Zusammenfassung

Die Synthese organischer Substanz ist ohne Zweifel einer der wichtigsten und fundamentalsten Lebensvorgänge, zu dessen Erforschung man sich wegen ihrer leichten Handhabung besonders gern niederer Pilze und Bakterien bedient hat. Viele an diesen Lebewesen gewonnene Erkenntnisse lassen sich auf höhere Organismen übertragen bzw. sind an diesen bestätigt worden. Das über die Energetik von Entwicklungsprozessen sowie über die damit zusammenhängenden Fragen der Assimilation und der Synthese von Zellsubstanz, insbesondere von Enzymen zusammengetragene Beobachtungsmaterial ist außerordentlich umfangreich. Es war daher nicht möglich, die einschlägige Literatur auch nur annähernd vollständig zu berücksichtigen. Hinweise auf einige grundlegende Arbeiten mögen daher das Eindringen in die angeschnittenen Fragen erleichtern. Darüber hinaus konnte nicht vermieden werden, auf einige mit der Entwicklung zusammenhängende Erscheinungen des Stoffwechsels, welche in anderen Beiträgen dieses Handbuches ausführlich behandelt werden, im Interesse einer möglichst geschlossenen Darstellung kurz einzugehen. Das gilt unter anderen für die Pasteursche Reaktion1, die Energiespeicherung2 und die Assimilation von Kohlenhydraten3.

Literatur

  1. Aisenberg, A. C., and V. R. Potter: Studies on the Pasteur effect. II. Specific mechanisms. J. biol. Chem. 224, 1115–1127 (1957).PubMedGoogle Scholar
  2. AJL, S. J., and C. II. Werkman: Enzymatic fixation of CO2 in α-ketoglutaric acid. Proc. nat. Acad. Sci. (Wash.) 34, 491–498 (1948).CrossRefGoogle Scholar
  3. AJL, J., and D. T. O. Wong: A reappraisal of the role of the tricarboxylic acid cycle in the respiration of Escherichia coli. Arch. Biochem. 54, 474–485 (1955).PubMedCrossRefGoogle Scholar
  4. Alexander, J. P., and P. W. Wilson: Large-scale production of the Azotobacter for enzymes. Appl. Microbiol. 2, 135–140 (1954).PubMedGoogle Scholar
  5. Algera, L.: Energiemessungen bei Aspergillus niger mit Hilfe eines automatischen Mikro-Kompensationskalorimeters. Rec. trav. bot. néerl. 29, 47–163 (1932).Google Scholar
  6. Anderson, R. S.: The reversible reaction of Cypridina luciferin with oxidizing agents and its relation to the luminescent reaction. J. cell. comp. Physiol. 8, 261–276 (1936).CrossRefGoogle Scholar
  7. Andreasen, A. A., and T. J. B. Stier: Anaerobic nutrition of Saccharomyces cerevisiae. III. An unidentified growth promoting factor and its relationship to the essential lipid requirements. J. cell. comp. Physiol. 48, 317–328 (1956).CrossRefGoogle Scholar
  8. Barker, H.A.: The oxidative metabolism of the colorless alga Prototheca zopfii. J. cell. comp. Physiol. 8, 231–250 (1936).CrossRefGoogle Scholar
  9. Bartholomew, W. H., E. O. Karow, M. R. Sfat and R. II. Wilhelm: Oxygen transfer and agitation in submerged fermentations. Industr. Engin. Chem. 42, 1801–1815 (1950).CrossRefGoogle Scholar
  10. Bautz, E., u. U. Hagen: Spektroskopische Untersuchungen der Cytochrome bei IIefekulturen mit verschiedener Anzahl Nadi-positiver Zellen. Naturwissenschaften 41, 458 (1954).CrossRefGoogle Scholar
  11. Bayne-Jones, S., and E. F. Adolph: Growth size in micro-organisms measured from motion pictures. III. Bact. coli. J. cell. comp. Physiol. 2, 329–348 (1932).CrossRefGoogle Scholar
  12. Beck, E. S., and E. S. Lindenstrom: The oxidative metabolism of Bacillus cereus. J. Bact. 70, 335–338 (1955).PubMedCrossRefGoogle Scholar
  13. Berenesi, B., B. Czanki u. M. Lehoczki: Studien über den Gaswechsel von Mykobakterien. Zbl. Bakt., I. Abt. Ref. 167, 523–528 (1957).Google Scholar
  14. Berkes, I., u. P. Berkes: Über die unspezifische Wirkung kationisch gelösten Insulins auf die Hefeatmung. Hoppe-Seylers Z. physiol. Chem. 308, 136–140 (1957).PubMedCrossRefGoogle Scholar
  15. Bernheim, F., and W. E. de Turk: The effect of certain drugs on nitrogen assimilation in Pseudomonas aeruginosa. J. Pharmacol. (Kyoto) 103, 107–111 (1951).Google Scholar
  16. Bertalanffy, L. v.: Theoretische Biologie, Bd. II, Stoffwechsel und Wachstum. Bern: A. Francke 1951.Google Scholar
  17. Blumenthal, H. J., H. Koffler and E. P. Goldschmidt: The effect of glucose or acetat on the rate of endogenous respiration of Penicillium chrysogenum. Bact. Proc. 1951, 139–140.Google Scholar
  18. Blumenthal, H. J., H. Koffler and E. C. Heath: Biochemistry of filamentous fungi. V. Endogenous respiration during concurrent metabolism of exogenous substrates. J. cell. comp. Physiol. 50, 471–497 (1957).CrossRefGoogle Scholar
  19. Boekhout, F. W. J., u. J. J. Ott de Fries: Über die Selbsterhitzung des Heues. Zbl. Bakt., II. Abt. 12, 675 (1904);Google Scholar
  20. Boekhout, F. W. J., u. J. J. Ott de Fries: Über die Selbsterhitzung des Heues. Zbl. Bakt., II. Abt. 15, 586 (1906);Google Scholar
  21. Boekhout, F. W. J., u. J. J. Ott de Fries: Über die Selbsterhitzung des Heues. Zbl. Bakt., II. Abt. 18, 27 (1907);Google Scholar
  22. Boekhout, F. W. J., u. J. J. Ott de Fries: Über die Selbsterhitzung des Heues. Zbl. Bakt., II. Abt. 23, 106 (1909).Google Scholar
  23. Borei, H., u. A. Sjöden: Züchtungsbedingte Änderungen des Cytochrom-c-Gehaltes der Oberhefe., Ark. Kemi (Stockh.) 16, 1–17 (1943).Google Scholar
  24. Brandt, K. M.: Über Reservekohlenhydrate der Preßhefe. Das Verhalten der Trehalose beim Wachstum und bei der Wärmeschädigung der Hefe. Biochem. Z. 309, 190–201 (1941).Google Scholar
  25. Browne, C. A.: The spontaneous combustion of hay. U. S. Dept. Agr. Tech. Bull 141, 1 (1929).Google Scholar
  26. Bünning, E.: Entwicklungs- und Bewegungsphysiologie der Pflanze. Berlin-Göttingen-Heidelberg: Springer 1953.CrossRefGoogle Scholar
  27. Chantrenne, H.: Metabolic changes in nucleic acids during the induction of enzymes by oxygen in resting yeast. Arch. Biochem. 65, 414–426 (1956).PubMedCrossRefGoogle Scholar
  28. Chapin, P.: Einfluß der Kohlensäure auf das Wachstum. Flora (Jena) 91, 348–379 (1902).Google Scholar
  29. Christian, J. H. B.: The water relations of growth and respiration of Salmonella Oranienburg at 30° C. Aust. J. biol. Sci. 8, 490–497 (1955).Google Scholar
  30. Christophersen, J.: Mikroorganismen. In H. Precht, J. Christophersen u. H. Hensel, Temperatur und Leben, S. 178–328. Berlin-Göttingen-Heidelberg: Springer 1955.CrossRefGoogle Scholar
  31. Christophersen, J., u. H. Precht: Untersuchungen über die Bedeutung des Wassergehaltes von Hefezellen für Temperaturanpassungen. Arch. Mikrobiol. 18, 32–48 (1952).PubMedCrossRefGoogle Scholar
  32. Church, B.D., H. Halvorson and H. O. Halvorson: Studies on spore germination: its independence from alanine racemase activity. J. Bact. 68, 393–399 (1954).PubMedGoogle Scholar
  33. Claassen, H.: Über Stoffbilanz, Atmung und Gasaustausch der Hefezellen bei dem Lufthefezulaufverfahren. Biochem. Z. 275, 350–361 (1935).Google Scholar
  34. Clifton, C.E.: A comparison of the metabolic activities of Aerobacter aerogenes, Eberthella typhi and Escherichia coli. J. Bact. 33, 145–162 (1937a).PubMedGoogle Scholar
  35. Clifton, C.E.: On the possibility of preventing assimilation in respiring cells. Enzymologia 4, 246–253 (1937b).Google Scholar
  36. Clifton, C.E.: Microbial assimilations. Advanc. Enzymol. 6, 269–308 (1946).Google Scholar
  37. Clifton, C. E., J. P. Cleary and P. J. Beard: Oxidation-reduction potentials and ferricyanide reducing activities in peptone cultures and suspensions of Escherichia coli. J. Bact. 28, 541–559 (1934).PubMedGoogle Scholar
  38. Clifton, C. E., and W. A. Logan: On the relation between respiration and assimilation in suspensions and in cultures of E. coli. J. Bact. 37, 523–540 (1939).PubMedGoogle Scholar
  39. Cochrane, V. W., and M. Gibbs: The metabolism of species of Streptomyces. IV. The effect of substrate on the endogenous respiration of Streptomyces coelicolor. J. Bact. 61, 305–307 (1951).PubMedGoogle Scholar
  40. Cohen, M. B., and L. Markle: A method which greatly facilitates culture of the Meningococcus. J. Amer. med. Ass. 67, 1302 (1916).CrossRefGoogle Scholar
  41. Cohn, F.: Über thermogene Bakterien. Ber. dtsch. bot. Ges. 11, 66 (1893).Google Scholar
  42. Coleman, R. J., M. Cefola and F. F. Nord: On the mechanism of enzyme action. LII. The usefulness of 1-C14 acetate for the study of carbohydrate → fat synthesis in Fusarium Uni Bailey. Arch. Biochem. 40, 102–110 (1952).PubMedCrossRefGoogle Scholar
  43. Cook, R. P., and M. Stephenson: Bacterial oxidations by molecular oxygen. I. The aerobic oxidation of glucose and its fermentation-products in its relation to the viability of the organism. Biochem. J. 22, 1368–1386 (1928).PubMedGoogle Scholar
  44. Cormier, M. J., and B. L. Strehler: The identification of KCF: Requirement of long chain aldehydes for bacterial extract luminescence. J. Amer. chem. Soc. 75, 4864 (1953).CrossRefGoogle Scholar
  45. Cormier, M. J., and J. R. Totter: Quantum efficiency determinations on components of the bacterial luminescence system. Biochim. biophys. Acta 25, 229–237 (1957).PubMedCrossRefGoogle Scholar
  46. Dagley, S., E. A. Dawes and G. A. Morrison: The effect of aeration on the growth of Aerobacter aerogenes and Escherichia coli, with reference to the Pasteur mechanism. J. Bact. 61, 433–441 (1951).PubMedGoogle Scholar
  47. Damaschke, K., R. Lorenz u. F. Tödt: Über den Einfluß von Zuckerzusätzen auf die Atmungsgeschwindigkeit von Hefesuspensionen. Z. Naturforsch. 12b, 320–325 (1957).Google Scholar
  48. Damaschke, K., u. H. P. Mundt: Die Einwirkung von Giften auf die Atmung von Backhefe. Ihr Nachweis durch die elektrochemische O2-Messung. Z. Naturforsch. 12b, 237–240 (1957).Google Scholar
  49. Dickens, F.: Die manometrische Methode. In Bamann-Myrbäck, Methoden der Fermentforschung, S. 985–1022. Leipzig: Georg Thieme 1941.Google Scholar
  50. Dienes, L., and H. J. Weinberger: The L-forms of bacteria. Bact. Rev. 15, 245–288 (1951).PubMedGoogle Scholar
  51. Dixon, M.: Manometric methods. Cambridge: Univ. Press 1943.Google Scholar
  52. Doudoroff, M.: Lactoflavin and bacterial luminescence. Enzymologia 5, 239–243 (1938).Google Scholar
  53. Doudoroff, M.: Studies on the luminous bacteria. I. Nutritional requirements of some species, with special reference to methionin. J. Bact. 44, 451–459 (1942).PubMedGoogle Scholar
  54. Douglas, R. J., and C. L. San Clemente: Respiration of scab-producing strains of Actinomyces, Canad. J. Microbiol. 2, 407–415 (1956).Google Scholar
  55. Eaton, N. R., and H. P. Elein: The oxidation of glucose and acetat by Saccharomyces cerevisiae. J. Bact. 68, 110–116 (1954).PubMedGoogle Scholar
  56. Ebel, J., R. Vendrely et R. Tulasne: Action de la pénicilline sur la métabolisme phosphoré et azité du staphylocoque doré (Staphylococcus aureus). C. R. Soc. Biol. (Paris) 144, 1413–1415 (1950a).Google Scholar
  57. Ebel, J., R. Vendrely et R. Tulasne: Action de pénicilline sur le métabolisme phosphoré et azoté du Proteus vulgaris. C. R. Soc Biol. (Paris) 144, 1415–1417 (1950b).Google Scholar
  58. Eckenfelder, W. W.: Aeration efficiency and design. Sewage and Ind. Wastes 24, 1221–1228 (1952).Google Scholar
