Electronic Neuron Models as an Aid to Neurophysiological Research

  • F. Jenik
Part of the Ergebnisse der Biologie Advances in Biology book series (ERGBIOL, volume 25)


As is well known the time courses of many physiological and electrical phenomena are quite similar. Therefore electrical and electrochemical models can be used to simulate physiological processes [Bethe; Bonhoeffer; Burns; Druckrey and Küpfmüller; Eccles (1); Freygang; Hermann; Hodgkin and Huxley; Küpfmüller (1); Lillie; Tasaki].1 In modern automation and computer technology refined apparatus becomes necessary which is able to perform such complex functions as learning and pattern recognition, which seemed hitherto to have been restricted to organisms with highly developed nervous systems (Steinbuch; Wiener). The design of such apparatus being rather difficult, communication and electronic engineers are interested in how nature has solved the problems of information processing in the nervous system. The investigation of nervous systems is one of the tasks of biologists, and engineers hope that their questions can be answered by the biologists. However two difficulties arise: firstly, many biologists are not interested in engineering problems, and secondly, biologists and engineers do not approach problems from the same angle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barlow, H. B.: Possible principles underlying the transformations of sensory messages. Sensory Communication, W. A. Rosenblith Ed. New York-London: John Wiley & Sons 1961.Google Scholar
  2. Van Bergeijk, W. A.: (1) Nomenclature of devices which simulate biological functions. Science 132, 1248 (1960).PubMedCrossRefGoogle Scholar
  3. Van Bergeijk, W. A.: (2) Studies with artificial neurons, Ii: Analog of the external spiral innervation of the cochlea. Kybernetik 1, 102–107 (1961).PubMedCrossRefGoogle Scholar
  4. Bethe, A.: Analogien zwischen Rhythmusstörungen des Herzens und Vorgängen in künstlichen Kippschwingungssystemen. Klin. Wschr. 33–36 (1941).Google Scholar
  5. Beurle, R. L.: Properties of a mass of cells capable of regenerating pulses. Phil. Trans. B. 240, 55 (1956).CrossRefGoogle Scholar
  6. Bonhoeffer, K. F.: Modelle der Nervenerregung. Naturwissenschaften 40, 301–311 (1953).CrossRefGoogle Scholar
  7. Brain, A. E.: The simulation of neural elements by electrical networks based on multi-aperture magnetic cores. Proc. IRE 49, 49–52 (1961).CrossRefGoogle Scholar
  8. Bray, T. E.: An optoelectronic — magnetic neuron component. Proc. National Electronics Conference, Chicago, 17, 322–326 (1961).Google Scholar
  9. Bullock, TH. H.: The origins of patterned nervous discharge. Behaviour 17, 48–60 (1961).CrossRefGoogle Scholar
  10. Burkhardt, D.: (1) Die Eigenschaften und Funktionstypen der Sinnesorgane. Ergebn. Biol. 22, 226–267 (1960).CrossRefGoogle Scholar
  11. Burkhardt, D.: (2) Die Sinnesorgane des Skeletmuskels und die nervöse Steuerung der Muskeltätigkeit. Ergebn. Biol. 20, 27–67 (1958).Google Scholar
  12. Burkhardt, D.: (3) Die Übertragereigenschaften elektro-physiologischer Versuchsanordnungen. Z. Biol. 109, 297–324 (1957).PubMedGoogle Scholar
  13. Burns, B. D.: The mechanisms of afterbursts in cerebral cortex. J. Physiol. (Lond.) 127, 168–188 (1955).Google Scholar
  14. Chance, B., V. Hughes, E. F. Macnichol, D. Sayre and F. C. Williams: Waveforms. S. 676. New York-Toronto-London: McGraw-Hill 1949.Google Scholar
