956).Google Scholar
  57. Brodie, B. B., A. Pletscher, and P. A. Shore: Evidence that serotonin has a role in brain function. Science 122, 968 (1955).PubMedGoogle Scholar
  58. Brodie, B. B., S. Spector, R. G. Kuntzman, and P. A. Shore: Rapid biosynthesis of brain serotonin before and after reserpine administration. Naturwissenschaften 45, 243 (1958).Google Scholar
  59. Brown, G. L., H. H. Dale, and W. Feldberg: Reactions of the normal mammalian muscle to acetylcholine and eserine. J. Physiol. (Lond.) 87, 394 (1936).Google Scholar
  60. Bruce, L. C.: The clinical significance of indoxyl in the urine. J. ment. Sci. 52, 501–505 (1906).Google Scholar
  61. Bülbring, E., and H. H. Burn: Observations bearing on synaptic transmission by acetylcholine in spinal cord. J. Physiol. (Lond.) 100, 337–368 (1941).Google Scholar
  62. Bulle, P. H., And L. Konchegul: Action of serotonin and cerebral fluid of schizophrenics on the brain of the dog. J. clin. exp. Psychopath. 18, 287 (1957).PubMedGoogle Scholar
  63. Burgen, A. S. V., and L. M. Chipman: Cholinesterase and succinic dehydrogenase in the central nervous system of the dog. J. Physiol. (Lond.) 114, 296–305 (1951).Google Scholar
  64. Burgen, A. S. V., And F. C. Macintosh: Physiological significance of acetylcholine. IN: Neurochemistry p. 311. (K. A. C. Elliott, I. H. Page, and J. H. Quastel, Ed.) Springfield, 111.: C. C. Thomas 1955.Google Scholar
  65. Buscaino, V. M.: Pathogénèse et étiologie biologiques de la schizophrénie. Acta Neurol. (Naples) 16, 1–26 (1958).Google Scholar
  66. Buscaino, G. A., and L. Stefanachi: Urinary excretion of 5-hydroxyindoleacetic acid in psychotic and normal subjects. Arch. Neurol. Psychiat. (Chicago) 80, 78 (1958).Google Scholar
  67. Carlsson, A., M. Lixdqvist, and T. Magnusson: 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature (Lond.) 180, 1200 (1957).Google Scholar
  68. Carlsson, A., M. Lindqvist, T. Magnusson, and B. Waldeck: On the presence of 3-hydroxytyramine in brain. Science 127, 471 (1958).PubMedGoogle Scholar
  69. Cerletti, A., and E. Rothlin: Role of 5-hydroxy- tryptamine in mental diseases and its antagonism to lysergic acid derivatives. Nature (Lond.) 176, 785 (1955).Google Scholar
  70. Chang, H. C., K. F. Chia, C. H. Hsu, and R. K. S. Lim: Humoral transmission of nerve impulses at central synapses. I. Sinus and vagus afferent nerves. Chin. J. Physiol. 12, 1–36 (1937).Google Scholar
  71. Chang, H. C., W. M. Hsieh, T. H. Li, and R. K. S. Lim: Humoral transmission of nerve impulses at central synapses. IV. Liberation of acetylcholine into the cerebrospinal fluid by the afferent vagus. Chin. J. Physiol. 13, 153–166 (1938).Google Scholar
  72. Chute, A. L., W. Feldberg, and D. H. Smyth: Liberation of acetylcholine from the perfused cat’s brain. Quart. J. exp. Physiol. 30, 65–72 (1940).Google Scholar
  73. Cohen, M.: Concentration of choline acetylase in conducting tissue. Arch. Biochem. 60, 284 (1956).PubMedGoogle Scholar
  74. Cohen, G., B. Holland, And M. Goldenberg: The stability of epinephrine and arterenol in plasma and serum. Arch. Neurol. Psychiat. (Chicago) 80, 484 (1958).Google Scholar
  75. Cooper, J. R., and I. Melcer: The enzymic oxidation of tryptophan to 5-hydroxytryptophan in the biosynthesis of serotonin. J. Pharmacol. 132, 265 (1961).Google Scholar
  76. Corne, S. J., and J. D. P. Graham: The effect of inhibition of amine oxidase in vivo on administered adrenaline, noradrenaline, tyramine and serotonin. J. Physiol. (Lond.) 135, 339 (1957).Google Scholar
  77. Costa, E.: Effects of hallucinogenic and tranquilizing drugs on serotonin-evoked uterine contractions. Proc. Soc. exp. Biol. (N. Y.) 91, 39 (1956).Google Scholar
  78. Crane, G. E.: Further studies on iproniazid phosphate. J. nerv. ment. Dis. 124, 322 (1956).PubMedGoogle Scholar
  79. Crossland, J., K. A. C. Elliott, and H. M. Pappius: Acetylcholine content of brain during insulin hypoglycaemia. Amer. J. Physiol. 183, 32 (1955).PubMedGoogle Scholar
  80. Crossland, J., and A. J. Merrick: The effect of anaesthesia on the acetylcholine content of brain. J. Physiol. (Lond.) 125, 56 (1954).Google Scholar
  81. Dale, H. H.: The action of certain esters and ethers of choline and their relation to muscarine. J. Pharmacol. 6, 147 (1914).Google Scholar
  82. Dale, H.H.: Junctional transmission of nervous effects by chemical agents. Proc. Mayo Clin. 30, 5–20 (1955).Google Scholar
  83. Dale, H. H., W. Feldberg, And M. Vogt: Release of acetylcholine at voluntary motor nerve endings. J. Physiol. (Lond.) 86, 353 (1936).Google Scholar
  84. Elliott, T. R.: The action of adrenaline. J. Physiol. (Lond.) 32, 401 (1905).Google Scholar
  85. Elmadjian, F., J. M. Hope, and E. T. Lamson: Excretion of epinephrine and norepinephrine in various emotional states. J. clin. Endocrinol. 17, 608 (1957).Google Scholar
  86. Elmadjian, F., J. M. Hope, and E. T. Lamson: Excretion of epinephrine and norepinephrine under stress. Recent Progr. Hormone Res. 14, 513–553 (1958).Google Scholar
  87. Erspamer, V.: Pharmakologische Studien über Enteramin: II. Mitteilung, über einige Eigenschaften des Enteramins, sowie über die Abgrenzung des Enteramins von den anderen kreislauf wirksamen Gewebsprodukten. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 196, 366–390 (1940).Google Scholar
  88. Erspamer, V.: The metabolism of endogenous 5-hydroxytryptamine (enteramine) in the rat. Experientia (Basel) 10, 471 (1954).Google Scholar
  89. Erspamer, V., and B. Asero: Identity of enteramine, the specific hormone of the enterochromaffin cell system as 5-hydroxytryptamine. Nature (Lond.) 169, 800–801 (1952).Google Scholar
  90. Euler, U. S., V.: A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relation to adrenaline and noradrenaline. Acta physiol. scand. 12, 73–97 (1946).Google Scholar