  59. Elander, M.: Umsatz von Trehalose in Bäckerhefe. I. Aufbau der Trehalose bei Glucosevergärung. Ark. Kemi (Stockh.) 9, 191–224 (1956).Google Scholar
  60. Engelhardt, V. A., u. N. E. Sakov: Über den Mechanismus des Pasteur-Effektes. Biochemia 8, 9 (1943) [Russisch].Google Scholar
  61. Englesberg, E., A. Gibor and J. B. Levy: Adaptive control of the terminal respiration in Pasteurella pestis. J. Bact. 68, 146–151 (1954a).PubMedGoogle Scholar
  62. Englesberg, E., J. B. Levy and A. Gibor: Some enzymatic changes accompanying the shift from anaerobiosis to aerobiosis in Pasteurella pestis. J. Bact. 68, 178–185 (1954b).PubMedGoogle Scholar
  63. Ephrussi, B.: Die Bestandteile des cytochrombildenden Systems der Hefe. Naturwissenschaften 43, 503–511 (1956).CrossRefGoogle Scholar
  64. Ephrussi, B., H. Hottinger et A. M. Chimenses: Action de l’acriflavine sur les levures. I. La mutation «petite colonie». Ann. Inst. Pasteur 76, 351–367 (1949).Google Scholar
  65. Erikson, D., and D. M. Webley: The respiration of thermophilic actinomycete Micromonospora vulgaris. J. gen. Microbiol. 8, 456–463 (1953).Google Scholar
  66. Evans, F. R., and H. R. Curran: The accelerating effect of sublethal heat on spore germination in mesophilic aerobic bacteria. J. Bact. 46, 513–523 (1943).PubMedGoogle Scholar
  67. Ewald, G. U., u. E. Bruchmann: Elektrochemische Messung der Atmung von Hefe bei Einwirkung von Azid und Jodacetat. Biochem. Z. 324, 156–159 (1953).PubMedGoogle Scholar
  68. Eymers, J. G., and K. L. van Schouwenburg: Determination of the oxygen consumed in the light emitting process of PhotobacUrium phosphoreum. Enzymologia 1, 328–340 (1937).Google Scholar
  69. Fales, F. W.: The assimilation and degradation of carbohydrates by yeast cells. J. biol. Chem. 193, 113–124 (1951).PubMedGoogle Scholar
  70. Fink, H.: Klassifizierung der Kulturhefen mit Hilfe des Cytochromspektrums. Hoppe-Seylers. Z. physiol. Chem. 210, 197–219 (1932).CrossRefGoogle Scholar
  71. Fink, H., u. E. Berwald: Über die Umwandlung des Cytochromspektrums in Hefen. Biochem. Z. 258, 141–146 (1933).Google Scholar
  72. Fink, H., J. Krebs u. R. Lechner: Zur Theorie der Zellsubstanzsynthese und maximalen Hefeernte. Biochem. Z. 301, 143–149 (1939).Google Scholar
  73. Fink, H., u. M. Ross: Einfluß des Zerteilungsgrades der Luft auf die Hefeausbeute. Biochem. Z. 323, 389–398 (1952).PubMedGoogle Scholar
  74. Finn, R. K.: Agitation-aeration in the laboratory and in industry. Bact. Rev. 18, 254–274 (1954).PubMedGoogle Scholar
  75. Friedman, S.: Genetic, nutritional and biochemical studies on luminous bacterium, Achromobacter fischeri. Ph. D. Thesis, The John Hopkins University, 1952.Google Scholar
  76. Fukuhara, H., et H. Takahashi: Sur le métabolisme endogène dans la fermentation alcoolique de la levure. Bull. agric. chem. Soc. Japan 20, 141–147 (1956).CrossRefGoogle Scholar
  77. Ganguly, S., and S.C. Roy: Oxidation of substrates by Streptomyces griseus. Arch. Biochem. 59, 45–51 (1955).PubMedCrossRefGoogle Scholar
  78. Gibbs, M., and W. A. Wood: Effect of substrates on the endogenous respiration of Pseudomonas fluorescens. Bact. Proc. 1952, 137.Google Scholar
  79. Giesberger, G.: Beiträge zur Kenntnis der Gattung Spirillum Ehbg. Diss. Delft 1936.Google Scholar
  80. Gladstone, G. P., P. Feldes and G. M. Richardson: Carbon dioxide as an essential factor in the growth of bacteria. Brit. J. exp. Path. 16, 335–348 (1935).Google Scholar
  81. Goddard, D. R.: The respiration of cells and tissues. In R. Höber, Physical chemistry of cells and tissues, S. 373–444. Philadelphia: Blakiston 1945.Google Scholar
  82. Gottlieb, D., and H. W. Anderson: The respiration of Streptomyces griseus. Science 107, 172–173 (1948).PubMedCrossRefGoogle Scholar
  83. Gottschalk, A.: The synthesis of polysaccharides by yeast cells fermenting anaerobically glucose, fructose or mannose. Aust. J. exp. Biol. med. Sci. 20, 201–203 (1942).CrossRefGoogle Scholar
  84. Goucher, C. R., and W. Kocholaty: Effect of various ions on the respiration of Azotobacter. J. biol. Chem. 211, 613–620 (1954).PubMedGoogle Scholar
  85. Greve, E.: Untersuchungen über das Atmungsverhalten von Hefen. I. Die Bedeutung von Kulturalter und Sauerstoffgehalt. Arch. Mikrobiol. 26, 254–272 (1957).PubMedCrossRefGoogle Scholar
  86. Greve, E.: II. Arch. Mikrobiol. 28, 325–337 (1958).CrossRefGoogle Scholar
  87. Haase, R.: Der zweite Hauptsatz der Thermodynamik und die Strukturbildung in der Natur. Naturwissenschaften 44, 409–415 (1957).CrossRefGoogle Scholar
  88. Hachisuka, Y., N. Asano, M. Kaneko and T. Kanbe: Evolution of respiratory enzyme systeme during germination of Bacillus subtilis. Science 124, 174–175 (1956).PubMedCrossRefGoogle Scholar
  89. Hardwick, W. A., and J.W. Foster: On the nature of sporogenesis in some aerobic bacteria. J. gen. Physiol. 35, 907–927 (1952).PubMedCrossRefGoogle Scholar
  90. Hardwick, W. A., and J.W. Foster: Enzymic changes during sporogenesis in some aerobic bacteria. J. Bact. 65, 355–360 (1953).PubMedCrossRefGoogle Scholar
  91. Harrell, W. K., and H. O. Halvorson: Some studies on the germination of spores following brief exposure to L-alanine. Bact. Proc. 1954, 30.Google Scholar
  92. Harris, J. O.: A study of the relationship of growth energy source to respiration in Azotobacter. J. Bact. 46, 485 (1943).Google Scholar
  93. Harris, J. O., and P. L. Gainly: Respiration of resting Azotobacter cells as affected by the respiratory menstrum. J. Bact. 48, 689–696 (1944).PubMedGoogle Scholar
  94. Harvey, E. N.: The total luminous efficiency of luminous bacteria. J. gen. Physiol. 8, 89–108 (1925).PubMedCrossRefGoogle Scholar
  95. Harvey, E. N.: The evolution of bioluminescence and its relation to cell respiration. Proc. Amer. Phil. Soc. 71, 135–141 (1932).Google Scholar
  96. Harvey, E. N.: Bioluminescence. New York: Academic Press Inc. 1952.Google Scholar
  97. Heinrich, M. R., V. C. Dewey and G. W. Kidder: Citrulline as a precursor of pyrimidines. J. Amer. chem. Soc. 76, 3102–3103 (1954).CrossRefGoogle Scholar
  98. Heinrich, M. R., and D. W. Wilson: The biosynthesis of nucleic acid components studied with C14. J. biol. Chem. 186, 447–460 (1950).PubMedGoogle Scholar
  99. Henrici, A. T.: Morphological variation and rate of the growth of bacteria. Springfield: Thomas 1928.CrossRefGoogle Scholar
  100. Herbert, D.: Oxalacetic decarboxylase and carbon dioxide assimilation in bacteria. Symp. Soc. exp. Biol. 5, 52–71 (1951).Google Scholar
  101. Hes, J. W.: Action de l’acide carbonique sur les microbes hétérotrophes. Ann. Ferment. 4, 547–558 (1938).Google Scholar
  102. Hills, G. M.: Chemical factors in the germination of spore-bearing aerobes. The effect of amino-acids on the germination of Bacillus anthracis with some observations on the relation of the optical form to biological activity. Biochem. J. 45, 363–370 (1949).PubMedGoogle Scholar
  103. Hills, G. M.: Chemical factors in the germination of spore-bearing aerobes: observations on the influence of species, strain and conditions of growth. J. gen. Microbiol. 4, 38–47 (1950).PubMedCrossRefGoogle Scholar
  104. Hinshelwood, C. N., and R. M. Lodge: A physico-chemical study of some induced changes in the morphology of Bacterium lactis aerogenes. A theory of the balance and adaptive variation of certain enzyme processes in bacteria. Proc. roy. Soc. B 132, 47–67 (1944).CrossRefGoogle Scholar
  105. Hixon, A. W., and E. L. Gaden: Oxygen transfer in submerged fermentation. Industr. Engin. Chem. 42, 1792–1802 (1950).CrossRefGoogle Scholar
  106. Hockenhull, D. J. D., K. H. Fantes, M. Herbert and B. Whitehead: Glucose utilization by Streptomyces griseus. J. gen. Microbiol. 10, 353–370 (1954).PubMedCrossRefGoogle Scholar
  107. Höhnl, G.: Ernährungs- und stoffwechselphysiologische Untersuchungen an Sphaerotilus natans. Arch. Mikrobiol. 23, 207–250 (1955).PubMedCrossRefGoogle Scholar
  108. Holme, T., and H. Palmstierna: Changes in glycogen and nitrogen-containing compounds in Escherichia coli B during growth in deficient media. I. Nitrogen and carbon starvation. Acta chem. scand. 10, 578–586 (1956a).CrossRefGoogle Scholar
  109. Holme, T., and H. Palmstierna: Changes in glycogen and nitrogen-containing compounds in E. coli B during growth in deficient media. II. Phosphorus and sulphur starvation. Acta chem. scand. 10, 1553–1556 (1956b).CrossRefGoogle Scholar
  110. Holzer, H., E. Holzer u. G. Schultz: Zusammenhang zwischen Wachstum und aerober Gärung. I. Versuche mit Hefezellen. Biochem. Z. 326, 385–404 (1955).PubMedGoogle Scholar
  111. Holzer, H., J. Witt u. R. Freytag-Hilf: Zum Mechanismus des Pasteur-Effektes: Bestimmung von ATP, ADP, Orthophosphat und verschiedenen Zwischenprodukten des Kohlenhydratstoffwechsels in lebenden Hefezellen beim Übergang von anaeroben zu aeroben Bedingungen. Biochem. Z. 329, 467–475 (1958).PubMedGoogle Scholar
  112. Hromatka, O., u. H. Ebner: Untersuchungen über die Essiggärung. III. Über den Einfluß der Belüftung auf die submerse Gärung. Enzymologia 15, 57–69 (1951).PubMedGoogle Scholar
  113. Hunter, G. J. E.: The Oxidation of glycerol by Mycobacteria. Biochem. J. 55, 320–328 (1953).PubMedGoogle Scholar
  114. Johnson, F. H., and K. L. van Schouwenburg: The flash of luminescence following anaerobiosis of luminous bacteria. Enzymologia 7, 195–224 (1939).Google Scholar
  115. Johnson, M. K., L. A. Maggee and A. R. Colmer: Some factors affecting the respiratory response of Azotobacter to 2,4-d. and related compounds. Appl. Microbiol. 4, 109–113 (1956).PubMedGoogle Scholar
  116. Kandler, O.: Über den „synthetischen Wirkungsgrad“ in vitro kultivierter Embryonen, Wurzeln, Sprossen. Z. Naturforsch. 8b, 109–117 (1953).Google Scholar
  117. Kandler, O., C. Zehender u. J. Müller: Vergleichende Untersuchungen über den Nucleinsäuren- und Atmungsstoffwechsel von Proteus vulgaris, dessen stabiler L-Phase und den pleuropneumonie-ähnlichen Organismen. Arch. Mikrobiol. 24, 219–249 (1956a).PubMedCrossRefGoogle Scholar
  118. Kandler, O., C. Zehender u. J. Müller: Weitere Untersuchungen über den Atmungsstoffwechsel von Proteus vulgaris, dessen stabiler L-Phase und den pleuropneumonie-ähnlichen Organismen. Arch. Mikrobiol. 24, 209–218 (1956b).PubMedCrossRefGoogle Scholar
  119. Kaufmann, W.: Untersuchungen über den Energiehaushalt der Hefezelle und die Ökonomie einiger Energiestoffwechseltypen anderer Mikroorganismen. Arch. Mikrobiol. 17, 319–352 (1952).CrossRefGoogle Scholar
  120. Kempner, W.: The role of oxygen tension in biological oxidation. Cold Spr. Harb. Symp. quant. Biol. 7, 269–289 (1937).CrossRefGoogle Scholar
  121. Kenten, R. H.: Gasometric analysis in plant investigation. In K. Paech und H. Tracey (Herausgeber), Moderne Methoden der Pflanzenanalyse, Bd. I, S. 415–428. Berlin-Göttingen-Heidelberg: Springer 1956.CrossRefGoogle Scholar
  122. King, T. E., and H. Cheldelin: Source of energy and the dinitrophenol effect in the growth of Acetobacter suboxydans. J. Bact. 66, 581–584 (1953).PubMedGoogle Scholar