  15. Coates, C. L., and E. A. Fisch: Design of a solid state neuron circuit. General Electric, Electronics Lab. Techn. Inf. Ser. R 60 ELS-39, Syracuse, New York 1960.Google Scholar
  16. Crane, H. D.: The neuristor. IRE Transactions, EC-9, 370 (1961).Google Scholar
  17. Curtis, D. R., and J. C. Eccles: The time courses of excitatory and inhibitory synaptic actions. J. Physiol. (Lond.) 145, 529–546 (1959).Google Scholar
  18. Curtis, D. R., and A. Lundberg: Intracellular recording from cells in Clarke’s colum. Acta physiol. scand. 43, 303–314 (1958).PubMedCrossRefGoogle Scholar
  19. Druckrey, H., u. K. Küpfmüller: Dosis und Wirkung. Freiburg i. Br.: Editio Cantor 1949.Google Scholar
  20. Eccles, J. C.: (1) The neurophysiological basis of mind: The principles of neurophysiology. Oxford: Clarendon Press 1953.Google Scholar
  21. Eccles, J. C.: (2) The physiology of nerve cells. Baltimore: The Johns Hopkins Press 1957.Google Scholar
  22. Eccles, J. C.: (3) The mechanism of synaptic transmission. Ergebn. Physiol. 51, 299–431 (1961).PubMedGoogle Scholar
  23. Eccles, J. C.: (4) Inhibitory pathways to motoneurons. Nervous Inhibition, p. 47–61, E. Florey Ed. Oxford-London-New York-Paris: Pergamon Press 1961.Google Scholar
  24. Fack, H.: Impulsübertragung im Nervensystem. Impulstechnik. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  25. Farley, B. G., and W. A. Clark: Activity in networks of neuron-like elements. Information Theory, C. Cherry Ed. London: Butterworths 1961.Google Scholar
  26. Feldtkeller, R.: Wechselbeziehungen zwischen Psychologie, Physiologie und Nachrichtentechnik. Aufnahme und Verarbeitung von Nachrichten durch Organismen. Stuttgart: Hirzel 1961.Google Scholar
  27. Fessard, A.: The role of neuronal networks in sensory communications within the brain. Sensory communication, W. A. Rosenblith Ed. New York-London: John Wiley & Sons 1961.Google Scholar
  28. Freygang, jr., W. H.: Some functions of nerve cells in terms of an equivalent network. Proc. IRE 47, 1862–1869 (1959).CrossRefGoogle Scholar
  29. Granit, R.: Receptors and sensory perception. New Haven: Yale University Press 1955.Google Scholar
  30. Grüsser, O. J., u. A. Grützner: Reaktionen einzelner Neurone des optischen Cortex bei der Katze nach elektrischen Reizserien des Nervus opticus. Arch. Psychiat. Nervenkr. 197, 405–432 (1958).PubMedCrossRefGoogle Scholar
  31. Grundfest, H.: Synaptic and ephaptic transmission. Handb. Physiol; Sect. 1: Neurophysiol., Vol. I, Washington, D. C.: American Physiol. Society Washington, D. C, 1959Google Scholar
  32. Harmon, L. D.: Studies with artificial neurons, I: Properties and functions of an artificial neuron. Kybernetik 1, 89–101 (1961).PubMedCrossRefGoogle Scholar
  33. Harmon, L. D., and R. M. Wolfe: An electronic model of a nerve cell. Semiconductor Products 2, 36–40 (1959).Google Scholar
  34. Hartline, H. K., and F. Ratliff: Spatial summation of inhibitory influences in the eye of Limulus, and the mutual interaction of receptor units. J. gen. Physiol. 41, 1049–1066 (1958).PubMedCrossRefGoogle Scholar
  35. Hassenstein, B.: Die bisherige Rolle der Kybernetik in der biologischen Forschung. Naturw. Rundschau 13, 349–355, 373-382, 419-424 (1960).Google Scholar
  36. Hermann, L.: Zur Theorie der Erregungsleitung und der elektrischen Erregung. Pflügers Arch. ges. Physiol. 75, 574 (1899).CrossRefGoogle Scholar
  37. Hiltz, F. F.: Analog computer simulation of a neural element. IRE Transactions BME-9, 12–20 (1962).Google Scholar