  91. Euler, U. S., V.: Identification of the sympathomimetic ergone in adrenergic nerves of cattle (sympathin N) with laevo-noradrenaline. Acta physiol. scand. 16, 63–74 (1948).Google Scholar
  92. Euler, U. S., V.: Noradrenaline. Springfield, 111.: Charles C. Thomas 1956.Google Scholar
  93. Euler, U. S. V., and N.-Ä. Hillarp: Evidence for the presence of noradrenaline in submicroscopic structures of adrenergic axons. Nature (Lond.) 177, 45 (1956).Google Scholar
  94. Euler, U. S.V., and F. Lishajko: Dopamine in mammalian lung and spleen. Acta physiol. pharmacol. neerl. 6, 295 (1957).Google Scholar
  95. Euler, U. S. V., and U. Lundberg: Effect of flying on the epinephrinexcretion in Air Force personnel. J. Appl. Physiol. 6, 551 (1954).Google Scholar
  96. Evarts, E. V.: Some effects of bufotenine and lysergic acid diethylamide on the monkey. Arch. Neurol. Psychiat. (Chicago) 75, 49–53 (1956).Google Scholar
  97. Falck, B., N.-Ä. Hillarp, and B. Högberg: Content and intracellular distribution of adenosine triphosphate in cow adrenal medulla. Acta physiol. scand. 36, 360–376 (1956).PubMedGoogle Scholar
  98. Feldberg, W.: Acetylcholine. In: Metabolism of the nervous system, p. 493. (Ed. D. Richter) New York: Pergamon Press 1957.Google Scholar
  99. Feldberg, W., and J. H. Gaddum: The chemical transmitter at synapses in a sympathetic ganglion. J. Physiol. 81, 305 (1934).PubMedGoogle Scholar
  100. Feldberg, W., and T. Mann: Properties and distribution of the enzyme system which synthesizes acetylcholine in nervous tissue. J. Physiol. 104, 411–425 (1946).Google Scholar
  101. Feldberg, W., and H. Schrie-Ver: Acetylcholine content of cerebrospinal fluid of dogs. J. Physiol. 86, 277–284 (1936).PubMedGoogle Scholar
  102. Feldberg, W., and M. Vogt: Acetylcholine synthesis in different regions of the central nervous system. J. Physiol. 107, 372–381 (1948).PubMedGoogle Scholar
  103. Feldstein, A., I. M. Dibner, and H. Hoagland: Two-dimensional paper chromatography of urinary indoles in normal subjects and chronic schizophrenic patients. In: Chemical concepts of psychosis, p. 204–218. (Eds. M. Kinkel and H. C. B. Denber ). New York: McDowell-Obolensky 1958.Google Scholar
  104. Feldstein, A., H. Hoagland, and H. Freeman: On the relationship of serotonin to schizophrenia. Science 128, 358 (1958).PubMedGoogle Scholar
  105. Freedland, R. A., I. M. Wadzinski, and A. Waisman: The enzymatic hydroxylation of tryptophan. Biochem. biophys. Res. Commun. 5, 94 (1961a).Google Scholar
  106. Freedland, R. A., I. M. Wadzinski, and H. A. Waisman: The effect of aromatic amino acids on the hydroxylation of tryptophan. Biochem. biophys. Res. Commun. 6, 227 (1961b).PubMedGoogle Scholar
  107. Folin, O.: Some metabolism studies, with special reference to mental disorders. Amer. J. Insan. 61, 299–364 (1904).Google Scholar
  108. Fukuda, T., And G. B. Koelle: The cytological localization of intracellular neuronal acetylcholinesterase. J. biophys. biochem. Cytol. 5, 433–440 (1959).PubMedGoogle Scholar
  109. Gaddum, J. H., And K. A. Hameed: Drugs which antagonize 5-hydroxytryptamine. Brit. J. Pharmacol. 9, 240 (1954).PubMedGoogle Scholar
  110. Giarman, N. J., And S. Schanberg: The intracellular distribution of 5-hydroxytryptamine in the rat’s brain. Biochem. Pharmacol. 1, 301 (1959).Google Scholar
  111. Goddard, P. J.: Effect of alcohol on excretion of catechol amines in conditions giving rise to anxiety. J. appl. Physiol. 13, 118 (1958).PubMedGoogle Scholar
  112. Goldstein, M., and F. Contrera: Inhibition of dopamine ß-oxidase by imipramine. Biochem. Pharmacol. 7, 278 (1961).PubMedGoogle Scholar
  113. Goldstein, M., A. J. Friedhoff, and C. Simmons: Metabolic pathways of 3-hydroxy-tyramine. Biochim. biophys. Acta 33, 572 (1959).PubMedGoogle Scholar
  114. Goodall, Mcc.: Metabolic products of adrenaline and noradrenaline in human urine. Pharmacol. Rev. 11, 416–425 (1959).PubMedGoogle Scholar
  115. Goodall, McC., and N. Kirshner: Biosynthesis of adrenaline and noradrenaline in vitro. J. biol. Chem. 226, 213 (1957).PubMedGoogle Scholar
  116. Goodman, J. R., L. H. Marrone, and M. C. Squire: Effect of in vivo inhibition of Cholinesterase on potassium diffusion from the human red cell. Amer. J. Physiol. 180, 118 (1955).PubMedGoogle Scholar
  117. Green, D. E.: Enzymes in metabolic sequences. In: Chemical pathways of metabolism, p. 27–65. (Ed. D. M. Greenberg ). New York: Acad. Press Inc. 1954.Google Scholar
  118. Grundfest, H.: Electrical inexcitability of synapses and some consequences in the central nervous system. Physiol. Rev. 37, 337–361 (1957).PubMedGoogle Scholar
  119. Gullotta, S.: Untersuchungen über den Harn von Amentia- und Dementia praecox-Kranken. Zyklische Komplexe (Beitrag zum Studium der Aromaturie). Biochem. Z. 218, 472 (1930).Google Scholar
  120. Hagen, P.: Biosynthesis of norepinephrine from 3,4-dihydroxyphenylethylamine (dopamine). J. Pharmacol, exp. Ther. 116, 26 (1956).Google Scholar
  121. Hawkins, R. D., and B. Mendel: True cholinesterases with pronounced resistance to eserine. J. cell comp. Physiol. 27, 69–85 (1946).Google Scholar
  122. Hawkins, R. D., and B. Mendel: Selective inhibition of pseudoCholinesterase by di-isopropylfluorophosphonate. Brit. J. Pharmacol. 2, 173–180 (1947).Google Scholar
  123. Hawkins, R. D., and B. Mendel: Cholinesterase. VI. Selective inhibition of true Cholinesterase in vivo. Biochem. J. 44, 260 (1949).Google Scholar
  124. Herken, H., and D. Neubert: Der Acetylcholingehalt des Gehirns bei verschiedenen Funktionszuständen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 219, 223 (1953).Google Scholar
  125. Hess, S. M., R. H. Connamacher, M. Ozaki, and S. Udenfriend: The effects of a-methyl-dopa and a-methyl-meta-tyrosine on the metabolism of norepinephrine and serotonin in vivo. J. Pharmacol. 134, 129 (1961).Google Scholar