  123. Klein, H. P., and F. Lipmann: The relationship of coenzyme A to lipoide synthesis. I. Experiments with yeast. J. biol. Chem. 203, 95–99 (1953).PubMedGoogle Scholar
  124. Klieneberger-Nobel, E.: Filterable forms of bacteria. Bact. Rev. 15, 77–103 (1951).PubMedGoogle Scholar
  125. Kluyver, A. J.: Atmung, Gärung und Synthese in ihrer gegenseitigen Abhängigkeit. Arch. Mikrobiol. 1, 181–196 (1930).CrossRefGoogle Scholar
  126. Knaysi, G.: A study of some environmental factors which control endospore formation of Bacillus mycoides. J. Bact. 49, 437–439 (1945).Google Scholar
  127. Knight, B. C. J., and P. Feldes: Oxidation-reduction studies in relation to bacterial growth. III. The positive limit of oxidation-reduction potential required for the germination of Bac. tetani spores in vitro. Biochem. J. 24, 1496–1502 (1930).PubMedGoogle Scholar
  128. Koch, A. L., F. W. Putnam and E. A. Evans jr.: The purine metabolism of Escherichia coli. J. biol. Chem. 197, 105–112 (1952).PubMedGoogle Scholar
  129. Korte, I., u. H. Engel: Energiemessungen an Hyphomicrobium vulgare Stutzer und Hartleb. Arch. Mikrobiol. 21, 248–254 (1955).PubMedCrossRefGoogle Scholar
  130. Kramli, A., E. F. Pettkó u. P. Kiss: Wirkung von Schwermetallen auf Atmung und Redoxpotential von Streptomyces griseus-Kulturen. Acta microbiol. 2, 39–49 (1954).Google Scholar
  131. Lamanna, C.: Symposium on the biology of the bacterial spores. Bact. Rev. 16, 89–143 (1952).PubMedGoogle Scholar
  132. Laskowski, W.: Induction par chlorure de tetrazolium de la mutation «petite colonie» chez levure. Heredity 8, 79–88 (1954).CrossRefGoogle Scholar
  133. Lemoigne, M.: J.-P. Aubert et J. Millet: La production d’alcohol et le rendement de croissance de la levure de boulangerie cultivée en aérobiose. Ann. Inst. Pasteur 87, 427–439 (1954).Google Scholar
  134. Lepeschkin, W.: Lehrbuch der Pflanzenphysiologie, S. 156ff. Berlin: Springer 1925.CrossRefGoogle Scholar
  135. Levine, S., and Z. J. Ordal: Factors influencing the morphology of Blastomyces dermatitidis. J. Bact. 52, 687–694 (1946).PubMedGoogle Scholar
  136. Levinson, H. S., and M. T. Hyatt: The stimulation of germination and respiration of Bac. megaterium spores by manganese, L-alanine and heat. J. Bact. 70, 368–374 (1955).PubMedGoogle Scholar
  137. Levinson, H. S., and M. G. Sevag: Stimulation of germination and respiration of the spores of Bac. megaterium by manganese and monovalent anions. J. gen. Physiol. 36, 617–629 (1953).PubMedCrossRefGoogle Scholar
  138. Levinson, H. S., and M. G. Sevag: Manganese and the proteolytic activity of spore extracts of Bac. megaterium in relation to germination. J. Bact. 67, 615–616 (1954).PubMedCrossRefGoogle Scholar
  139. Liener, I. E., and D. L. Buchanan: The fixation of carbon dioxide by grownig and non growing yeast. J. Bact. 61, 527–534 (1951).PubMedGoogle Scholar
  140. Lindegren, C. C., and S. A. Haddad: Growth rates of individual yeast cells. Genetics 27, 45–53 (1954).Google Scholar
  141. Lindegren, C. C., and S. Hino: The effect of the anaerobiosis on the origin of respiration deficient yeast. Exp. Cell. Res. 12, 163–168 (1957).PubMedCrossRefGoogle Scholar
  142. Longmuir, I. S.: Respiration rate of bacteria as function of oxygen concentration. Biochem. J. 57, 81–87 (1954).PubMedGoogle Scholar
  143. Loomis, W. F., and F. Lipmann: Reversible inhibition of the coupling between phosphorylation and oxidation. J. biol. Chem. 173, 807–808 (1948).PubMedGoogle Scholar
  144. Lwoff, A., et J. Monod: Essai d’analyse du rôle de l’anhydride carbonique dans la croissance microbienne. Ann. Inst. Pasteur 73, 323–347 (1947).Google Scholar
  145. Lynen, F.: Über den aeroben Phosphatbedarf der Hefe. Ein Beitrag zur Kenntnis der Pasteurschen Reaktion. Justus Liebigs Ann. Chem. 546, 120–141 (1941).CrossRefGoogle Scholar
  146. Lynen, F.: 3. Intern. Biochemiekongr., Brüssel 1955, Conférences et Rapports S. 294. Zit. nach Holzer u. a. 1958.Google Scholar
  147. Lynen, F., u. R. Königsberger: Zum Mechanismus der Pasteurschen Reaktion: Der Phosphat-Kreislauf in der Hefe und seine Beeinflussung durch 2,4-Dinitrophenol. Über den aeroben Phosphatbedarf der Hefe. VI. Justus Liebigs Ann. Chem. 573, 60–84 (1951).CrossRefGoogle Scholar
  148. Macmillan, A.: The relation between nitrogen assimilation and respiration in Scopu-lariopsis brevicaulis. Physiol. Plantarum (Copenh.) 9, 533–545 (1956).CrossRefGoogle Scholar
  149. Mandels, G. R., H. S. Levinson and M. T. Hyatt: Analysis of respiration during germination and enlargement of spores of Bac. megaterium and the fungus Myrothecium verrucariaJ. gen. Physiol. 39, 301–309 (1956).PubMedCrossRefGoogle Scholar
  150. Martin, D. S.: The oxygen consumption of Escherichia coli during the lag and logarithmic phases of growth. J. gen. Physiol. 15, 691–708 (1932).PubMedCrossRefGoogle Scholar
  151. Maruyama, Y.: Biochemical aspects of cell growth of Escherichia coli as studied by the method of synchronous culture. J. Bact. 72, 812–826 (1956).Google Scholar
  152. Maruyama, Y., and T. Yanagita: Physical methods for obtaining synchronous culture of Escherichia coli. J. Bact. 71, 542–546 (1956).PubMedGoogle Scholar
  153. Maxon, W. D., and M. J. Johnson: Aeration studies on propagation of bakers yeast. Industr. Engin. Chem. 45, 2554–2560 (1953).CrossRefGoogle Scholar
  154. McBee, R.H., C. Lamanna and O. B. Weeks: Definitions of bacterial oxygen relationship. Bact. Rev. 19, 45–47 (1955).PubMedGoogle Scholar
  155. McElroy, W.D., and R. Ballentine: The mechanism of bioluminescence. Proc. Nat. Acad. Sci. U.S.A. 30, 377–382 (1944).CrossRefGoogle Scholar
  156. McElroy, W. D., and A. H. Farghaly: Biochemical mutants affecting the growth and light producting of luminous bacteria. Arch. Biochem. 17, 379–390 (1948).PubMedGoogle Scholar
  157. McElroy, W. D., and S. Friedman: Gene recombination in luminous bacteria. J. Bact. 62, 129–130 (1951).PubMedGoogle Scholar
  158. McElroy, W. D, J. W. Hastings, V. Sonnenfeld and J. Coulombre: The requirement of riboflavin phosphate for bacterial luminescence. Science 118, 385–386 (1953).PubMedCrossRefGoogle Scholar
  159. McElroy, W. D, J. W. Hastings, V. Sonnenfeld and J. Coulombre: Partial purification and properties of bacterial luciferin and luciferase. J. Bact. 67, 402–408 (1954).PubMedGoogle Scholar
  160. McElroy, W. D., and D. M. Kipnis: The mechanism of inhibition of luminescence by naphthoquinones. J. cell. comp. Physiol. 30, 359–380 (1947).CrossRefGoogle Scholar
  161. McLean, D.J., and D.F. Purdie: Effect of dicarboxylic acids, amino-acids, amides and carbohydrates on carbon dioxide fixation by Serratia marcescens. J. Bact. 69, 204–209 (1955).PubMedGoogle Scholar
  162. McLean, D. J., N. H. Robinson and E. F. Purdie: The influence of the metabolic state and of the medium on carbon dioxide fixation by Serratia marcescens. J. Bact. 61, 617–626 (1951).PubMedGoogle Scholar
  163. Merkel, J. R., A. F. Carlucci and D. Pramer: Respiratory characteristics of marine bacteria. Nature (Lond.) 180, 1489–1490 (1957).CrossRefGoogle Scholar
  164. Meyerhof, O.: Über den Einfluß des Sauerstoffes auf die alkoholische Gärung der Hefe. Biochem. Z. 162, 43–86 (1925).Google Scholar
  165. Meyerhof, O.: Intermediate carbohydrate metabolism. A symposium on respiratory enzymes. Madison: University Wisconsin Press 1942.Google Scholar
  166. Meyerhof, O., and S. Fiala: Pasteur effect in dead yeast. Biochim. biophys. Acta 6, 1–12 (1950).PubMedCrossRefGoogle Scholar
  167. Meyerhof, O., u. W. Schulz: Über die quantitative Bestimmung der Hexosen durch Gärung. Biochem. Z. 287, 206–211 (1936).Google Scholar
  168. Miehe, H.: Die Wärmebildung von Reinkulturen im Hinblick auf die Ätiologie der Selbsterhitzung pflanzlicher Stoffe. Arch. Mikrobiol. 1, 78–118 (1930).CrossRefGoogle Scholar
  169. Miller, J. J., O. Gabriel, E. Scheiber u. O. Hoffmann-Ostenhof: Über die Bedeutung des Sauerstoffs für die Sporulierung der Hefe. Mh. Chem. 88, 417–420 (1957).Google Scholar
  170. Miller, S., and Y. Avi-Dor: The effect of inorganic ions on respiration of Pasteurella tularensis and Escherichia coli. J. gen. Microbiol. 18, 221–226 (1958).PubMedCrossRefGoogle Scholar
  171. Monod, J.: Recherches sur la croissance des cultures bactériennes. Paris: Hermann & Cie. 1942.Google Scholar
  172. Monod, J.: Inhibition de l’adaptation enzymatique chez Bact. coli en présence de 2,4-dinitrophenol. Ann. Inst. Pasteur 70, 381–384 (1944).Google Scholar
  173. Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371–394 (1949).CrossRefGoogle Scholar
  174. Mooney, G., and C.-E. A. Winslow: The metabolic activity of various colongroup organisms at different phases of the culture cycle. J. Bact. 30, 427–440 (1935).PubMedGoogle Scholar
  175. Moses, V., and P. J. Syrett: The endogenous respiration of microorganisms. J. Bact. 70, 201–204 (1955).PubMedGoogle Scholar
  176. Moss, F.: The influence of oxygen tension on respiration and cytochrome a2 formation of Escherichia coli. Aust. J. exp. Biol. med. Sci. 30, 531–540 (1952).PubMedCrossRefGoogle Scholar
  177. Moss, F.: Adaptationes of the cytochromes of Aerobacter aerogenes in response to environmental oxygen tension. Aust. J. exp. Biol. med. Sci. 34, 395–405 (1956).PubMedCrossRefGoogle Scholar
  178. Myers, J., and F. A. Matsen: Kinetic characteristics of Warburg manometry. Arch. Biochem. 55, 373–388 (1955).CrossRefGoogle Scholar
  179. Nickerson, W. J.: Enzymatic control of cell division in microorganisms. Nature (Lond.) 162, 241–245 (1948).CrossRefGoogle Scholar
  180. Nickerson, W. J.: Physiological basis of morphogenesis in animal disease fungi. Trans. N. Y. Acad. Sci., Ser. II 12, 140–145 (1949).Google Scholar
  181. Nickerson, W. J.: Enzymatic reaction in the cellular division mechanism of microorganisms. Atti del VI. Congr. Int. Microbiol. 1, 211–213 (1953).Google Scholar
  182. Nickerson, W. J., and G. A. Edwards: Studies on the physiological basis of morphogenesis in fungi. I. The respiratory metabolism of dimorphic phytogenic fungi. J. gen. Physiol. 33, 41–55 (1949).PubMedCrossRefGoogle Scholar
  183. Nickerson, W. J., and G. Falcone: Identification of protein disulfide reductase as a cellular division enzyme in yeasts. Science 124, 722–723 (1956).PubMedCrossRefGoogle Scholar
  184. Nickerson, W. J., and Z. Mankowski: Role of nutrition in the morphogenesis of yeasts. Proc V. Intern. Congr. Microbiol., Rio de Janeiro, Aug. 1950.Google Scholar
  185. Nickerson, W. J., and Z. Mankowski: Role of nutrition in the maintenance of the yeast shape in Candida. Amer. J. Bot. 40, 584–592 (1953).CrossRefGoogle Scholar
  186. Nickerson, W. J., and N. J. W. van Rij: The effect of sulfhydryl compounds, penicillin, and cobalt on the cell division mechanism of yeasts. Biochim. biophys. Acta 3, 451–457 (1949).Google Scholar
  187. Niel, C. B. van, and A. L. Anderson: On the occurrence of fermentative assimilation. J. cell. comp. Physiol. 17, 49–56 (1941).CrossRefGoogle Scholar
  188. Niel, C. B. van, and A. L. Cohen: On the metabolism of Candida albicans. J. cell. comp. Physiol. 20, 95–112 (1942).CrossRefGoogle Scholar