  38. Hodgkin, A. L., and A. F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).Google Scholar
  39. Jenik, F.: Die Überlagerung von Impulsfolgen in Systemen mit einer Schwelle. Arch. elektr. Übertr. 16, 173–188 (1962).Google Scholar
  40. Jung, R.: (1) Neuronal integration in the visual cortex and its significance for visual information. Discussion: Limitations of mechanical models of neuronal coordination. Sensory communication, W. A. Rosenblith Ed. New York-London: John Wiley & Sons 1961.Google Scholar
  41. Jung, R.: (2) Die Tätigkeit des Nervensystems. Handbuch der Inneren Medizin, V/1. Berlin-Göttingen-Heidelberg: Springer 1953.Google Scholar
  42. Keidel, W. D.: Codierung, Signalleitung und Decodierung in der Sinnesphysiologie. Aufnahme und Verarbeitung von Nachrichten durch Organismen. Stuttgart: Hirzel 1961.Google Scholar
  43. Küpfmüller, K.: (1) Elektrische Ersatzbilder, Fernmeldetechn. Z. 4, 1–10 (1951).Google Scholar
  44. Küpfmüller, K.: (2) Nachrichtenübertragung und Nachrichtenverarbeitung (Neue gedankliche Werkzeuge). Naturwissenschaften 48, 177–184 (1961).CrossRefGoogle Scholar
  45. Küpfmüller, K.: (3) Informationsverarbeitung durch den Menschen. Nachrichtentechn. Z. 12, 68–74 (1959).Google Scholar
  46. Küpfmüller, K.: (4) Die nachrichtenverarbeitenden Funktionen der Nervenzellen. Aufnahme und Verarbeitung von Nachrichten durch Organismen. Stuttgart: Hirzel 1961.Google Scholar
  47. Küpfmüller, K.:, u. F. Jenik: Über die Nachrichtenverarbeitung in der Nervenzelle. Kybernetik 1, 1–6 (1961).CrossRefGoogle Scholar
  48. Kuffler, S. W.: The two skeletal nerve-muscle systems in frog. Arch. exper. Path. Pharmak. 220, 116–135 (1953).Google Scholar
  49. Levinson, J., and L. D. Harmon: Studies with artificial neurons. Iii: Mechanisms of flicker-fusion. Kybernetik1, 107–117 (1961)PubMedCrossRefGoogle Scholar
  50. Lillie, R. S.: The passive iron wire model of protoplasmic nervous transmission and its physiological analogues. Biol. Rev. 11, 181–209 (1936).CrossRefGoogle Scholar
  51. Ling, G., and R. W. Gerard: The normal membran potential of frog sartorius fibers. J. cell. comp. Physiol. 34, 383–396 (1949).CrossRefGoogle Scholar
  52. Lloyd, D. P. C.: A study of some twentieth century thoughts on inhibition in the spinal cord. Nervous Inhibition, E. Florey Ed. Oxford-London-New York-Paris: Pergamon Press 1961.Google Scholar
  53. Lorente De No, R.: Analysis of the activity of the chains of internuncial neurons. J. Neurophysiol. 1, 207–245 (1938).Google Scholar
  54. Martin, T. B.: Analog signal processing by neural networks. Proc. National Electronics Conference, Chicago, 17, 317–321 (1961).Google Scholar
  55. Mcculloch, W. S.: (1) Agathe tyche of neurons nets — the lucky reckoners; and discussion p. 630. Mechanisation of thought processes, Vol. II. London: Her Majesty’s Stationery Office, 1959.Google Scholar
  56. Mcculloch, W. S.: (2) The reliability of biological systems. Self-organizing systems, M. C. Yovits and S. Cameron Eds. New York-Oxford-London-Paris: Pergamon Press 1960.Google Scholar
  57. Mcculloch, W. S., and W. Pitts: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).CrossRefGoogle Scholar
  58. Mcgrogan, E. P.: Improved transistor neuron models. Proc. National Electronics Conference, Chicago, 17, 302–310 (1961).Google Scholar
  59. Minsky, M.: A selected descriptor-indexed bibliography to the literature on artificial intelligence. IRE Trans. Hfe, 39–55 (1961).Google Scholar