  126. Hillarp, N.-A., and B. Hökfelt: Evidence of adrenaline and noradrenaline in separate adrenal medullary cells. Acta physiol. scand. 30, 55–68 (1953).PubMedGoogle Scholar
  127. Hillarp, N.-Ä., and B. Hökfelt: Cytological Demonstration Of Noradrenaline In The Suprarenal Medulla Under Conditions Of Varied Secretory Activity. Endocrinology 55, 255–260 (1954).PubMedGoogle Scholar
  128. Hillari, N.-A., and B. Hök-Felt: Histochemical demonstration of noradrenaline and adrenaline in the adrenal medulla. J. Histochem. Cytochem. 3, 1–5 (1955).Google Scholar
  129. Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26, 339–409 (1951).Google Scholar
  130. Hoffer, A.: Adrenochrome and adrenolutin and their relationship to mental disease. IN: Psychotropic drugs, p. 127–140. (Eds. S. Garattini and V. Ghetti ). New York: Elsevier 1957.Google Scholar
  131. Hoffer, A.: Adrenochrome in blood plasma. Amer. J. Psychiat. 114, 752–753 (1958).PubMedGoogle Scholar
  132. Hoffer, A., and H. Osmond: The adrenochrome model and schizophrenia. J. nerv. ment. Dis. 128,18–35(1959).Google Scholar
  133. Hoffer, A., H. Osmond, and J. Smythies: Schizophrenia: a new approach. Part II. Result of a year’s research. J. ment. Sci. 100, 29–45 (1954).PubMedGoogle Scholar
  134. Hokin, L. E., and M. R. Hokin: Acetylcholine and the exchange of phosphate in phosphatidic acid in brain microsomes. J. biol. Chem. 233, 822 (1958).PubMedGoogle Scholar
  135. Hokin, L. E., and M. R. Hokin: The mechanism of phosphate exchange in phosphatidic acid in response to acetylcholine. J. biol. Chem. 234, 1387 (1959).PubMedGoogle Scholar
  136. Holtz, P., H. Balzer, and W. Westermann: Die Beeinflussung der Reserpinwirkung auf das Nebennierenmark durch Hemmung der Mono-amino-oxydase. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 231, 361–372 (1957).Google Scholar
  137. Holtz, P., H. Balzer, E. Westermann, and E. Wezler: Beeinflussung der Evipannarkose durch Reserpin, Iproniazid und biogene Amine. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 231, 333 (1957).Google Scholar
  138. Holtz, P., and E. Westermann: Über die Dopadecarboxylase und Histidindecarboxylase des Nervengewebes. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 227, 538 (1956).Google Scholar
  139. Holzbauer, M., and M. Vogt: Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J. Neurochem. 1, 8–11 (1956).PubMedGoogle Scholar
  140. Horita, A.: ß-Phenylisopropylhydrazine, a potent and long acting monoamine oxidase inhibitor. J. Pharmacol. 122, 176 (1958).Google Scholar
  141. Horita, A., and J. H. Gogerty: The pyretogenic effect of 5-hydroxytryptophan and its comparison with that of LSD. J. Pharmacol, exp. Ther. 122, 195 (1958).Google Scholar
  142. Iggo, A., And M. Vogt: The effect of reserpine on the electrical activity in preganglionic sympathetic fibres. J. Physiol. (Lond.) 147, 14 P (1959).Google Scholar
  143. Jackson, S. L. O.: Psychosis due to isoniazid. Brit. med. J. 1957, II 743.Google Scholar
  144. Kamijo, K., Koelle, G. B., and H. H. Wagner: Modification of the effects of sympatho-mimetic amines and of adrenergic nerve stimulation by l-isonicotinyl-2-isopropylhydrazine (IIH) and isonicotinic acidhydrazide (INH). J. Pharmacol, exp. Ther. 117, 213 (1956).Google Scholar
  145. Kemali, D., and V. M. Buscaino: Indolic substances in schizophrenic patients. In: Chemical concepts of psychosis, p. 219–222. (Eds. M. Rinkel, and H.C.B. Denber ). New York: McDowell- Obolensky 1958.Google Scholar
  146. Keynes, R. D.: Electrolytes and nerve activity. In: Metabolism of the nervous system, p. 159–173. (Ed. D. Richter) New York: Pergamon Press 1957.Google Scholar
  147. Kibjakow, A. W.: Über humorale Übertragung der Erregung von einem Neuron auf das andere. Pflügers Arch. ges. Physiol. 232, 432 (1933).Google Scholar
  148. Kirshner, N., And Mcc. Goodall: Formation of adrenaline from noradrenaline. Fed. Proc. 16, 73 (1957).Google Scholar
  149. Koelle, G. B.: The localization of acetylcholinesterase in neurons. In: Ultrastructure and cellular chemistry of neural tissue, p. 164–173. (Ed. H. Waelsch ), New York: Hoeber-Harper 1957.Google Scholar
  150. Koelle, W. A., And G. B. Koelle: The localization of external or functional acetylcholinesterase at the synapses of autonomic ganglia. J. Pharmacol, exp. Ther. 126, 1–8 (1959).Google Scholar
  151. Kopin, I. J.: Tryptophane loading and excretion of 5-hydroxyindoleacetic acid in normal and schizophrenic subjects. Science 129, 853 (1959).Google Scholar
  152. Leach, B. E., and R. G. Heath: The in vitro oxidation of epinephrine in plasma. A. M. A. Arch. Neurol. Psychiat. 76, 444–450 (1956).Google Scholar
  153. Levin, E. Y., B. Levenberg, and S. Kaufman: The enzymatic conversion of 3,4-dihydroxyphenylethylamine to nore-pinephrine. J. biol. Chem. 235, 2080 (1960).PubMedGoogle Scholar
  154. Lewis, P. R., and A. F. W. Hughes: The Cholinesterase of developing neurones of Xenopus laevis. In: Metabolism of the nervous system, p. 511–514 (Ed. D. Richter) New York: Pergamon Press 1957.Google Scholar
  155. Leyton, G. B.: Indolic compounds in the urine of schizophrenics. Brit. med. J. 1958 II, 1136.Google Scholar
  156. Lipmann, F., And N. O. Kaplan: Report on a coenzyme for acetylation. Fed. Proc. 5, 145 (1946).PubMedGoogle Scholar
  157. Loewi, O.: Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch. ges. Physiol. 189, 239–242 (1921).Google Scholar
  158. Macintosh, F. C.: Formation, storage and release of acetylcholine at nerve endings. Canad. J. Biochem. 37, 343–356 (1959).PubMedGoogle Scholar
  159. Macintosh, F. C., R.I. Birks, And P. B. Sastry: Pharmacological inhibition of acetylcholine synthesis. Nature (Lond.) 178, 1181 (1956).Google Scholar
  160. Macintosh, F. C., and P. E. Oborin: Abstr. XIX. Internal. Physiol. Congr. 580 (1953).Google Scholar