  189. Nord, H.: Energetics of the Pasteur effect. Acta chem. scand. 6, 1431–1442 (1952).CrossRefGoogle Scholar
  190. Nowy, F. G., H. R. Roehm and M. H. Soule: Microbic respiration. I. The compensation manometer and other means for the study of microbic respiration. J. infect. Dis. 36, 109–167 (1925).CrossRefGoogle Scholar
  191. Nowy, F. G., and M. H. Soule: Respiration of the tubercle bacillus. J. infect. Dis. 36, 168–232 (1925).CrossRefGoogle Scholar
  192. Ogur, M.: Respiration in a polyploid series in Saccharomyces. Arch. Biochem. 53, 484 bis 490 (1954).CrossRefGoogle Scholar
  193. Pasteur, L.: Expérience et vues nouvelles sur la nature des fermentation. C. R. Acad. Sci. (Paris) 52, 1260 (1861).Google Scholar
  194. Pfeffer, W.: Pflanzenphysiologie. Leipzig: Engelmann 1897.Google Scholar
  195. Picket, J. M., and C. E. Clifton: On the relation between the oxidation and assimilation of simple substrates by yeast. J. cell. comp. Physiol. 21, 77–94 (1943).CrossRefGoogle Scholar
  196. Pütter, A.: Die Atmung der Planktonbakterien. Pflüg. Arch. ges. Physiol. 204, 94–126 (1924).CrossRefGoogle Scholar
  197. Raible, K., u. G. Busch: Über den Einfluß deä Alters von Hefepopulationen auf den Atmungs- und aeroben Gärungsstoffwechsel während der Induktionsphase. Naturwissenschaften 44, 355–356 (1957).CrossRefGoogle Scholar
  198. Reiner, J. M.: Effect of enzyme inhibitors on transformations in the living cell. Proc. Soc. exp. Biol. (N. Y.) 63, 81–89 (1946).CrossRefGoogle Scholar
  199. Reiner, J. M., H. Gest and D. M. Kamen: The effect of substrates on the endogenous metabolism of living yeast. Arch. Biochem. 20, 175–177 (1949).PubMedGoogle Scholar
  200. Rieder, H., u. K. Bukatsch: Über den Einfluß von 2,4-Dinitrophenol auf das Leuchten von Leuchtbakterien. Z. Naturforsch, 11b, 608–610 (1956).Google Scholar
  201. Rieder, H. P.: Über die Zuckeraufnahme von Hefezellen. Ber. Schweiz, bot. Ges. 61, 539–616 (1951).Google Scholar
  202. Rippel-Baldes, A.: Die Energieausnützung durch Mikroorganismen in quantitativer Hinsicht. Arch. Mikrobiol. 17, 166–168 (1952).CrossRefGoogle Scholar
  203. Rippel-Baldes, A.: Grundriß der Mikrobiologie. Berlin-Göttingen-Heidelberg: Springer 1955.CrossRefGoogle Scholar
  204. Rippel, A., u. H. Bortels: Vorläufige Versuche über die allgemeine Bedeutung der Kohlensäure für die Pflanzenzelle (Versuche an Aspergillus niger). Biochem. Z. 184, 237–244 (1927).Google Scholar
  205. Rippel, A., u. F. Heilmann: Quantitative Untersuchungen über die Wirkung der Kohlensäure auf Heterotrophen. Arch. Mikrobiol. 1, 119–136 (1930).CrossRefGoogle Scholar
  206. Robertson, H. E., and P. D. Boyer: The effect of azide on phosphorylation accompanying electron transport and glycolysis. J. biol. Chem. 214, 295–305 (1955).PubMedGoogle Scholar
  207. Rockwell, G. E., and J. H. Highberger: Carbon dioxide as factor in the growth of the tubercle bacillus and of other acid fast organisms. J. infect. Dis. 38, 92–100 (1926).CrossRefGoogle Scholar
  208. Rockwell, G. E., and J. H. Highberger: The necessity of carbon dioxide for the growth of bacteria, yeasts and molds. J. infect. Dis. 40, 438–446 (1927).CrossRefGoogle Scholar
  209. Rolinson, G. N.: Respiration of Penicillium chrysogenum in penicillin fermentations. J. gen. Microbiol. 6, 336–343 (1952).PubMedCrossRefGoogle Scholar
  210. Roth, N. G., and D. H. Lively: Germination of spores of certain aerobic bacilli under anaerobic conditions. J. Bact. 71, 162–166 (1956).PubMedGoogle Scholar
  211. Roth, N. G., D. H. Lively and H. M. Hodge: Influence of oxygen uptake and age of culture on the sporulation of Bacillus anthracis and Bac. globigii. J. Bact. 69, 455–459 (1955).PubMedGoogle Scholar
  212. Rothstein, A., and H. Berke: Effects of 2,4-dinitrophenol concentrations on rates of respiration and fermentation of yeast. Proc Soc exp. Biol. (N Y.) 81, 558–563 (1952).CrossRefGoogle Scholar
  213. Rubner, M.: Energieumsatz im Leben einiger Spaltpilze. Arch. Hyg. (Berl.) 57, 193–243 (1906).Google Scholar
  214. Salvin, S. B.: Phase determining factors in Blastomyces dermatitidis. Mycologia (N. Y.) 41, 311–319 (1949a).CrossRefGoogle Scholar
  215. Salvin, S. B.: Cysteine and related compounds in the growth of the yeastlike phase of Histoplasma capsulatum. J. infect. Dis. 84, 275–283 (1949b).PubMedCrossRefGoogle Scholar
  216. Santer, M., and S. Ajl: Metabolic reactions of Pasteurella pestis. Terminal oxidation. J. Bact. 67, 379–386 (1954).PubMedCrossRefGoogle Scholar
  217. Savage, W.: Canned foods in relation to health. Lancet 204, 527–529 (1923).Google Scholar
  218. Schade, A. L., and K. V. Thimann: Metabolism of the water-mold, Leptomitus lacteus. Amer. J. Bot. 27, 659–670 .(1940).CrossRefGoogle Scholar
  219. Scheiber, E., O. Gabriel, O. Hoffmann-Ostenhof u. J. J. Miller: Über die Änderung des respiratorischen Quotienten von Hefe-zellen bei der Übertragung aus einem Wachstumsmedium in ein Sporulierungsmedium und die Umkehrbarkeit dieses Effektes. Mh. Chem. 88, 414–417 (1957).Google Scholar
  220. Schmid, W.: Zellvermehrung und Zellatmung bei Hefe. Z. Naturforsch. 7b, 217–219 (1952).Google Scholar
  221. Schmidt-Lorenz, W., u. A. Rippel-Baldes: Wirkung des Sauerstoff-Partialdruckes auf Wachstum und Stickstoffbindung von Azotobacter chroococcum Beij. Arch. Mikrobiol. 28, 45–68 (1957).PubMedCrossRefGoogle Scholar
  222. Schönborn, W.: Energetische Untersuchungen an Pilzen und Bakterien. Arch. Mikrobiol. 22, 408–431 (1955).PubMedCrossRefGoogle Scholar
  223. Schouwenburg, K. L. van: On respiration and light emmission in luminous bacteria. Diss. Delft 1938.Google Scholar
  224. Schrödinger, E.: What is life? Cambridge: Univ. Press 1944.Google Scholar
  225. Schultz, A. S., L. Atkin and C. N. Frey: Influence of oxygen on the fermentation of maltose and galactose. J. Amer. chem. Soc. 62, 2271–2272 (1940).CrossRefGoogle Scholar
  226. Sheffner, A. L.: Relationship between oxidative and fermentative phases during adaptation to galactose in Saccharomyces cerevisiae. Nature (Lond.) 171, 1073 (1953).CrossRefGoogle Scholar
  227. Shu, P.: Oxygen uptake in shake-flask fermentations. J. Agr. Food Chem. 1, 1119–1123 (1953).CrossRefGoogle Scholar
  228. Siegel, B. V., and C. E. Clifton: Energy relationship in carbohydrate assimilation by Escherichia coli. J. Bact. 60, 573–583 (1950).PubMedGoogle Scholar
  229. Simon, E. W.: The action of nitrophenols on respiration and on glucose assimilation in yeast. J. exp. Bot. 4, 377–392 (1953a).CrossRefGoogle Scholar
  230. Simon, E. W.: Dinitrocresol, cyanide, and the Pasteur effect in yeast. J. exp. Bot. 4, 393–402 (1953b).CrossRefGoogle Scholar
  231. Slonimski, P. P.: Action de l’acriflavine sur les levures. IV. Mode d’utilisation du glucose par les mutants «petite colonies». Ann. Inst. Pasteur 76, 510–530 (1949).Google Scholar
  232. Slonimski, P. P., et B. Ephrussi: Action de l’acriflavine sur les levures. V. Le systeme des cytochromes des mutants «petite colonies». Ann. Inst. Pasteur 76, 47–63 (1949).Google Scholar
  233. Slonimski, P. P., et H. M. Hirsch: Rôle de l’oxygène dans la déterminisme de la constitution enzymatique de la levure. C. R. Acad. Sci. (Paris) 235, 914–916 (1952).Google Scholar
  234. Smith, L.: Bacterial cytochromes. Bact, Rev. 18, 106–130 (1954).Google Scholar
  235. Smith, T.: Some cultural characters of Bacillus abortus Bang with special reference to C02 requirements. J. exp. Med. 40, 219–232 (1924).PubMedCrossRefGoogle Scholar
  236. Smith, T.: Variations in CO2 requirements among bovine strains of Bacillus abortus. J. exp. Med. 43, 317–325 (1926).PubMedCrossRefGoogle Scholar
  237. Spendlove, R., H. H. Weiser and W. J. Harper: Factors affecting the initiation of respiration of Streptococcus lactis. Appl. Microbiol. 5, 281–285 (1957).PubMedGoogle Scholar
  238. Spiegelman, S.: The effect of anaerobiosis on adaptive enzyme formation. J. cell. comp. Physiol. 25, 121–131 (1945).CrossRefGoogle Scholar
  239. Spiegelman, S.: The dissociation of anaerobic metabolism from enzymatic adaptation in yeast. J. cell. comp. Physiol. 30, 315–329 (1947).CrossRefGoogle Scholar
  240. Spiegelman, S.: Modern aspects of enzymatic adaptation. In J. B. Sumner and K. Myrbäck, The Enzymes, Bd. I, S. 267–306. New York: Academic Press Inc. 1950.Google Scholar
  241. Spruit, C. J. P., and A. L. Schuiling: On the influence of naphthoquinones on the respiration and light emission of Photobacterium phosphoreum. Rec. Trav. chim. Pays-Bas 64, 220–228 (1945).Google Scholar
  242. Spruit-van der Burg, A.: Emission spectra of luminous bacteria. Biochim. biophys. Acta 5, 175–178 (1950).PubMedCrossRefGoogle Scholar
  243. Stephenson, M., and M. Whetham: The effect of oxygen supply on the metabolism of Bacillus coli communis. Biochem. J. 18, 298–306 (1924).Google Scholar
  244. Stern, K. G., and J. L. Melnik: Photochemical spectrums of the Pasteur enzyme in retina. J. biol. Chem. 139, 301–311 (1941).Google Scholar
  245. Stickland, L. H.: Endogenous respiration and polysaccharide reserves in baker’s yeast. Biochem. J. 64, 498–503 (1956a).PubMedGoogle Scholar
  246. Stickland, L. H.: The Pasteur effect in normal yeast and its inhibition by various agents. Biochem. J. 64, 503–515 (1956b).PubMedGoogle Scholar
  247. Stickland, L. H.: Phosphorylations and dephospho-rylations in yeast and their inhibition by various agents. Biochem. J. 64, 515–523 (1956c).PubMedGoogle Scholar
  248. Stoppant, A. O. M., S. L. S. De Favelukes, L. Conches and F. L. Sacerdote: Mechanism of carbon dioxide fixation by Saccharomyces cerevisiae. Biochim. biophys. Acta 26, 443–445 (1957).Google Scholar
  249. Strehler, B.L., and M.J. Cormier: Factors affecting the luminescence of cellfree extracts of the luminous bacterium Achromobacter fischeri. Arch. Biochem. 47, 16–33 (1953).PubMedCrossRefGoogle Scholar
  250. Strehler, B.L., and M.J. Cormier: Isolation, identification, and function of long-chain fatty aldehydes affecting the bacterial luciferin-luciferase reaction. J. biol. Chem. 211, 213–225 (1954).PubMedGoogle Scholar
  251. Strehler, B. L., E. N. Harvey, J. J. Chang and M. J. Cormier: The luminescent oxidation of reduced riboflavin phosphate in the bacterial luciferin-luciferase reaction. Proc. Nat. Acad. Sci. U.S.A. 40, 10–12 (1954).CrossRefGoogle Scholar
  252. Strittmatter, C. F.: Adaptive variation in the level of oxidative action in Saccharomyces cerevisiae. J. gen. Microbiol. 16, 169–183 (1957).PubMedCrossRefGoogle Scholar
  253. Suomaleinen, H., and E. Oura: Increase of saccharase content in baker’s yeast during the growth phase. Arch. Biochem. 68, 425–431 (1957).CrossRefGoogle Scholar
  254. Swanson, W. H., and C. E. Clifton: Growth and assimilation in cultures of Saccharomyces cerevisiae. J. Bact. 56, 115–124 (1948).PubMedGoogle Scholar
  255. Szende, K.: Respiratory activity of the corn smut fungus Ustilago maydis. Agrokém. és talajtan 4, 347–354 (1955).Google Scholar
  256. Tamiya, H.: Le bilan matériel et l’energétique des synthèses biologiques. Actualités Sci. industr. 214, (1935).Google Scholar