  60. Mueller, P.: On the kinetics of potential, electromotance and chemical change in the excitable system of nerve. J. gen. Physiol. 42, 193–229 (1958).PubMedCrossRefGoogle Scholar
  61. Nagumo, J.: On a model of nerve fibre (jap.). Report Prof. Group Automata Study; The Inst. El. Com. Eng. of Japan, April 13, 1961.Google Scholar
  62. Pierce, A. M.: A concise bibliography of the literature on artificial intelligence. Proj. 4610, Task 46104, Electronics Res. Dir., Air Force Cambridge Research Center, Air R & D com. Usaf, Bedford, Mass., USA., 1959.Google Scholar
  63. Putzrath, F. L., and Th. B. Martin: Speech recognition by neural networks. Proc. Nat. Electronics Conference, Chicago, 17, 311–316 (1961).Google Scholar
  64. Rall, W.: Experimental monosynaptic input-output relations in the spinal cord. J. cell. comp. Physiol. 46, 413–437 (1955).CrossRefGoogle Scholar
  65. Ratliff, F., and H. K. Hartline: The reponses of Limulus optic nerve fibers to patterns of illumination on the receptor mosaic. J. gen. Physiol. 42, 1241–1255 (1959).PubMedCrossRefGoogle Scholar
  66. Rosenblatt, F.: Perceptions and cognitive systems. Lernende Automaten, H. Billing Ed. München: R. Oldenbourg 1961.Google Scholar
  67. Rushton, W. A. H.: Peripheral coding in the nervous system. Sensory Communication, W. A. Rosenblith Ed. New York-London: John Wiley & Sons 1961.Google Scholar
  68. Schwartzkopff, J.: Die Übertragung akustischer Information durch Nerventätigkeit nach dem Salvenprinzip. Aufnahme und Verarbeitung von Nachrichten durch Organismen. Stuttgart: Hirzel 1961.Google Scholar
  69. Sichel, F. J.: Physiology in bio-medical engineering. IRE Trans. BME-8, 211–212 (1961).CrossRefGoogle Scholar
  70. Simmons, P. L., and R. F. Simmons: (1) The simulation of cognitive processes: An annotated bibliography. IRE Trans. EC, 462–483 (1961).Google Scholar
  71. Simmons, P. L., and R. F. Simmons: (2) The simulation of cognitive behaviour, II; An annotated bibliography. Sp-590/002/00 System Development Corporation, Santa Monica, California, USA (1961).Google Scholar
  72. Stacy, R. W.: Biology in bio-medical engineering. IRE Trans. BME-8, 209–211 (1961).CrossRefGoogle Scholar
  73. Steinbuch, K.: Automat und Mensch. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  74. Talbot, S. A.: The role of the engineer in bio-medical science. IRE Trans. BME-8, 212–216 (1961).CrossRefGoogle Scholar
  75. Tasaki, I: Conduction of the nerve impulse. Handb. Physiol., Sec. 1: Neurophysiol. Vol. I, 75–121, Washington D. C.: American Physiol. Society: 1959.Google Scholar
  76. Taylor, W. K.: Electrical simulation of some nervous system functional activities. Information Theory, C. Cherry Ed. London: Butterworths 1956.Google Scholar
  77. Uttley, A. M.: Conditional probability computing in a nervous system. Mechanisation of thought processes. Vol. I London: Her Majesty’s Stationery Office, 1959.Google Scholar
  78. Wagner, R.: Probleme und Beispiele biologischer Regelung. Stuttgart: Thieme 1954.Google Scholar
  79. Wiener, N.: Cybernetics. 2nd Ed. New York-London: John Wiley & Sons 1961.Google Scholar
  80. Willis, D. G.: Plastic neurons as memory elements. Proc. Intern. Conf. Inf. Processing; UNESCO House, Paris, France 1959.Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1962

Authors and Affiliations

  • F. Jenik
    • 1
  1. 1.Institut für allgemeine NachrichtentechnikTechnischen Hochschule DarmstadtDeutschland

Personalised recommendations