Enzymic Assays of Amino Acids and Keto Acids

  • B. D. Sanwal
Part of the Modern Methods of Plant Analysis / Moderne Methoden der Pflanzenanalyse book series (PFLANZENANAL., volume 6)

Abstract

An enzyme can be used for the estimation of a given metabolite only if it fulfills the following criteria: 1. The enzyme is specific for the metabolite in question. 2. The reaction proceeds to completion and, 3. one of the products of the reaction can be easily measured. In many cases, however, all the criteria are not easily fulfilled. In the spectrophotometric measurement of aspartic acid, for instance, use is made of the glutamate-oxalacetate transaminase which converts aspartate with α-ketoglutarate to glutamate and oxalacetate. This reaction, however, does not go to completion; equilibrium is established when the concentration of oxalacetate reaches 0.15 mole per mole of aspartate in solution (Pfleiderer, Gruber and Wieland, 1955). The reaction can be brought to completion if the oxalacetic acid is continuously removed with the help of DPNH and 1-malic dehydrogenase. Many such coupled reactions are used in the determination of the metabolites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E.: J. biol. Chem. 209, 829 (1954).PubMedGoogle Scholar
  2. Beisenherz, G., H. J. Boltze, Th. Bücher, R. Czok, K. H. Garbade, E. Meyer-Arendt and G. Pfleiderer: Z. Naturforsch. 8b, 555 (1953).Google Scholar
  3. Cohen, P. P., and G. L. Hekhins: J. biol. Chem. 140, 711 (1941).Google Scholar
  4. Crawford, L. V.: Biochem. J. 68, 221 (1958).PubMedGoogle Scholar
  5. Epps, H. M. R.: Biochem. J. 47, 605 (1944).Google Scholar
  6. Flavin, M., and C. Slaughter: Anal. Chem. 31, 1983 (1959).CrossRefGoogle Scholar
  7. Frank, L. H., and R. D. DeMoss: Arch. Biochem. Biophys. 67, 387 (1957).PubMedCrossRefGoogle Scholar
  8. Gale, E. F.: Biochem. J. 39, 46 (1945);PubMedGoogle Scholar
  9. Nature (Lond.) 157, 265 (1946);Google Scholar
  10. J. gen. Microbiol. 1, 53 (1947a);Google Scholar
  11. Biochem. J. 41, viii (1947b);Google Scholar
  12. Meth. biochem. Anal. 4, 285 (1957).Google Scholar
  13. Gale, E. F., and H. M. R. Epps: Nature (Lond.) 152, 327 (1943).CrossRefGoogle Scholar
  14. Green, D. E., D. Herbert and V. Subrahmanyan: J. biol. Chem. 138, 327 (1941).Google Scholar
  15. Green, D. E., L. F. LeLoir and V. Nocito: J. biol. Chem. 161, 559 (1945).PubMedGoogle Scholar
  16. Greenberg, D. H.: Meth. Enzymol. 2, 368 (1955).CrossRefGoogle Scholar
  17. Hack, L. R.: U.S. Patent 2, 687, 369 (1950).Google Scholar
  18. Halpern, Y. S., and N. Grossowicz: Proc. SOC. exp. Biol. (N.Y.) 91, 370 (1956).Google Scholar
  19. Henley, K. S., H. S. Wiggins and M. Pollard: J. Lab. clin. Med. 47, 978 (1956).PubMedGoogle Scholar
  20. Holzer, H., and A. Holldorf: Biochem. Z. 329, 292 (1957).PubMedGoogle Scholar
  21. Horecker, B. L., and A. Kornberg: J. biol. Chem. 175, 385 (1948).PubMedGoogle Scholar