  257. Tamiya, H., u. S. Usami: Über das Wachstum von Aspergillus oryzae bei Zugabe der Aminosäuren als alleinige Kohlenstoff- und Stickstoffquelle. Acta phytochim. (Tokyo) 11, 261–298 (1939/40).Google Scholar
  258. Tang, P. S.: On the rate of oxygen consumption by tissues and lower organisms as a function of oxygen tension. Quart. Rev. Biol. 8, 260–274 (1933).CrossRefGoogle Scholar
  259. Tang, P. S.: Respiration in the living cell. Quart. Rev. Biol. 16, 173–189 (1941).CrossRefGoogle Scholar
  260. Terroine, E. F., et R. Wurmser: Le rendement énergétique dans la croissance de l’Aspergillus niger. C. R. Acad. Sci. (Paris) 114, 1435–1437 (1922).Google Scholar
  261. Tödt, F., R. Lesch-ber u. H. Tarnow: Neue Wege der Betriebskontrolle durch elektrochemische Messung der Atmungsgeschwindigkeit von Hefesuspensionen. Z. Naturforsch. 9b, 743–744 (1954).Google Scholar
  262. Tödt, F., G. U. Teske, F. Windisch u. W. Heumann: Elektrochemische Messung der in Flüssigkeiten gelösten Sauerstoffmengen bei oxy- und anoxybiotischen Stoffwechselprozessen. Biochem. Z. 323, 192–213 (1952).PubMedGoogle Scholar
  263. Trevelyan, W. E., J. N. Gammon, E. H. Wiggins and J. S. Harrison: Studies in yeast metabolism. II. Synthesis of cell carbohydrates during glucose fermentation and its inhibition by azide. Biochem. J. 50, 303–310 (1952).PubMedGoogle Scholar
  264. Umbreit, W. W., R. H. Burris and J. F. Stauffer: Manometric techniques. Minneapolis: Burgess Publ. 1957.Google Scholar
  265. Utter, M. F., and H. G. Wood: Mechanisms of fixation of carbon dioxide by heterotrophs and autotrophs. Advanc. Enzymol. 12, 41–151 (1951).Google Scholar
  266. Valley, G., and L. F. Rettger: The influence of carbon dioxide on bacteria. J. Bact. 14, 101–137 (1927).PubMedGoogle Scholar
  267. Vas, K.: The effect of the age of culture on the glucose fermenting ability of some yeast strains. Acta chim. Hung. 1, 210–214 (1951).Google Scholar
  268. Virtanen, A. I., and S. Alonen: Effect of the nitrogen content of cells on fermentation by Aerobacter. Acta chem. scand. 6, 654–59 (1952).CrossRefGoogle Scholar
  269. Walker, H.H., and C.-E. A. Winslow: Metabolic activity of the bacterial cell at various phases of the population cycle. J. Bact. 24, 209–241 (1932).PubMedGoogle Scholar
  270. Walker, H. H., C.-E. A. Winslow and M. G. Mooney: Bacterial cell metabolism under anaerobic conditions. J. gen. Physiol. 17, 349–357 (1934).PubMedCrossRefGoogle Scholar
  271. Warburg, O.: Stoffwechsel der Tumoren. Berlin: Springer 1926.Google Scholar
  272. Warburg, O.: Die Entstehung der Krebszellen. Naturwissenschaften 42, 401–406 (1955).CrossRefGoogle Scholar
  273. Warburg, O., u. W. Christian: Isolierung und Kristallisation des Gärungsfermentes Zymohexase. Biochem. Z. 314, 149–176 (1943).Google Scholar
  274. Warburg, O., u. F. Kubowitz: Atmung bei sehr kleinen Sauerstoffdrucken. Biochem. Z. 214, 5–18 (1929).Google Scholar
  275. Weinzirl, J.: The bacteriology of canned foods. J. med. Res. 39, 349–413 (1919).PubMedGoogle Scholar
  276. Werkman, C. H.: Assimilation of carbon dioxide by heterotrophic bacteria. In C. H. Werkman and P.W. Wilson, Bacterial Physiology, S. 404–427. New York: Academic Press Inc. 1951.Google Scholar
  277. Wertheimer, E.: Über die ersten Anfänge der Zuckerassimilation. Protoplasma 21, 522–561 (1934).CrossRefGoogle Scholar
  278. Wherry, W. B., and D. M. Erwin: The necessity of carbon dioxide for the growth of B. tuberculosis. J. infect. Dis. 22, 194–197 (1918).CrossRefGoogle Scholar
  279. Wiame, J. M.: Le rôle biosynthétique du cycle des acides tricarboxyliques. Advanc. Enzymol. 18, 241–280 (1957).Google Scholar
  280. Wiame, J. M., et S. Bourgeois: Le rôle de l’anhydride carbonique dans les croissances bactériennes. Biochim. biophys. Acta 18, 269–278 (1955).Google Scholar
  281. Wiame, J. M., and M. Doudoroff: Oxidative assimilation by Pseudomonas saccharophila with C14-labelled substrates. J. Bact. 62, 187–193 (1951).PubMedGoogle Scholar
  282. Wiken, T., u. O. Richard: Zur Kenntnis der Bedeutung des Sauerstoffes für die Vergärung von Glucose durch Bier- und Weinhefen (Fehlen des Pasteur-Meyerhof-Effektes). Schweiz. Z. allg. Path. 17, 475–485 (1954 a).PubMedGoogle Scholar
  283. Wiken, T., u. O. Richard: Untersuchungen über die Physiologie der Weinhefen. V. Mitt. Über die Kohlendioxydproduktion der Fendant-Weinhefe in Stickstoff- bzw. Argon-Luft-Gemisch. Leeuwenhoek J. Microbiol, a. Serol. 20, 385–405 (1954b).CrossRefGoogle Scholar
  284. Wilner, B., and C. E. Clifton: Oxidative assimilation by Bacillus subtilis. J. Bact. 67, 571–575 (1954).PubMedCrossRefGoogle Scholar
  285. Windisch, F.: Beziehungen zwischen oxybiotischem und anoxybiotischem Stoffwechsel der Kulturhefen. Hoppe-Seylers Z. physiol. Chem. 179, 88–98 (1928).CrossRefGoogle Scholar
  286. Windisch, F.: Die Bedeutung des Sauerstoffes für die Hefe und ihre biochemischen Wirkungen. Biochem. Z. 246, 332–382 (1932).Google Scholar
  287. Windisch, F., H. Haehn u. W. Heumann: Irreversibilität der aeroben Spaltkraft bei optimaler Sauerstoffversorgung der Zelle. Z. Naturforsch. 8b, 463–472 (1953).Google Scholar
  288. Windisch, F., H. Haehn, W. Heumann, W. Nordheim u. H. Kerner: Ausbleiben der energetischen Koppelung zwischen anaerobem Zuckerabbau und endergonischen Zellreaktionen. Naturwissenschaften 45, 245 (1958).CrossRefGoogle Scholar
  289. Windisch, F., W. Heumann u. C. Goslich: Anoxybiotische Zellvermehrung und Wirkungsmodus der aeroben Wachstumsaktivierung. Z. Naturforsch. 8b, 305–311 (1953).Google Scholar
  290. Windisch, F., W. Heumann u. C. Goslich: Bestimmung der cytostatischen Dissimilationswerte nach anoxybiontischer bzw. antimetabolitischer Sistierung des Zellwachstums. Biol. Zbl. 74, 646–662 (1955).Google Scholar
  291. Windisch, F., W. Nordheim u. W. Heumann: Cytochemische Untersuchungen über den Zusammenhang von nativer Gärungsintensität und desoxygenem Energiepotential beim anoxy-biontischen Phosphatstoffwechsel. Arch. Mikrobiol. 26, 273–284 (1957a).PubMedCrossRefGoogle Scholar
  292. Windisch, F., W. Nordheim u. W. Heumann: Ein in Hefezell-saft enthaltenes thermophiles Agens von biologisch O2-substituierender Funktion. Hoppe-Seylers Z. physiol. Chem. 306, 195–200 (1957b).PubMedCrossRefGoogle Scholar
  293. Winslow, C.-E. A., H. H. Walker and M. Sutermeister: The influence of aeration and of sodium chloride upon the growth curve of bacteria in various media. J. Bact. 24, 185–208 (1932).PubMedGoogle Scholar
  294. Winzler, R. J.: The oxidation and assimilation of acetat by baker’s yeast. J. cell. comp. Physiol. 15, 343–354 (1940).CrossRefGoogle Scholar
  295. Winzler, R. J.: The respiration of baker’s yeast at low oxygen tension. J. cell. comp. Physiol. 17, 263–267 (1941).CrossRefGoogle Scholar
  296. Wise, W. S.: The measurement of the aeration of culture media. J. gen. Microbiol. 5, 167–177 (1951).PubMedCrossRefGoogle Scholar
  297. Wohlfeil, T.: Beiträge zur Erforschung des oxybiotischen Gasstoffwechsels. Zbl. Bakt., I. Abt. Orig. 117, 202–219 (1930).Google Scholar
  298. Wood, H. G.: A consideration of some reactions involving carbon dioxide fixation. Symp. Soc exp. Biol. 5, 9–28 (1951).Google Scholar
  299. Wood, H. G., and C. H. Werkman: The propionic acid bacteria. On the mechanism of glucose dissimilation. J. biol. Chem. 105, 63–72 (1934).Google Scholar
  300. Wood, H. G., and C. H. Werkman: The utilization of CO2 by the propionic bacteria in the dissimilation of glycerol. J. Bact. 30, 332 (1935).Google Scholar
  301. Wood, H. G., and C. H. Werkman: The utilization of carbon dioxide in the dissimilation of glycerol by the propionic acid bacteria. Biochem. J. 30, 48–53 (1936).PubMedGoogle Scholar
  302. Woodruff, H. B., and J. W. Foster: Microbiological aspects of streptothricin. I. Metabolism and streptothricin formation in stationary and submerged cultures of Actinomyces lavendulae. Arch. Biochem. 2, 301–315 (1943).Google Scholar
  303. Wynne, E. S., R. E. Collier and D. A. Mehl: Locus of action of streptomycin in the development of Clostridia from spore inocula. J. Bact. 64, 883–886 (1952).PubMedGoogle Scholar
  304. Ycas, M., and D. L. Drabkin: The biosynthesis of cvtochrome c in veast adapting to oxygen. J. biol. Chem. 224, 921–933 (1957).PubMedGoogle Scholar
  305. Albaum, H. G., A. Schütz, S. H. Hutner and A. Hirsheield: Phosphorylated compounds in Euglena. Arch. of Biochem. 29, 210–218 (1950).Google Scholar
  306. Anderson, E.H.: Studies on the metabolism of the colourless alga P. zopfii. J. Gen. Physiol. 28, 297–327 (1945).PubMedCrossRefGoogle Scholar
  307. Barker, H.A.: The metabolism of the colorless alga Prototheca zopfii. J. Cellul. a. Comp. Physiol. 7, 73–80 (1935).CrossRefGoogle Scholar
  308. Bean, R. C., and W. Z. Hassid: Carbohydrate oxidase from a red algae Iridophycus flaccidum. J. of Biol. Chem. 218, 425–436 (1956).Google Scholar
  309. Benson, A. H., and M. Calvin: The path of carbon in photosynthesis. J. of Exper. Bot. 1, 63–68 (1950).CrossRefGoogle Scholar
  310. Blinks, L. R.: Physiology and biochemistry of algae. In: G.M. Smith, Manual of Phycology, pp. 263–284. Waltham, Mass.: Chronica Bot. 1951.Google Scholar
  311. Brown, A. H.: The effects of light on respiration using isotopically enriched oxygen. Amer. J. Bot. 40, 719–729 (1953).CrossRefGoogle Scholar
  312. Brown, A. H., and G. C. Webster: The influence of light on the rate of respiration of the blue green alga Anabaena. Amer. J. Bot. 40, 753–758 (1953).CrossRefGoogle Scholar
  313. Brown, F. A., R. O. Freeland and C. L. Ralph: Persistent rhythms of O2-consumption in potatoes, carrots and the seaweed, Fucus. Plant Physiol. 30, 280–292 (1955).PubMedCrossRefGoogle Scholar
  314. Cramer, M., and J. Myers: Effect of starvation on the metabolism of Chlorella. Plant Physiol. 24, 255–264 (1949).PubMedCrossRefGoogle Scholar
  315. Crozier, W. J., P. S. Tang and C. S. French: Temperature characteristics for the metabolism of Chlorella. I. The rate of oxygen utilisation with added dextrose. J. Gen. Physiol. 18, 113–124 (1934).PubMedCrossRefGoogle Scholar
  316. Danforth, W.: Oxidative metabolism of Euglena. Arch. of Biochem. 46, 164–173 (1953).CrossRefGoogle Scholar
  317. Daniel, A. L.: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. III. Atmung und oxydative Assimilation von Chlorella. Flora (Jena) 143, 31–66 (1956).Google Scholar
  318. Emerson, R.: The effect of certain respiratory inhibitors on the respiration of Chlorella. J. Gen. Physiol. 10, 469–477 (1926).CrossRefGoogle Scholar
  319. Emerson, R., and L. Green: Effect of hydrogen ion concentration on Chlorella photosynthesis. Plant Physiol. 13, 157–168 (1938).PubMedCrossRefGoogle Scholar
  320. Emerson, R. L., J. F. Stauffer and W. W. Umbreit: Relationship between phosphorylation and photosynthesis in Chlorella. Amer. J. Bot. 31, 107–120 (1944).CrossRefGoogle Scholar
  321. Eny, D. M.: Respiration studies in Chlorella. II. Influence of various organic acids on gas exchange. Plant Physiol. 26, 268–289 (1951).PubMedCrossRefGoogle Scholar