  161. Mann, P. J. G., and J. H. Quastel: Benzedrine (ß-phenylisopropylamine) and brain meta-bolism. Biochem. J. 34, 414–431 (1940).PubMedGoogle Scholar
  162. Mann, P. J. G., M. Tennenbaum, and J. H. Quastel: On the mechanism of acetylcholine formation in brain in vitro. Biochem. J. 32, 243–261 (1938).PubMedGoogle Scholar
  163. Mann, P. J. G., M. Tennenbaum, And J. H. Quastel: Acetylcholine metabolism in the central nervous system. The effects of potassium and other cations on acetylcholine liberation. Biochem. J. 33, 822–835 (1939).PubMedGoogle Scholar
  164. Marrazzi, A. S., and E. R. Hart: Relationship Of Hallucinogens To Adrenergic Cerebral Neurohumors. Science 121, 365 (1955).PubMedGoogle Scholar
  165. Mcgeer, E. G., W. T. Brown, and P. L. Mcgeer: Aromatic metabolism in schizophrenia, II. Bidimensional urinary chromatograms. J. nerv. ment. Dis. 125, 176 (1957).PubMedGoogle Scholar
  166. Mcgeer, P. L., E. G.Mcgeer, and J. E. Boulding: Relation of aromatic amino acids to excretory pattern of schizophrenics. Science 123, 1078–1080 (1956).PubMedGoogle Scholar
  167. Mcgeer, P. L., F. E. Mcnair, E. G. Mcgeer, And W. C. Gibson: Aromatic metabolism in schizophrenia. I. Statistical evidence for aromaturia. J. nerv. ment. Dis. 125, 166 (1957).PubMedGoogle Scholar
  168. Mclennan, H., and K. A. C. Elliott: Factors affecting the synthesis of acetylcholine by brain slices. Amer. J. Physiol. 163, 605–613 (1950).PubMedGoogle Scholar
  169. Mclennan, H., and K. A. C. Elliott: Effects of convulsant and narcotic drugs on acetylcholine synthesis. J.Pharmacol. exp.Ther. 103,35(1951).Google Scholar
  170. Montagu, K. A.: Catechol compounds in rat tissues and in brains of different animals. Nature (Lond.) 180, 244–245 (1957).Google Scholar
  171. Muscholl, E., and M. Vogt: The action of reserpine on the peripheral sympathetic system. J. Physiol. (Lond.) 141, 132 (1958).Google Scholar
  172. Nachmansohn, D.: On the role of acetylcholine in the mechanism of nerve activity. In: Recent progress in hormone research vol. I, 1–26. (Ed. G. Pincus ), Academic Press, Inc. 1947.Google Scholar
  173. Nachmansohn, D.: Symposium on the physiology of acetylcholine. I. The role of acetylcholine in conduction. Johns Hopk. Hosp. Bull. 83, 463–493 (1948).Google Scholar
  174. Nachmansohn, D.: Metabolism and function of the nerve cell. In: Neurochemistry, p. 390–425. (Ed. K. A. C. Elliott, I. H. Page, and J. H. Quastel ). Springfield, Ill.: Charles C. Thomas 1955.Google Scholar
  175. Nachmansohn, D.: Chemical and molecular basis of nerve activity. New York: Academic Press 1959.Google Scholar
  176. Nachmansohn, D., and M. Berman: Studies on choline acetylase. III. On the preparation of the coenzyme and its effect on the enzyme. J. biol. Chem. 165, 551–563 (1946).PubMedGoogle Scholar
  177. Nachmansohn, D., and A. L. Machado: The formation of acetylcholine. A new enzyme: “choline acetylase”. J. Neurophysiol. 6, 397–404 (1943).Google Scholar
  178. Nakao, A., And M. Ball: The appearance of a skatole derivative in the urine of schizophrenics. J. nerv. ment. Dis. 130, 417 (1960).PubMedGoogle Scholar
  179. Neri, R., M. Hayano, D. Stone, R. I. Dorfman, And F. Elmadjian: Conversion of hydroxytyramine to norepinephrine-like material. Arch. Biochem. 60, 297 (1956).PubMedGoogle Scholar
  180. Novelli, G. D.: Metabolic functions of pantothenic acid. Physiol. Rev. 33, 525–543 (1953).PubMedGoogle Scholar
  181. Orlans, B. F., F. Sulser, And B. B. Brodie: Depletion of brain norepinephrine by reserpine without producing sedation. Fed. Proc. 19, 268 (1960).Google Scholar
  182. Osmond, H., And J. Smythies: Schizophrenia: A new approach. J. ment. Sci. 98, 309–315 (1952).PubMedGoogle Scholar
  183. Paasonen, M. K., And N. J. Giarman: Brain levels of 5-hydroxytryptamine after various agents. Arch. int. Pharmacodyn. 114, 189 (1958).Google Scholar
  184. Paasonen, M. K., P. D. Maclean, And N. J. Giarman: 5-Hydroxytryptamine content of structures of the limbic system. J. Neurochem. 1, 326 (1957).PubMedGoogle Scholar
  185. Pappius, H. M., and K. A. C. Elliott: Acetylcholine metabolism in normal and epileptogenic brain tissues. Failure to repeat previous findings. J. appl. Physiol. 12, 319 (1958).PubMedGoogle Scholar
  186. Pellerin, J., and A. D’iorio: Metabolism of DL-3,4-dihydroxyphenylalanine-a-C14 in bovine adrenal homogenate. Canad. J. Biochem. 35, 151 (1957).PubMedGoogle Scholar
  187. Pleasure, H.: Psychiatric and neurological side-effects of isoniazid and iproniazid. Arch. Neurol. Psychiat. 72, 313 (1954).Google Scholar
  188. Pletscher, A., P. A. Shore, and B. B. Brodie: Release of brain serotonin by reserpine. J. Pharmacol. 116, 46 (1956).Google Scholar
  189. Pletscher, A., P. A. Shore, and B. B. Brodie: Serotonin as a mediator of reserpine action in brain. J. Pharmacol. 116, 84–89 (1956).Google Scholar
  190. Pope, A., W. Caveness, and K. E. Livingston: Architectonic distribution of acetylcholinesterase in the frontal isocortex of psychotic and nonpsychotic patients. Arch. Neurol. Psychiat. 68, 425 (1952).Google Scholar
  191. Porter, C. C., J. A. Totaro, and C. M. Leiby: Some biochemical effects of a-methyl-3,4-dihydroxyphenylalanine and related compounds in mice. J. Pharmacol. 134, 139 (1961).Google Scholar
  192. Price, J. M., R. R. Brown, and H. A. Peters: Tryptophan metabolism in porphyria, schizophrenia and a variety of neurologic and psychiatric diseases. Neurology 9, 456 (1959).PubMedGoogle Scholar
  193. Quastel, J. H., M. Tennenbaum, and A. H. M. Wiieatley: Choline ester formation in, and choline esterase activities of, tissues in vitro. Biochem. J. 30, 1668–1681 (1936).PubMedGoogle Scholar
  194. Raper, H. S.: The tyrosinase-tyrosine reaction. VI. Production from tyrosine of 5,6-di- hydroxyindole and 5:6-dihydroxyindole-2-carboxylic acid — the precursors of melanine. Biochem. J. 21, 89 (1927).PubMedGoogle Scholar