  22. Hunter, A., and J. B. Pettigrew: Enzymologia 1, 341 (1937).Google Scholar
  23. Kornberg, A.: Methods in Enzymology 1, 441 (1955).CrossRefGoogle Scholar
  24. Kott, Y., and N. Lichenstein: Analyt. chim. Acta 22, 401 (1960).CrossRefGoogle Scholar
  25. Krebs, H. A.: Biochem. J. 32, 108 (1938); 43, 51 (1948); 47, 605 (1950).PubMedGoogle Scholar
  26. Krebs, H. A., and L. V. Eggleston: Biochem. J. 43, 17 (1948).Google Scholar
  27. Kubowitz, F., and P. Otto: Biochem. Z. 314, 94 (1943).Google Scholar
  28. McGilvery, R. W., and P. P. Cohen: J. biol. Chem. 174, 813 (1948).PubMedGoogle Scholar
  29. Mehler, A. H., and H. Tabor: J. biol. Chem. 201, 775 (1953).PubMedGoogle Scholar
  30. Meister, A.: J. biol. Chem. 184, 117 (1950); 197, 309 (1952);PubMedGoogle Scholar
  31. Methods in Enzymology 2, 383 (1955).Google Scholar
  32. Meister, A., and P. E. Fraser: J. biol. Chem. 210, 37 (1954).PubMedGoogle Scholar
  33. Meister, A., H. A. Sober and S. V. Tice: J. biol. Chem. 189, 577, 591 (1951).PubMedGoogle Scholar
  34. Najjar, V. A., and J. A. Fisher: J. biol. Chem. 206, 215 (1954).PubMedGoogle Scholar
  35. Ochoa, S., A. H. Mehler and A. Kornberg: J. biol. Chem. 174, 979 (1948).PubMedGoogle Scholar
  36. Pfleiderer, G., W. Gruber and Th. Wieland: Biochem. Z. 326, 446 (1955).PubMedGoogle Scholar
  37. Schales, O., and S. S. Schales: Arch. Biochem. 11, 445 (1946).PubMedGoogle Scholar
  38. SCOTT, T. A.: Biochem. J. 75, vii (1960a);Google Scholar
  39. Personal Communication (1960b).Google Scholar
  40. Seidman, M., and M. J. Blish: J. agric. Food Chem. 5, 448 (1957).CrossRefGoogle Scholar
  41. Seitz, W., A. Englhardt-Gölkel and I. Schaffery: Klin. Wschr. 33, 228 (1955).PubMedCrossRefGoogle Scholar
  42. Stafford, H. E., A. Magaldi and B. Vennesland: J. biol. Chem. 207, 621 (1954).PubMedGoogle Scholar
  43. Tabor, H., and O. Hayaishi: J. biol. Chem. 194, 171 (1952).PubMedGoogle Scholar
  44. Tabor, H., and A. H. Mehler: Meth. Enzymol. 2, 228 (1955).CrossRefGoogle Scholar
  45. Thorn, W., G. Pfleiderer, R. A. Frowein and J. Ross: Pflügers Arch. ges. Physiol. 261, 334 (1955).CrossRefGoogle Scholar
  46. Udenfriend, S.: Meth. Enzymol. 3, 607 (1957).CrossRefGoogle Scholar
  47. Umbreit, W. W., and I. C. Gunsalus: J. biol. Chem, 159, 333 (1945).Google Scholar
  48. Virtanen, A. L, and T. Laine: Enzymologia 3, 266 (1937).Google Scholar
  49. Virtanen, A. I., and A. Louhivuori: Acta chem. scand. 1, 799 (1947).CrossRefGoogle Scholar
  50. Warburg, O.: Wasserstoffübertragende Fermente. Berlin: Saenger 1948.Google Scholar
  51. Warburg, O., F. Kubowitz and N. Christian: Biochem. Z. 227, 252 (1930).Google Scholar
  52. Westerkamp, H.: Biochem. Z. 263, 239 (1933).Google Scholar
  53. Zittle, C, A., and N. R. Eldred: J. biol. Chem. 156, 401 (1944).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1963

Authors and Affiliations

  • B. D. Sanwal

There are no affiliations available

Personalised recommendations