  322. Eny, D. M.: Effect of organic acids, inhibitors and enzymes on the respiration of Cmoreua. Biochemic. J. 50, 559–564 (1952).Google Scholar
  323. French, C. S., H. I. Kohn and P. S. Tang: Temperature characteristics of the metabolism of Chorella. II. The rate of respiration of Chlorella pyrenoidosa as a function of time and temperature. J. Gen. Physiol. 18, 193–207 (1934).PubMedCrossRefGoogle Scholar
  324. Gaffron, H., and J. Rubin: Fermentation and photochemical production of hydrogen in algae. J. Gen. Physiol. 26, 219–240 (1942).PubMedCrossRefGoogle Scholar
  325. Genevois, L.: Sur la fermentation et sur la respiration chez les végétaux chlorophylliens. Rev. gén. Bot. 40, 735p–746 (1928); 41, 49–63, 119–128, 157–166 (1929).Google Scholar
  326. Haxo, F. T., and K. A. Clendenning: Photosynthesis and phototaxis in Ulva lactuca gametes. Biol. Bull, 105, 103–114 (1953).CrossRefGoogle Scholar
  327. Hoffmann, C.: Die Atmung der Meeresalgen und ihre Beziehung zum Salzgehalt. Jb. wiss. Bot. 71, 214–268 (1929).Google Scholar
  328. Hutner, S. H., and L. Provasoli: The Phytoflagellates. In: A. Lwoff, Protozoa, vol. 1, p. 27–128. New York: Academic Press 1951.Google Scholar
  329. Jacobi, G.: Enzyme des Kohlenhydratstoffwechsels in Extrakten von Ulva lactuca. Planta (Berl.) 49, 1–10 (1957).CrossRefGoogle Scholar
  330. James, W.O.: Plant Respiration. Oxford: Clarendon Press 1955.Google Scholar
  331. Kandler, O.: Über die Beziehung zwischen Phosphathaushalt und Photosynthese. III. Z. Naturforsch10b, 38–46 (1955).Google Scholar
  332. Kessler, E.: Über die Wirkung von 2,4-Dinitrophenol auf Nitratreduktion und Atmung von Grünalgen. Planta (Berl.) 45, 94–105 (1955).CrossRefGoogle Scholar
  333. Kohn, H. T.: Inhibition of photosynthesis in Chlorella pyrenoidosa by the iodo-acetyl radical. J. Gen. Physiol. 19, 23–34 (1935).PubMedCrossRefGoogle Scholar
  334. Kratz, W. A., and J. Myers: Photosynthesis and respiration of three blue green algae. Plant Physiol. 30, 275–280 (1955).PubMedCrossRefGoogle Scholar
  335. Lewin, J. C.: Heterotrophy in diatoms. J. Gen. Microbiol. 9, 305–313 (1953).PubMedCrossRefGoogle Scholar
  336. Lynch, V. H., and M. Calvin: Carbon dioxide fixation in Euglena. Ann. New York Acad. Sci. 56, 890–900 (1953).CrossRefGoogle Scholar
  337. Michels, H. Z.: Über die Hemmung der Photosynthese bei Grünalgen nach Sauerstoffentzug. Z. Bot. 35, 341–270 (1940).Google Scholar
  338. Mtlhaud, G., A. A. Benson and M. Calvin: Metabolism of pyruvic acid -2 C14 and hydroxypvruvic acid -2 C14 in algae. J. of Biol. Chem. 218, 599–606 (1956).Google Scholar
  339. Millbank, J. W.: Keto acids in the alga Chlorella. Ann. of Bot. 21, 23–28 (1957).Google Scholar
  340. Myers, J.: Oxidative assimilation in relation to photosynthesis in Chlorella. J. Gen. Physiol. 30, 217–227 (1947).PubMedCrossRefGoogle Scholar
  341. Myers, J.: The physiology of the algae Annual. Rev. Microbiol. 5, 157–180 (1951).CrossRefGoogle Scholar
  342. Negelein, E.: Über die Wirkung des Schwefelwasserstoffs auf chemische Vorgänge in Zellen. Biochem. Z. 165, 203–209 (1925).Google Scholar
  343. Nihei, T., T. Sasa, S. Migachi, K. Suzuki u. H. Tamiya: Change of photosynthetic activity of Chlorella cells during the course of their normal life cycle. Arch. Mikrobiol. 21, 155–164 (1954).Google Scholar
  344. Osterlind, S.: Inhibition of respiration and nitrate absorption in green algae. Physiol. Plantarum (Copenh.) 5, 292–297 (1952).CrossRefGoogle Scholar
  345. Pirson, A., A. L. Daniel u. E. W. Becker: Zur Beziehung zwischen endogener Atmung und Glucoseatmung bei Chlorella. Arch. Mikrobiol. 22, 214–218 (1955).PubMedCrossRefGoogle Scholar
  346. Person, A., C. Tichy u. G. Wilhelmi: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. Planta (Berl.) 40, 199–253 (1952).CrossRefGoogle Scholar
  347. Reazin jr., G. H.: The metabolism of glucose by the alga Ochromonas malhamensis. Plant Physiol. 31, 299–303 (1956).PubMedCrossRefGoogle Scholar
  348. Schön, W. J.: Periodische Schwankungen der Photosynthese und Atmung bei Hydrodictyon. Flora (Jena) 142, 347–380 (1955).Google Scholar
  349. Schwink, L.: Nachweis von Adenosintriphosphorsäure in Grünalgen und Helodea sowie Einbau von radioaktivem Phosphor bei der Photosynthese. Planta (Berl.) 47, 165–218 (1956).CrossRefGoogle Scholar
  350. Sorokin, C., and J. Myers: Time course of respiration during the life cycle of Chlorella cells. J. Gen. Physiol. 40, 579–592 (1957).PubMedCrossRefGoogle Scholar
  351. Steeman-Nielsen, E.: Influence of pH on the respiration of Chlorella pyrenoidosa. Physiol. Plantarum (Copenh.) 8, 106–115 (1955).CrossRefGoogle Scholar
  352. Taylor, F. J.: Oxidative assimilation of glucose by Scenedesmus quadricauda. J. of Exper. Bot. 1, 301–321 (1950).CrossRefGoogle Scholar
  353. Tseng, C. K., and B. M. Sweeney: Physiological studies of Gelidium cartilagineum. Amer. J. Bot. 33, 706–715 (1946).CrossRefGoogle Scholar
  354. Warburg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. Biochem. Z. 100, 230–270 (1919).Google Scholar
  355. Watanabe, A.: Über die Beeinflussung der Atmung von einigen grünen Algen durch Kaliumcyanid und Methylenblau. Acta phytochim (Tokyo) 6, 315–325 (1932).Google Scholar
  356. Watanabe, A.: Untersuchung über die Substrate für Sauerstoffatmung von Süßwasser- und Meeresalgen. II. Acta phytochim. (Tokyo) 9, 235–254 (1937).Google Scholar
  357. Webster, G. C., and A. W. Frenkel: Some respiratory characteristics of the blue green algae Anabaena. Plant Physiol. 28, 63–69 (1953).PubMedCrossRefGoogle Scholar
  358. Whittingham, C. P.: Energy transformation in photosynthesis and the relation of photosynthesis to respiration. Biol. Rev. Cambridge Philos. Soc. 30, 40–64 (1955).CrossRefGoogle Scholar
  359. Yakashiyi, E.: Über das Vorkommen des Cytochroms in höheren Pflanzen und in Algen. Acta phytochim (Tokyo) 8, 325–329 (1934).Google Scholar
  360. Abraham, E. P., and H. W. Florey: Substances from lichens and algae. In H. W. Florey et al., Antibiotics, Vol. I, p. 566–575. Oxford: Univ. Press 1949.Google Scholar
  361. Am Ende, J.: Zur Ernahrungsphysiologie des Pilzes der Xanthoria parietina. Arch. Mikrobiol. 15,185–202 (1950).CrossRefGoogle Scholar
  362. Boysen-Jensen, P., u. D. Müller: Über die Kohlensäureassimilation bei Marchantia und Peltigera. Jb. wiss. Bot. 70, 503–511 (1929).Google Scholar
  363. Butin, H.: Physiologisch-ökologische Untersuchungen fiber den Wasserhaushalt und die Photosynthese bei Flechten. Biol. Zbl. 73, 459–502 (1954).Google Scholar
  364. Ensgraber, A.: Über den Einfluß der Antrocknung auf die Assimilation und Atmung von Moosen und Flechten. Flora (Jena) 141, 432–475 (1954).Google Scholar
  365. Fraymouth, J.: The moisture relations of terrestrial algae. III. The respiration of certain lower plants including terrestrial algae, with special reference to the influence of drought. Ann. of Bot. 42, 75–100 (1928).Google Scholar
  366. Giordano, C.: Il consumo di ossigeno in tessuti vegetali trattati con estratti lichenici. Nuovo Giorn. bot. ital. 57, 619–638 (1950).CrossRefGoogle Scholar
  367. Harley, J. L., and D. C. Swim: Sugar absorption and surface carbohydrate activity of Peltigera polydactyla (Neck) Hoffm. Ann. of Bot., N. S. 20, 513–543 (1956).Google Scholar
  368. Henrici, M.: Zweigipflige Assimilationskurven. Mit spezieller Berücksichtigung der Photosynthese von alpinen Schattenpflanzen und Flechten. Verh. naturforsch. Ges. Basel 32, 107–171 (1921).Google Scholar
  369. Johnson, R. B., G. Feldott and H. A. Lardy: The mode of action of the antibiotic, Usnic acid. Arch. of Biochem. 28, 317–323 (1950).Google Scholar
  370. Jumelle, H.: Recherches physiologiques sur les lichens. Rev. gén. Bot. 4, 49–64, 103–121, 159–175, 220–231, 259–272, 305–320 (1892).Google Scholar
  371. Lange, O. L.: Hitze- und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora (Jena) 140, 39–97 (1953).Google Scholar
  372. Lange, O. L.: Zur Methodik der kolorimetrischen CO2-Bestimmung nach Ålvix. Ber. dtsch. bot. Ges. 69, 49–60 (1956).Google Scholar
  373. Lindberg, B., A. Misiorny and A. C. Wachtmeister: Studies on the chemistry of lichens. IV. Acta chem. scand. (Copenh.) 7, 591–595 (1953).CrossRefGoogle Scholar
  374. Neubauer, H. F.: Zur Ökologie von in Buchenkronen epiphytisch lebenden Flechten. Beitr. Biol. Pflanz. 25, 273–289 (1938).Google Scholar
  375. Quispel, A.: The mutual relations between algae and fungi in lichens. Rec. Tray. bot. neerl. 40, 416–541 (1943).Google Scholar
  376. Schatz, A., V. Schatz, G. S. Trelawny and K. Barth: Biochemical studies of lichens. I. Endogenous and substrate oxidation by Cladonia rangiferina. Proc. Pennsylvania Acad. Sci. 30, 54–61 (1956).Google Scholar
  377. Scholander, P. F., W. Flagg, V. Walters and L. Irving: Respiration in some arctic and tropical lichens in relation to temperature. Amer. J. Bot. 39, 707–713 (1952).CrossRefGoogle Scholar
  378. Schutt, B.: Die Beziehungen zwischen Atmung and Temperatur bei der Renntierflechte. Abh. naturwiss. Verein Bremen 28, 267–270 (1932).Google Scholar
  379. Smyth, E. S.: A contribution to the physiology and the ecology of Peltigera canina and P. polydactyla. Ann. of Bot., N. S. 48, 781–818 (1934).Google Scholar
  380. Stilfelt, M. G.: Der Gasaustausch der Flechten. Planta (Berl.) 29, 11–31 (1939).CrossRefGoogle Scholar
  381. Stocker, O.: Physiologische und okologische Untersuchungen an Laub- und Strauchflechten. Flora (Jena), N. F. 21, 334–415 (1927).Google Scholar
  382. Bastrr, E.: Recherches anatomiques et physiologiques sur la tige et la feuille des Mousses. Chap. IV. Influence du sommeil sur la fonction respiratoire. Rev. gén. Bot. 3, 462–476 (1891).Google Scholar
  383. Bĕlehrádek, J., and M. Bĕlehrádková: Influence of age on the temperature coefficient of the respiration rate in leaves of Scolopendrium, scolopendrium. New Phytologist 28, 313–318 (1929).CrossRefGoogle Scholar
  384. Ensgraber, A.: Über den Einfluß der Austrocknung auf die Assimilation und Atmung von Moosen und Flechten. Flora (Jena) 141, 432–475 (1954).Google Scholar
  385. Jonsson, B.: Recherches sur la respiration et l’assimilation des Muscinees. C. r. Acad. Sci. Paris 119, 440–443 (1894).Google Scholar
  386. Maige, G.: Recherches sur la respiration de differentes pieces florales. Ann. des Sci. natur. Bot., Ser. IX 14, 1.62 (1911).Google Scholar
  387. Montfort, C., u. H. Haien: Atmung und Assimilation als dynamische Kennzeichen abgestufter Trockenresistenz bei Farnen und. höheren Pflanzen. Planta (Berl.) 38, 503–515 (1950).CrossRefGoogle Scholar
  388. Plantefol, L.: Étude biologique de l’Hypnum triquetrum. Relations entre la morphologie, la physiologie, et l’ecologie d’une espèce végétale. Ann. des Sci. natur. Bot., Sér. X 9, 1–269 (1927).Google Scholar
  389. Romose, V.: Ökologische Untersuchungen über Homelothecium sericeum, seine Wachstumsperioden und seine Stoffproduktion. Dansk bot. Ark. 10, Nr 4, 134 pp. (1940).Google Scholar
  390. Stålfelt, M. G.: Der Gasaustausch der Moose. Planta (Berl.) 27, 30–60 (1937).CrossRefGoogle Scholar