  195. Rapport, M. M., A. A. Green, And I. H. Page: Serum vaso-constrictor (serotonin): Part IV. Isolation and characterization. J. biol. Chem. 176, 1243–1251 (1948).PubMedGoogle Scholar
  196. Renson, J., F. Goodwin, H. Weissbach and S. Udenfriend: Conversion of tryptophan to 5-hydroxytryptophan by phenylalanine hydroxylase. Biochem. biophys. Res. Commun. 6,20(1961).Google Scholar
  197. Resnick,O., and F. Elmadjian: Excretion and metabolism of DL-epinephrine-7-C14 D-bitartrate infused into schizophrenic patients. Amer. J. Physiol. 187, 626 (1956).Google Scholar
  198. Richter, D., and J. Crossland: Variation in acetylcholine content of the brain with physiological state. Amer. J. Physiol. 159, 247 (1949).PubMedGoogle Scholar
  199. Riegelhaupt, L. M.: Investigations of the urinary excretion pattern in psychotic patients. J. nerv. ment. Dis. 127, 228 (1958).PubMedGoogle Scholar
  200. Rinkel, M., R. W. Hyde, and H. C. Solomon: Experimental psychiatry, III. A chemical concept of psychosis. Dis. nerv. Syst. 15, 259 (1954).PubMedGoogle Scholar
  201. Robins, E., I. P. Lowe, and N. M. Havner: THe Urinary Excretion Of 5-Hydroxy-3-Indoleacetic Acid In Patients With Schizophrenia And In Control Subjects. Clin. Res. Proc. 4, 149 (1956).Google Scholar
  202. Rodnight, R., and E. K. Aves: Body fluid indoles of normal and mentally-ill subjects. I. Preliminary survey of the occurrence of some urinary indoles. J. ment Sci. 104, 1149–1159 (1958).PubMedGoogle Scholar
  203. Rosenfeld, F., L. C. Leeper, and S. Udenfriend: Biosynthesis of norepinephrine and epinephrine by the isolated, perfused calf adrenal. Fed. Proc. 16, 331 (1957).Google Scholar
  204. Rosengren, E.: Are dihydroxyphenylalanine decarboxylase and 5-hydroxytryptophan decarboxylase individual enzymes ? Acta physiol. scand. 49, 364 (1960).PubMedGoogle Scholar
  205. Rosenzweig, M. R., D. Krech, And E. L. Bennett: Brain chemistry and adaptive behavior. In: Biological and biochemical bases of behavior, p. 367–400. ( Ed. H. F. Harlow and C. N. Woolsey,) Univ. of Wisconsin Press 1958.Google Scholar
  206. Salmoiraghi, G. C., and I. H. Page: Effects of LSD-25, BOL-148, bufotenine, mescaline and ibogaine on the potentiation of hexobarbital hypnosis produced by serotonin and reserpine. J. Pharmacol. exp. Ther. 120, 20 (1957).Google Scholar
  207. Sano, I.: Über die kalte Millon-Reaktion beim schizophrenen Formenkreis und den Träger derselben. Folia psychiat. neurol. jap. 8, 218 (1954).PubMedGoogle Scholar
  208. Sano, I., T.Gamo, Y. Kakimoto, K. Taniguchi, M. Takesada, And K. Nishinuma,: Distribution of catechol compounds in human brain. Biochim. biophys. Acta 32, 586 (1959).PubMedGoogle Scholar
  209. Sano, I., Y. Kakimoto, T. Okamoto, H. Nakajima, and Y. Kudo: 5-Hydroxyindoleacetic acid (HIAA) excretion in the urine of schizophrenics with reference to the influence of reserpine and chlorpromazine on serotonin (5-HT) metabolism. Schweiz, med. Wschr. 87, 214 (1957).Google Scholar
  210. Schayer, R. W., and R. L. Smiley: The metabolism of epinephrine containing isotopic carbon. J. biol. Chem. 202, 425–430 (1953).PubMedGoogle Scholar
  211. Schmitt, H., and P. Gonnard: Action de l’iproniazide sur les effets des sympathicomimetiques sur la membrane nictitante du chat. C. R. Acad. Sci. 240, 2573–2575 (1955).Google Scholar
  212. Schneckloth, R., I. H. Page, F. Del Greco, and A. C. Corcoran: Effects of serotonin antagonists in normal subjects and patients with carcinoid tumors. Circulation 16, 523–532 (1957).PubMedGoogle Scholar
  213. Schümann, H. J.: The distribution of adrenaline and noradrenaline in chromaffin granules from the chicken. J. Physiol. (Lond.) 137, 318–326 (1957).Google Scholar
  214. Schümann, H. J.: Über die Verteilung von Noradrenalin and Hydroxytyramin im sympathischen Nerven (Milznerven). Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 234, 17 (1958).Google Scholar
  215. Shaw, E., And D. W. Woolley: Serotonin-like activities of lysergic acid diethylamide (LSD-25) Science 124, 121 (1956).PubMedGoogle Scholar
  216. Sherwood, S. L.: The response of psychotic patients to intraventricular injections. Proc. roy. Soc. Med. 48, 855 (1955).Google Scholar
  217. Shoje, T., M. Ohashi, and S. Tada: Millon reaction at room temperature on the urine of schizophrenic patients. Jap. J. Neurol. Psychiat. 58, 19 (1956).Google Scholar
  218. Shore, P. A., J. A. R. Mead, R. G. Kuntzman, S. Spector, and B. B. Brodie: On the physiologic significance of monoamine oxidase in brain. Science 126, 1063 (1957).PubMedGoogle Scholar
  219. Shore, P. A., S. L. Silver, And B. B. Brodie: Interaction of reserpine, serotonin and lysergic acid diethylamide in brain. Science 122, 284–285 (1955).PubMedGoogle Scholar
  220. Sjoerdsma, A., L. Gillespie Jr., And S. Udenfriend: A simple method for the measurement of monoamine oxidase inhibition in man. Lancet 1958 II, 159.Google Scholar
  221. Spiro, M. J., And E. G. Ball: Adrenal cytochromes. Fed. Proc. 17, 314 (1958).Google Scholar
  222. Sprince, H., E. Hoijser, D. Jameson, And F. C. Dohan: Differential extraction of indoles from the urine of schizophrenic and normal subjects. Arch. gen. Psychiat. 3, 268 (1960).Google Scholar
  223. Sprince, H., C. M. Parker, D. Jameson, J. T. Dawson, Jr., M. Knowlton, and F. C. Dohan: Detection and isolation of indole acetamide from human urine: results with schizophrenic and normal subjects. J. Lab. clin. Med. 57, 763 (1961).Google Scholar
  224. Stone, W. E.: Acetylcholine in the brain. I. “Free”, “bound” and total acetylcholine. Arch. Biochem. 59, 181–192 (1955).PubMedGoogle Scholar
  225. Strickland, K. P., and R. H. S. Thompson: On the mechanism of the potassium loss from Brain slices induced by Cholinesterase Inhibitors. Biochem. J. 60, 468 (1955).PubMedGoogle Scholar