  391. Bailey, C. H., and A. M. Gurjar: [1] Respiration of stored wheat. J. Agricult. Res. 12, 685–713 (1918).Google Scholar
  392. Bailey, C. H., and A. M. Gurjar: [2] Respiration of cereal plants and grains. III. Respiration of rice paddy and milled rice. J. of Biol. Chem. 44, 9–12 (1920).Google Scholar
  393. Barnell, H. R.: Analytic studies in plant respiration. VII. Aerobic respiration in barley seedlings and its relation to growth and carbohydrate supply. Proc. Roy. Soc. Lond., Ser. B 123, 312–342 (1937).CrossRefGoogle Scholar
  394. Beevers, H., and D. A. Walker: The oxidative activity of particulate fractions from germinating castor beans. Biochemic. J. 62, 114–120 (1956).Google Scholar
  395. Beyer, A.: Über die Keimung der gelben Lupine. Landw. Versuchsstat. 9, 168–178 (1867).Google Scholar
  396. Bonnier, G., et al. Mangin: Respiration des tissus sans chlorophylle. Ann. des Sci. Natur., Ser. VI 18, 293–379 (1884).Google Scholar
  397. Borodin: Sur la respiration des plantes pendant leur germination. Actes du Congres bot. internat. Florence, 1875. Ref. in Bot. Jber. 3 (1875), 880–882 (1877).Google Scholar
  398. Boussingault, J.: Agronomie, Chimie agricole et Physiologie, Vol. 4. Paris 1868.Google Scholar
  399. Boysen Jensen, P.: Studien über den genetischen Zusammenhang zwischen der normalen und intramolekularen Atmung der Pflanzen. Kgl. danske Videnskab. Selsk., Biol. Med. IV 1, 34 pp. (1923).Google Scholar
  400. Brown, A. L., and D. R. Goddard: Cytochrome oxidase in wheat embryos. Amer. J. Bot. 28, 319–324 (1941).CrossRefGoogle Scholar
  401. Brown, J. W.: Respiration of acorns as related to temperature and after-ripening. Plant Physiol. 14, 621–645 (1939).PubMedCrossRefGoogle Scholar
  402. Brown, R.: Studies in germination and seedling growth. I. The water content, gaseous exchange and dry weight of attached and isolated embryos of barley. Ann. of Bot., N. S. 7, 93–113 (1943).Google Scholar
  403. Burlakow, G.: Über Athmung des Keimes des Weizens, Triticum vulgare. Arb. naturforsch. Ges. Charkow 31, Beilage I-XV (1897). Abstr. in Bot. Zbl. 74, 323–324 (1898).Google Scholar
  404. Clausen, H.: Beiträge zur Kenntniss der intramolekularen Athmung. Landw. Jb. 19, 893–930 (1890).Google Scholar
  405. Crocker, W., and J. F. Groves: A method of prophesying the life duration of seeds. Proc. Nat. Acad. Sci. U.S.A. 1, 152–155 (1915).CrossRefGoogle Scholar
  406. Denny, F. E.: Effect upon plant respiration caused by changes in the oxygen concentration in the range immediately below that of normal air. Contrib. Boyce Thompson Inst. 15, 61–70 (1948).Google Scholar
  407. Detmer, W.: Vergleichende Physiologie des Keimungsprozesses der Samen. Jena: Gustav Fischer 1880.Google Scholar
  408. Evanari, M.: The germination of lettuce seeds. I. Light, temperature and coumarin as germination factors. Palestine J. Bot., Jerusalem Ser. 5, 138–160 (1952).Google Scholar
  409. Evanari, M., G. Neumann and S. Klein: The influence of red and infra-red light on the respiration of photoblastic seeds. Physiol. Plantarum (Copenh.) 8, 33–47 (1955).CrossRefGoogle Scholar
  410. Fernandes, D. S.: Aerobe und anaerobe Atmung bei Keimungen von Pisum sativum. Rec. Trav. bot. neerl. 20, 107–256 (1923).Google Scholar
  411. Fleury, M.: Recherches chimiques sur la germination. Ann. chim. phys., Ser. IV 4, 38–65 (1865).Google Scholar
  412. Folkes, B. F., A. J. Willis and E. W. Yemm: The respiration of barley plants. VII, The metabolism of nitrogen and respiration in seedlings. New Phytologist 51, 317–341 (1952).CrossRefGoogle Scholar
  413. Forward, D. F.: The respiration of barley seedlings in relation to oxygen supply. I. An analytical account of experiments. New Phytologist 50, 297–324 (1952).CrossRefGoogle Scholar
  414. Frankfurt, S.: Über die Zusammensetzung der Samen und der etiolierten Keimpflanzen von Cannabis saliva und Helianthus annuus. Landw. Versuchsstat. 43, 143–182 (1894).Google Scholar
  415. Frietinger, G.: Untersuchungen über die Kohlensäureabgabe und Sauerstoffaufnahme bei keimenden Samen. Flora (Jena) 22, 167–201 (1927).Google Scholar
  416. Genevois, L.: Über Atmung und Gärung in grünen Pflanzen. II. Mitteilung: Der Stoffwechsel der Phanerogamen, Biochem. Z. 191, 147–157 (1927).Google Scholar
  417. Gindele, F. J.: Untersuchungen über die Wirkung chemischer Stoffe auf die Atmung keimender Samen. Bot. Archiv 23, 532–578 (1929),Google Scholar
  418. Godlewski, E.: Beiträge zur Kenntniss der Pflanzenathmung. Jb. wiss. Bot. 13, 491–543 (1882).Google Scholar
  419. Groves, J. F.: Temperature and life duration of seeds. Bot. Gaz. 63, 169–185 (1917).CrossRefGoogle Scholar
  420. Harrington, G. T.: Respiration of apple seeds. J. Agricult. Res. 23, 117–130 (1923).Google Scholar
  421. James, W.O.: Plant respiration. Oxford: Clarendon Press 1953a.Google Scholar
  422. James, W.O.: The terminal oxidases in the respiration of the embryos and young roots of barley. Proc. Roy. Soc. Lond., Ser. B 141, 289–299 (1953b).CrossRefGoogle Scholar
  423. James, W. O., and D. Boulter: Further studies of the terminal oxidases in the embryos and young roots of barley. New Phytologist 54, 1–12 (1955).CrossRefGoogle Scholar
  424. James, W. O., and N. Garton: The use of diethyldithiocarbamate as a respiratory inhibitor. J. of Exper. Bot. 3, 310–318 (1952).CrossRefGoogle Scholar
  425. James, W. O., and A. L. James: The respiration of barley genninating in the dark. New Phytologist 39, 145–176 (1940).CrossRefGoogle Scholar
  426. Karcheviski, M.: Influence of the fluctuation of temperature on the respiration of seeds and embryos of wheat. Ref. in Exper. Stat. Rec. 14, 830 (1903).Google Scholar
  427. Kidd, F.: The controlling influence of carbon dioxide. Part III. The retarding effect of carbon dioxide on respiration. Proc. Roy. Soc. Lond., Ser. B 89, 136–156 (1915).CrossRefGoogle Scholar
  428. Kidd, F., C. West and G. E. Briggs : A quantitative analysis of the growth of Helianthus annuus. Part I. The respiration of the plant and of its parts throughout the life cycle. Proc. Roy. Soc. Lond., Ser. B 92, 368–384 (1921).CrossRefGoogle Scholar
  429. Kuijper, J.: Über den Einfluß der Temperatur auf die Atmung der höheren Pflanzen. Rec. Trav. bot. neerl. 7, 131–240 (1910).Google Scholar
  430. Kurbatov, M. I., u. N. D. Leonov: Über den Einfluß der Temperatur auf die Atmung der Keimlinge von Phaseolus aureus. Planta (Berl.) 12, 147–166 (1931).CrossRefGoogle Scholar
  431. Leach, W.: Researches on plant respiration. IV. The relation between the respiration in air and in nitrogen of certain seeds during germination, (b) Seeds in which carbohydrates constitute the chief food reserve. Proc. Roy. Soc. Lond., Ser. B 119, 507–521 (1936).CrossRefGoogle Scholar
  432. Leach, W., and K. W. Dent: Researches on plant respiration. III. The relation between the respiration in air and in nitrogen of certain seeds during germination, (a) Seeds in which fats constitute the chief food reserve. Proc. Roy. Soc. Lond., Ser. B 116, 150–169 (1934).CrossRefGoogle Scholar
  433. Livingston, B. E.: Possible importance of respiration water to young wheat seedlings. Bull. Torrey Bot. Club 61, 217–223 (1934).CrossRefGoogle Scholar
  434. Lundegardh, H.: Quantitative relations between respiration and salt absorption. Ann. agricult. Coll. Sweden 16, 372–403 (1949).Google Scholar
  435. Lundegårdh, H., u. H. Burström: Untersuchungen über die Salzaufnahme der Pflanze. III. Quantitative Beziehungen zwischen Atmung und Anionaufnahme. Biochem. Z. 220, 235–251 (1933).Google Scholar
  436. Lyon, M. E.: The occurrence and behavior of embryoless wheat seeds. J. Agricult. Res. 36, 631–637 (1928).Google Scholar
  437. Mack, W. B.: The relation of temperature and the partial pressure of oxygen to respiration and growth in germinating wheat. Plant Physiol. 5, 1–68 (1930).PubMedGoogle Scholar
  438. Merry, J., and D. R. Goddard : A respiratory study of barley grains and seedlings. Proc. Rochester Acad. Sci. 8, 28–44 (1941).Google Scholar
  439. Met, M.: Étude de la respiration du blé au cours d’une germination normale et pendant le traitement de vernalisation. Rev. gen. Bot. 57, 429–451 (1950).Google Scholar
  440. Mikhlin, D. K, and P. A. Kolesnikov: Biochimija 12, 452 (1947). Ref. in W.O.James, Proc. Roy. Soc. Lond., Ser. B 141, 289–299 (1953).Google Scholar
  441. Miller, E.C.: A physiological study of the germination of Helianthus annuus. Ann. of Bot. 24, 693–726 (1910).Google Scholar
  442. Oota, Y., R. Fujii u. Y. Sunobe: Studies on the connexion between sucrose formation and respiration in germinating bean cotyledons. Physiol. Plantarum (Copenh.) 9, 38–50 (1956).Google Scholar
  443. Poljakoff-Mayber, A.: Changes in metabolism of lettuce seeds during germination and its inhibition. Palestine J. Bot., Jerusalem Ser. 5, 180–186 (1952).Google Scholar
  444. Pringsheim, E. G., unter Mithilfe von F. Jedlitschka u. B. Görlich: Untersuchungen über Samen-quellung. III. Mitt. Der Atmungsquotient quellender Samen. Planta (Berl.) 19, 653–712 (1933).CrossRefGoogle Scholar
  445. Rischavi, L.: Einige Versuche über die Athmung der Pflanzen. Landw. Versuchsstat. 19, 321–340 (1876).Google Scholar
  446. Robertson, R. N.: Studies in the metabolism of plant cells. I. Accumulation of chlorides by plant cells and its relation to respiration. Austral. J. Exper. Biol. a. Med. Sci. 19, 265–278 (1941).CrossRefGoogle Scholar
  447. Sachse, R.: Über einige chemische Vorgänge bei der Keimung von Pisum sativum. Chem. Zbl. 3, 137–144 (1872).Google Scholar
  448. Schröppel, F.: Katalase, Peroxydase und Atmung bei der Keimung lichtempfindlicher Samen von Nicotiana tabacum. Beih. Bot. Zbl., Abt. I 51, 377–407 (1933).Google Scholar
  449. Sharman, H.: Respiration of dormant seeds. Bot. Gaz. 72, 1–30 (1921).CrossRefGoogle Scholar
  450. Stalfelt, M. G.: Die „große Periode“ der Sauerstoffaufnahme. Biol, Zbl. 46, 1–11 (1926).Google Scholar
  451. Stich, C.: Die Athmung der Pflanzen bei verminderter Sauerstoffspannung und bei Verletzungen. Flora (Jena), (N. R. 49), 74, 1–57 (1891).Google Scholar
  452. Stiles, W., and W. Leach: [1] Researches on plant respiration. I. The course of respiration of Lathyrus odoratus during germination of the seed and the early development of the seedling. Proc. Roy. Soc. Lond., Ser. B 111, 338–355 (1932).CrossRefGoogle Scholar
  453. Stiles, W., and W. Leach: [2] Researches on plant respiration. II. Variations in the respiratory quotient during germination of seeds with different food reserves. Proc. Roy. Soc. Lond., Ser. B 113, 405–428 (1933).CrossRefGoogle Scholar
  454. Stoward, F.: On endospermic respiration in certain seeds. Ann. of Bot. 22, 415–448 (1908).Google Scholar
  455. Taylor, D. L.: Influence of oxygen tension on respiration, fermentation and growth in wheat and rice. Amer. J. Bot. 29, 721–738 (1942).CrossRefGoogle Scholar
  456. Webb, J. A., and L. Fowden: Changes in oxyacid concentrations during the growth of groundnut seedlings. Biochemic. J. 61, 1–4 (1955).Google Scholar