  226. Ström-Olsen, R., and H. Weil-Malherbe: Humoral changes in manic depressive psychosis with particular reference to the excretion of catechol amines in urine. J. ment. Sci. 104, 696–704 (1958).PubMedGoogle Scholar
  227. Szara, S., J. Axelrod, and S. Perlin: IS adrenochrome present in the blood? Amer. J. Psychiat. 115, 162–163 (1958).PubMedGoogle Scholar
  228. Taubmann, G.,V., and H. Jantz: Untersuchungen über die dem Adrenochrom zugeschriebenen psychotoxischen Wirkungen. Nervenarzt 20, 485–488 (1957).Google Scholar
  229. Taylor, I. M., J. M. Weller, and A. B. Hastings: Effect of Cholinesterase and cholinacetylase inhibitors on the potassium concentration gradient and potassium exchange of human erythrocytes. Amer. J. Physiol. 168, 658 (1952).PubMedGoogle Scholar
  230. Toman, J. E. P., J. W. Woodbury, and L. A. Woodbury: Mechanism of nerve conduction block produced by anticholinesterases. J. Neurophysiol. 10, 429 (1947).PubMedGoogle Scholar
  231. Toschi, G.: A biochemical study of brain microsomes. Exp. Cell Res. 16, 232–255 (1959).PubMedGoogle Scholar
  232. Townsend, A. A. D.: Mental depression and melancholia considered in regard to auto-intoxication, with special reference to the presence of indoxyl in the urine and its clinical significance. J. ment. Sci. 51, 51–62 (1905).Google Scholar
  233. Twarog, B. M., and I. H. Page: Serotonin content of some mammalian tissues and urine and a method for its determination. Amer. J. Physiol. 175, 157–161 (1953).PubMedGoogle Scholar
  234. Udenfriend, S., D. F. Bogdanski, and H. Weissbach: Biochemistry and metabolism of serotonin as it relates to the nervous system. In: Metabolism of the nervous system, p. 566–577 (Ed. D. Richter ), New York: Pergamon Press 1957.Google Scholar
  235. Udenfriend, S., and H. Weissbach: Turnover of 5-hydroxytryptamine (serotonin) in tissues. Proc. Soo. exp. Biol. (N. Y.) 97, 748 (1958).Google Scholar
  236. Udenfriend, S., H. Weissbach, and D. F. Bogdanski: Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan. J. biol. Chem. 224, 803 (1957).PubMedGoogle Scholar
  237. Udenfriend, S., H. Weissbach, and D. F. Bogdanski: Effect of iproniazid on serotonin metabolism in vivo. J. Pharmacol, exp. Ther. 120, 255 (1957).Google Scholar
  238. Udenfriend, S., and J. B. Wyngaarden: Precursors of adrenal epinephrine and norepinephrine in vivo. Biochim. biophys. Acta 20, 48 (1956).PubMedGoogle Scholar
  239. Vogt, M.: The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. (Lond.) 123, 451 (1954).Google Scholar
  240. Vogt, M.: Sympathomimetic amines in the central nervous system. Brit. med. Bull. 13, 166–171 (1957).PubMedGoogle Scholar
  241. Walaszek, E., and L. G. Abood: Fixation of 5-hydroxytryptamine by brain mitochondria. Proc. Soc. exp. Biol. (N. Y.) 101, 37 (1959).Google Scholar
  242. Weil-Malherbe, H.: The effect of convulsive therapy on plasma adrenaline and noradrenaline. J. ment. Sci. 101, 156–162 (1955).PubMedGoogle Scholar
  243. Weil-Malherbe, H., J. Axelrod, and R. Tomchick: Blood-brain barrier for adrenaline. Science 129, 1226–1227 (1959).PubMedGoogle Scholar
  244. Weil-Malherbe, H., and A. D. Bone: Intracellular distribution of catecholamines in the brain. Nature (Lond.) 180, 1050–1051 (1957).Google Scholar
  245. Weil-Malherbe, H. and A. D. Bone: The association of adrenaline and noradrenaline with blood platelets. Biochem. J. 70, 14–22 (1958).PubMedGoogle Scholar
  246. Weil-Malherbe, H., and A. D. Bone: The effect of reserpine on the intracellular distribution of catecholamines in the brain stem of the rabbit. J. Neurochem. 4, 251–263 (1959).PubMedGoogle Scholar
  247. Weil-Malherbe, H., H. S. Posner, And G. R. Bowles: Changes in the concentration and intracellular distribution of brain catecholamines: the effects of reserpine, ß-phenylisopropylhydrazine, pyrogallol and 3,4-dihydroxyphenylalanine. alone and in combination. J. Pharmacol. 132, 278 (1961).Google Scholar
  248. Whittaker, Y. P.: The isolation and characterization of acetylcholine containing particles from brain. Biochem J. 72, 694 (1959).PubMedGoogle Scholar
  249. Wiedorn, W. S., and F. Ervin: Schizophrenic-like psychotic reactions with administration of isoniazid. Arch. Neurol. Psychiat. (Chicago) 72, 321 (1954).Google Scholar
  250. Wilson, I. B.: The mechanism of enzyme hydrolysis studied with acetylcholinesterase. In: The mechanism of enzyme action, p. 642–657 (Ed. W. D. McElroy and B. Glass ). Baltimore: Johns Hopkins Press 1954.Google Scholar
  251. Wilson, I. B.: Designing of a new drug with antidotal properties against the nerve gas sarin. Biochim. biophys. Acta 27, 196–199 (1958).PubMedGoogle Scholar
  252. Young, M. K., Jr., H. K. Berry, E. Beerstecher Jr., And J. S. Berry: Metabolic patterns of schizophrenic and control groups. Biochemical Institute Studies IV. Austin, the Univ. of Texas Publication No. 5109, 1951.Google Scholar
  253. Zeller, E. A., J. Bernsohn, W. M. Inskip, and J. W. Lauer: On the effect of a mono-amine oxidase inhibitor on the behaviour and tryptophan metabolism of schizophrenic patients. Naturwissenschaften 44, 427 (1957).Google Scholar
  254. Zile, M., and H. A. Lardy: Monoamine oxidase activity in liver of thyroid-fed rats. Arch. Biochem. 82, 411–421 (1959).PubMedGoogle Scholar

G. Biochemistry of the developing nervous system

  1. Ashby, W., and E. M. Schuster: Carbonic anhydrase in the brain of the newborn in relation to functional maturity. J. biol. Chem. 184, 109–116 (1950).PubMedGoogle Scholar
  2. Baxter, C. F., J. P. Schade, and E. Roberts: Maturational changes in cerebral cortex. II. Levels of glutamic acid decarboxylase, y-aminobutyric acid and some related amino acids. In: Inhibition in the central nervous system and y-aminobutyric acid. London: Pergamon Press Ltd. 1960.Google Scholar
  3. Bennett, E. L., M. R. Rosenzweig, D. Krech, H. Karlsson, N. Dye, and A. Ohlander: Individual, strain and age differences in Cholinesterase activity of the rat brain. J. Neurochem. 3, 144–152 (1958).PubMedGoogle Scholar
  4. Cumings, J. N., H. Goodwin, E. M. Woodward, And G. Cürzon: Lipids in the brains of infants and children. J. Neurochem. 2, 289–294 (1958).PubMedGoogle Scholar
  5. Elkes, J., and A. Todrick: Development of the cholinesterases in the rat brain. In: Biochemistry of the developing nervous system, 309–314 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955.Google Scholar
  6. Flexner, J. B., And L. B. Flexner: Biological and physiological differentiation during morphogenesis. VII. Adenyl-pyrophosphatase and phosphatase activities in the developing cerebral cortex and liver of the fetal guinea pig. J. cell. comp. Physiol. 31, 311–320 (1948).Google Scholar
  7. Flexner, L. B.: Enzymic and functional patterns of the developing mammalian brain. In: Biochemistry of the developing nervous system, 281–300 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955.Google Scholar
  8. Flexner, L. B., E. L. Belknap, And J. B. Flexner: Biochemical and physiological differentiation during morphogenesis. XVI. Cytochrome oxidase, succinic dehydrogenase and succinoxidase in the developing cerebral cortex and liver of the fetal guinea pig. J. cell. comp. Physiol. Suppl. 42, 151–161 (1953).Google Scholar
  9. Folch-Pi, J.: Composition of the Brain In Relation To Maturation. In: Biochemistry of the developing nervous system, 121–136 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955.Google Scholar
  10. Himwich, H. E.: Brain metabolism and cerebral disorders. Baltimore, Maryland: The Williams and Wilkins Company 1951.Google Scholar
  11. Himwich, H. E., And M. H. Aprison: The effect of age on cholinesterase activity of rabbit brain. In: Biochemistry of the developing nervous system, 301–307 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955a.Google Scholar
  12. Himwich, H. E., and W. A. Himwich: The permeability of the blood-brain barrier to glutamic acid in the deloping rat. In: Biochemistry of the developing nervous system, 202–207 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955b.Google Scholar
  13. Himwich, W. A., And J. C. Petersen: Correlation of chemical maturation of the brain in various species with neurologic behavior. In: Biological psychiatry, 2–16 ( J. H. Masserman, Ed.). New York: Grune and Stratton, Inc. 1959.Google Scholar
  14. Johnson, A. C., A. R. Mcnabb, and R. J. Rossiter: Lipids of normal brain. Biochem. J. 43, 573–577 (1948).PubMedGoogle Scholar
  15. Kavaler, F., and V. M. Kimel: Biochemical and physiological differentiation during morphogenesis. XV. Acetylcholinesterase activity of the motor cortex of the fetal guinea pig. J. Comp. Neurol. 96, 113–119 (1952).PubMedGoogle Scholar
  16. Lajtha, A.: The development of the blood-brain barrier. J. Neurochem. 1, 216–277 (1957a).PubMedGoogle Scholar
  17. Lajtha, A.: Amino acid and protein metabolism of the brain. II. The uptake of L-lysine by brain and other organs of the mouse at different ages. J. Neurochem. 2, 209–215 (1958).PubMedGoogle Scholar
  18. Lajtha, A.: Amino acid and protein metabolism of the brain. V. Turnover of leucine in mouse tissues. J. Neurochem. 3, 358–365 (1959).PubMedGoogle Scholar
  19. Lajtha, A., S. Furst, A. Ger-Stein, And H. Waelsch: Amino acid and protein metabolism of the brain. I. Turnover of free and protein bound lysine in brain and other organs. J. Neurochem. 1, 289–300 (1957 b).Google Scholar
  20. Metzler, C. J., and D. G. Humm: The determination of cholinesterase activity in whole brains of developing rats. Science 113, 382–383 (1951).PubMedGoogle Scholar
  21. Nachmansohn, D.: Cholinesterase in the central nervous system. Bull. Soc. Chim. biol. (Paris) 21, 761–796 (1939).Google Scholar
  22. Nachmansohn, D.: Choline esterase in brain and spinal cord of sheep embryos. J. Neurophysiol. 3, 396–402 (1940).Google Scholar
  23. Potter, V. R., W. C. Schneider, and G. J. Lieble: Enzymic changes during growth and differentiation in the tissue of the newborn rat. Cancer Res. 5, 21–24 (1945).Google Scholar
  24. Roberts, E., P. J. Harman, and S. Frankel: y-Aminobutyric acid content and glutamic decarboxylase activity in developing mouse brain. Proc. Soc. exp. Biol. (N. Y.) 78, 799–803 (1951).Google Scholar
  25. Roberts, R. B., J. B. Flexner, And L. B. Flexner: Biochemical and physiological differentiation during morphogenesis. — XXIII. Further Observations Relating To The Synthesis Of Amino Acids And Proteins By The Cerebral Cortex And Liver Of The Mouse. J. Neuro Chem 4, 78–90 (1959).Google Scholar
  26. Rudnick, D., P. Mela, And H. Waelsch: Enzymes of glutamine metabolism in the developing chick embryo: a study of glutamotransferase and glutamine synthetase. J. exp. Zool. 126, 297–321 (1954).Google Scholar
  27. Sperry, W. M., And H. Waelsch: The chemistry of myelination and demyelination. Multiple Sclerosis and the Demyelinating Diseases 28, 255–267 (1952).Google Scholar
  28. Waelsch, H.: Glutamic acid and cerebral function. Adv. Protein Chem. 6, 299–341 (1951).PubMedGoogle Scholar
  29. Waelsch, H.: The turnover of components of the developing brain; the blood- brain barrier. In: Biochemistry of the developing nervous system, 187–199 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955.Google Scholar
  30. Waelsch, H., W. M. Sperry, and V. A. Stoyanoff: The influence of growth and myelination on the deposition and metabolism of lipids in the brain. J. biol. Chem. 140, 885–897 (1941).Google Scholar

H. Inborn errors of metabolism

  1. Armstrong, M. D., and K. S. Robinson: On the excretion of indole derivatives in phenyl-ketonuria. Arch. Biochem. 52, 287 (1954).PubMedGoogle Scholar
  2. Armstrong, M. D., and K. N. F. Shaw: Studies on phenylketonuria. III. The metabolism of o-tyrosine. J. biol. Chem. 213, 805 (1955).PubMedGoogle Scholar
  3. Armstrong, M. D., K. N. F. Shaw, And K. S. Robinson: Studies on phenylketonuria. II. The excretion of o-hydroxyphenylacetic acid in phenylketonuria. J. biol. Chem. 213, 797 (1955).PubMedGoogle Scholar
  4. Baldridge, R. C., L. Borofsky, H. Baird, III, F. Reichle, And D. Bullock: Relationship of serum phenylalanine levels and ability of phenylketonurics to hydroxy late tryptophan. Proc. Soc. exp. Biol. (N. Y.) 100, 529 (1959).Google Scholar
  5. Baron, D. N., C. E. Dent, H. Harris, E. W. Hart, And J. B. Jepson: Hereditary pellagra-like skin rash, with temporary cerebellar ataxia, constant renal amino-aciduria, and other bizarre biochemical features. Lancet 1956 II, 421.Google Scholar
  6. Berendes, H., J. A. Anderson, M. R. Ziegler, And D. Ruttenberg: Disturbance in tryptophane metabolism in phenylketonuria. A.M.A. J. Dis. Child. 96, 1 (1958).Google Scholar
  7. Bickel, H., J. Gerrard, And E. M. Hickmans: Influence of phenylalanine intake on phenylketonuria. Lancet 1953 II, 812.Google Scholar
  8. Borek, E., A. Brecher, G. A. Jervis, and H. Waelsch: Oligophrenia phenylpyruvica. II. Constancy of the metabolic error. Proc. Soc. exp. Biol. (N. Y.) 75, 86–89 (1950).Google Scholar
  9. Boscott, R. J., and H. Bickel: Phenylalanine and tyrosine metabolism in patients with phenylketonuria. Biochem. J. 56, 1 (1954).Google Scholar
  10. Brodie, B. B., J. Axelrod, P. A. Shore, and S. Udenfriend: Ascorbic acid in aromatic hydroxylation. II. Products formed by reaction of substrates with ascorbic acid, ferrous ion, and oxygen. J. biol. Chem. 208, 741–750 (1954).PubMedGoogle Scholar
  11. Cori, G. T.: Glycogen structure and enzyme deficiencies in glycogen storage disease. Harvey Lect. 48, 145–171 (1953).Google Scholar
  12. Dancis, J., And M. E. Balis: A possible mechanism for the disturbance in tyrosine metabolism of phenylpyruvic oligophrenia. Pediatrics 15, 63 (1955).PubMedGoogle Scholar
  13. Davison, A. N., and M. Sandler: Inhibition of 5-hydroxytryptophan decarboxylase by phenylalanine metabolites. Nature (Lond.) 181, 186 (1958).Google Scholar
  14. FÖlling, A.: Über Ausscheidung von Phenylbrenztraubensäure im Harn als Stoffwechsclanomalie in Verbindung mit Imbezillität. Hoppe-Scelers Z. physiol. Chem. 227, 169 (1934).Google Scholar
  15. Harris, H.: Human biochemical genetics. Cambridge University Press 1959.Google Scholar
  16. Hsia, D. Y.-Y., K. W. Driscoll, W. Troll, and W. E. Knox: Detection by phenylalanine tolerance tests of heterozygous carriers of phenylketonuria. Nature (Lond.) 178, 1239–1240 (1956).Google Scholar
  17. Hsia, D. Y.-Y., W. E. Knox, K. V. Quinn, and R. S. Paine: A one-year, controlled study of the effect of low-phenjdalanine diet on phenylketonuria. Pediatrics 21, 178 (1958a).PubMedGoogle Scholar
  18. Hsia, D. Y.-Y., I. Huang, and S. G. Driscoll: The heterozygous carrier in galactosaemia. Nature (Lond.) 182, 1389–1390 (1958b).Google Scholar
  19. Hsia, D. Y.-Y.: Inborn errors of metabolism. Chicago: The Year Book Publishers 1959.Google Scholar
  20. Isselbacher, K. J., E. P. Anderson, K. Kurahashi, and H. M. Kalckar: Congenital galactosemia, a single enzymatic block in galactose metabolism. Science 123, 635–636 (1956).PubMedGoogle Scholar
  21. Jervis, G. A.: Studies on phenylpyruvic oligophrenia. The position of the metabolic error. J. biol. Chem. 169, 651–656 (1947).PubMedGoogle Scholar
  22. Jervis, G. A.: Phenylpyruvic oligophrenia: deficiency of phenylalanine oxidizing system. Proc. Soc. exp. Biol. (N. Y.) 82, 514 (1953).Google Scholar
  23. Jervis, G. A.: Chemical pathology of the nervous system (J. Folch, Ed.). London: Pergamon Press Ltd. (in press).Google Scholar
  24. Klenk, E.: Über die Verteilung der Neuraminsäure im Gehirn bei der familiären amaurotischen Idiotie und bei der Niemann-Pickschen Krankheit. Hoppe Seylers Z. physiol. Chem. 282, 84–88 (1947).Google Scholar
  25. Klenk, E., and H. Langerbeins: Über die Verteilung der Neuraminsäure im Gehirn. (Mit einer Mikromethode zur quantitativen Bestimmung der Substanz im Nervengewebe). Hoppe-Seylers Z. physiol. Chem. 270, 185–193 (1941).Google Scholar
  26. Milne, M. D., M. A. Crawford, C. B. Girao, and L. Loughridge: The metabolic ab-normality of Hartnup disease. Biochem. J. 72, 30 (1959).Google Scholar
  27. Mitoma, C., R. M. Auld, and S. Udenfriend: On the nature of enzymatic defect in phenylpyruvic oligophrenia. Proc. Soc. exp. Biol. (N. Y.) 94, 634–635 (1957a).Google Scholar
  28. Mitoma, C., H. S. Posner, D. F. Bogdanski, And S. Udenfriend: Biochemical and pharmacological studies on o-tyrosine and its meta- and paraanalogues. A suggestion concerning phenylketonuria. J. Pharmacol, exp. Ther. 120, 188 (1957 b).Google Scholar
  29. Pare, C. M. B., M. Sandler, And R. S. Stacey: 5-Hydroxytryptamine deficiency in phenylketonuria. Lancet 1957 I, 551.Google Scholar
  30. Udenfriend, S., C. T. Clark, J. Axelrod, and B. B. Brodie: Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. J. biol.Chem. 208,731–739 (1954.)PubMedGoogle Scholar
  31. Wallace, H. W., K. Moldave, and A. Meister: Studies on conversion of phenylalanine to tyrosine in phenylpyruvic oligophrenia. Proc. Soc. exp. Biol. (N. Y.) 94, 632 (1957).Google Scholar
  32. Westall, R. G.: Argininosuccinicaciduria. Identification of the metabolic defect in a newly described form of mental deficiency. IVth Int. Congr. Biochem., Abstracts 168 (1958).Google Scholar
  33. Westall, R. G., J. Demis, and S. Miller: Maple sugar urine disease. A.M.A. J. Dis. Child. 94, 571 (1957).Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1964

Authors and Affiliations

  • Heinrich Waelsch
    • 1
  • Hans Weil-Malherbe
    • 2
  1. 1.New YorkUSA
  2. 2.USA

Personalised recommendations