  457. Addicott, F. T., and R. S. Lynch: Physiology of abscission. Annual Rev. Plant Physiol. 6, 211–238 (1955).CrossRefGoogle Scholar
  458. Akazawa, T., and I. Uritani: Phytopathological chemistry of black rotten sweet potato. Part 20. The respiratory increase, phosphate and nitrogen metabolism in the rotten sweet potato. J. Agricult. Chem. Soc. Japan 29, 381–386 (1955) [Japanese].Google Scholar
  459. Albaum, H. G.: The metabolism of phosphorylated compounds in plants. Annual Rev. Plant Physiol. 3, 35–58 (1952).CrossRefGoogle Scholar
  460. Allen, P. J.: Toxins and tissue respiration. Phytopathology 43, 221–229 (1953).Google Scholar
  461. Arney, S. E.: The respiration of strawberry leaves attached to the plant. New Phytologist 46, 68–96 (1947).CrossRefGoogle Scholar
  462. Audus, L. J., and A. Garrard: The growth and respiration of roots. I. The effects of stimulatory and inhibitory concentrations of 3-indoleacetic acid on root sections of Pisum sativum. J. of Exper. Bot. 4.j 330–348 (1953).CrossRefGoogle Scholar
  463. Baldovinos, G.: Growth of the root tip. In: Growth and Differentiation in Plants. Iowa: Iowa State College Press 1953.Google Scholar
  464. Barker, J., and A. F. El Saifi: Studies in the respiratory and corbohydrate metabolism of plant tissue. II. Interrelationships between the rate of production of carbon dioxide, of lactic acid, and of alcohol in potato tuber under anaerobic conditions. Proc. Roy. Soc. Lond., Ser. B 140, 385–403 (1952).CrossRefGoogle Scholar
  465. Barron, E. S., G. K. K. Link, R. M. Klein and B. E. Michel: The metabolism of potato slices. ArcH., of Biochem. 28, 377–398 (1950).Google Scholar
  466. Berry, L. J.: The influence of oxygen tension on the respiratory rate in different segments of onion roots. J. Oellul. a. Comp. Physiol. 33, 41–60 (1949).CrossRefGoogle Scholar
  467. Betz, A.: Zur Atmung wachsender Wurzelspitzen. Planta (Berl.) 46, 381–402 (1955).CrossRefGoogle Scholar
  468. Bolli, M.: The respiration in higher plants during fading. Experiments with tobacco. Tobacco 55, 326–338 (1951).Google Scholar
  469. Bonner, J.: Relations of respiration and growth in the Avena coleoptile. Amer. J. Bot. 36, 426–436 (1949).CrossRefGoogle Scholar
  470. Bonner, J., R. S. Bandurski and A. Millerd: Linkage of respiration to auxin-induced water uptake. Physiol. Plantarum (Copenh.) 6, 511–522 (1953).CrossRefGoogle Scholar
  471. Bonner, J., and S. G. Wildman: Enzymatic mechanisms in the respiration of spinach leaves. ArcH., of Biochem. 10, 497–518 (1946).Google Scholar
  472. Brauner, L.: Tropisms and nastic movements. Annual Rev. Plant Physiol. 5, 163–182 (1954).CrossRefGoogle Scholar
  473. Brown, A. H., A. O.C. Nier and R. W. van Norman : Measurement of metabolic gas exchange with a recording mass spectrometer. Plant Physiol. 27, 320–334 (1952).PubMedCrossRefGoogle Scholar
  474. Brown, A.H., and C.P. Whittingham: Identification of the carbon dioxide burst in Chlorella Chlorella, using the recording mass spectrometer. Plant Physiol. 30, 231–237 (1955).PubMedCrossRefGoogle Scholar
  475. Brown, R., and D. Broadbent : The development of cells in the growing zones of the root. J. of Exper. Bot. 1, 249–263 (1950).CrossRefGoogle Scholar
  476. Brown, R., and E. Robinson: Cellular differentiation and the development of enzyme protein in plants. In: Biological Specificity and Growt H., edit. Butler. Princeton, N. J.: Princeton University Press 1955.Google Scholar
  477. Christiansen, G. S., and K. V. Thimann: The metabolism of stem tissue during growth and its inhibition. II. Respiration and ether-soluble material. ArcH., of Biochem. 26, 248–258 (1950).Google Scholar
  478. Cleland, R., and J. Bonner: The residual effect of auxin on the cell wall. Plant Physiol. 31, 350–354 (1956).PubMedCrossRefGoogle Scholar
  479. Clendenning, K. A.: Oral communication. Midwest. Sect. Amer. Soc. Plant Physiol. 1955.Google Scholar
  480. Danfort, H. W.: Oxidative metabolism of Euglena. ArcH., of Biochem. 46, 164–173 (1953).CrossRefGoogle Scholar
  481. Davidson, J. M., and I. Leslie: A new approach in the biochemistry of growth and development. Nature (Lond.) 165, 49–53 (1950).CrossRefGoogle Scholar
  482. Domien, F.: Influence de la des-hydration sur la respiration des feuilles des végétaux aériens. Rev. gén. Bot. 56, 285–317 (1949).Google Scholar
  483. Ducet, G., and E.J. Hewitt: Relation of molybdenum status and nitrogen supply to respiration in cauliflower leaves. Nature (Lond.) 173, 1141–1143 (1954).CrossRefGoogle Scholar
  484. Eberhardt, F.: Über die Beziehungen zwischen Atmung und Anthocyansynthese. Planta (Berl.) 43, 253–287 (1954).CrossRefGoogle Scholar
  485. Der Atmungsverlauf alternder Blätter und reifender Früchte. Planta (Berl.) 45, 57–67 (1955).CrossRefGoogle Scholar
  486. Eichenberger, E.: Über die Atmung lebender Tabakblätter. Ber. Schweiz, bot. Ges. 62, 123–163 (1952).Google Scholar
  487. Eliasson, L.: The connection between the respiratory gradient and the growth rate in roots. Physiol. Plantarum (Copenh.) 8, 374–388 (1955).CrossRefGoogle Scholar
  488. Elliott, B. B., and A. C. Leopold : A relationship between photoperiodism and respiration. Plant Physiol. 27, 787–793 (1952).PubMedCrossRefGoogle Scholar
  489. Esau, K., H. B. Currier and V. I. Cheadle: Physiology of phloem. Ann. Rev. Plant Physiol. 8, 349–374 (1957).CrossRefGoogle Scholar
  490. Evenari, M., G. Neumann and S. Klein: The influence of red and infrared light on the respiration of photoblastic seeds. Physiol. Plantarum (Copenh.) 8, 33–47 (1955).CrossRefGoogle Scholar
  491. Franke, W.: Über die Biosynthese des Vitamins C. I. Die Beziehungen zwischen Vitamin C und der Atmung. Planta (Berl.) 44, 437–458 (1954).CrossRefGoogle Scholar
  492. IL Zur Biochemie und Physiologie der Vitamin C-Synthese. Planta (Berl.) 45, 166–197 (1955).CrossRefGoogle Scholar
  493. Frenc, H. R. C., and H. Beevers: Respiratory and growth responses induced by growth regulators and allied compounds. Amer. J. Bot. 40, 660–666 (1953).CrossRefGoogle Scholar
  494. Fritz, G., and H. Beevers: Cytochrome oxidase content and respiratory rates of etiolated wheat and barley seedlings. Plant Physiol. 30, 309–317 (1955).PubMedCrossRefGoogle Scholar
  495. Gauc, H. H. G., and W. M. jr. Duggab: The role of boron in the translocation of sucrose. Plant Physiol. 28, 457–466 (1953).CrossRefGoogle Scholar
  496. Gauthebet, R. J.: The nutrition of plant tissue cultures. Annual Rev. Plant Physiol. 6, 433–484 (1955).CrossRefGoogle Scholar
  497. Gibbs, M., and H. Beevebs: Glucose dissimilation in the higher plant. Effect of age of tissue. Plant Physiol. 30, 343–347 (1955).PubMedCrossRefGoogle Scholar
  498. Goddabd, D. R., and B. J. D. Meeuse: Respiration of higher plants. Annual Rev. Plant Physiol. 1, 207–232 (1950).CrossRefGoogle Scholar
  499. Goodwin, B.C., and E. R. Waygood: Succinoxidase inactivation by a lecithinase in barley seedlings. Nature (Lond.) 174, 517 (1954).CrossRefGoogle Scholar
  500. Gbegg, J. H.: Oxygen utilization in relation to growth and morphogenesis of the slime mold Dictyostelium discoideum. J. of Exper. Zool. 114, 173–196 (1950).CrossRefGoogle Scholar
  501. Gbegg, J. H., and R. D. Bbonsweig: Dry weight loss during culrnination of the slime mold, Dictyostelium discoideum. J. Cellul. a. Comp. Physiol. 47, 483–487 (1956).CrossRefGoogle Scholar
  502. Gbegoby, F. G., I. Speab and K. V. Thimann: The interrelation between CO2 metabolism and photo-periodism in Kalanchoe. Plant Physiol. 29, 220–229 (1954).CrossRefGoogle Scholar
  503. Hackett, D. P.: A pathway of terminal oxidation in potato mitochondria. Plant Physiol. 30, xxx (1955a).Google Scholar
  504. Recent studies in plant mitochondria. Internat. Rev. Cytology 4, 143–196 (1955 b).CrossRefGoogle Scholar
  505. Pathways of oxidation in cell-free potato fractions. Plant Physiol. 31, 111–118 (1956).CrossRefGoogle Scholar
  506. Hackett, D. P., and H. A. Schneidebman: Terminal oxidases mediating growth of Avena coleoptile and Pisum stem sections. ArcH., of Biochem. 47, 190–204 (1953).CrossRefGoogle Scholar
  507. Hackett, D. P., H. A. Schneidebman and K. V. Thimann: Terminal oxidases and growth in plant tissues. II. The terminal oxidase mediating water uptake by potato tissue. ArcH., of Biochem. a. Biophysics 47, 205–214 (1953).CrossRefGoogle Scholar
  508. Hackett, D. P., and K. V. Thimann: The effect of auxin on growth and respiration of artichoke tissue. Proc. Nat. Acad. Sci 38, 770–775 (1952 a).PubMedCrossRefGoogle Scholar
  509. Hackett, D. P., and K. V. Thimann: The nature of auxin-induced water uptake by potato tissue. Amer. J. Bot. 39, 553–560 (1952 b).CrossRefGoogle Scholar
  510. Hackett, D. P., and K. V. Thimann: The nature of auxin-induced water uptake by potato tissue. II. The relation between respiration and water absorption. Amer. J. Bot. 40, 183–188 (1953).CrossRefGoogle Scholar
  511. Hanly, V. P., K. S. Rowan and J. S. Tubneb: Malonate and carrot root respiration. Austral. J. Sci. Res., Ser. B 5, 64–95 (1952).Google Scholar
  512. Haxo, F. T., and K. A. Clenndenning: Photosynthesis and phototaxis in Ulvalactucagametes. Biol. Bull. 105, 103–114 (1953).CrossRefGoogle Scholar
  513. Hes, J. W.: The respiration of the stem of ripening sugar cane. Proc. Kon. Ned. Akad. Wetensch. 52, 915–920 (1949).Google Scholar
  514. Honda, S. I.: The salt respiration and phosphate contents of barley roots. Plant Physiol. 31, 62–70 (1956).PubMedCrossRefGoogle Scholar
  515. Hubeb, B.: Registrierung des CO2-Gefäl1es und Berechnung des CO2-Stroms über Pflanzengesellschaften mittels Ultrarotabsorptions-schreiber. Ber. dtsch. bot. Ges. 63, 53–64 (1950).Google Scholar
  516. Ilyin, W. S.: Drought resistance in plants and physiological processes. Annual Rev. Plant Physiol. 8, 257–274 (1957).CrossRefGoogle Scholar
  517. James, W.O.: Plant respiration. Oxford, England: Clarendon Press 1953.Google Scholar
  518. James, W. O., and H. Beevebs : The respiration of Arum spadix. New Phytologist 49, 353–374 (1950).CrossRefGoogle Scholar
  519. Kempneb, W.: Chemical nature of the oxygen transferring ferment of respiration in plants. Plant Physiol. 11, 605–613 (1936).CrossRefGoogle Scholar
  520. Kidd, F., C. West and G. E. Bbiggs: A quantitative analysis of the growth of Helianthus annuus. Part I. The respiration of the plant and of its parts throughout the life cycle. Proc. Roy. Soc. Lond. Ser. B 92, 368–384 (1921).CrossRefGoogle Scholar
  521. Klein, R. M.: The relation of gas exchange and tyrosinase activity of tomato tissues to the level of boron nutrition of the plants. ArcH., of Biochem. 30, 207–214 (1951).Google Scholar
  522. Nitrogen and phosphorus fractions, respiration, and structure of normal and crown gall tissue of tomato. Plant Physiol. 27, 335–354 (1952).Google Scholar
  523. Klinkeb, J. E.: A modification of the Warburg respirometer to measure the respiration rate of tomato leaf disks. Plant Physiol. 25, 354–355 (1950).CrossRefGoogle Scholar
  524. Klinkeb, J.E., and R. D. Sweet: An investigation of the yield per-formance of several tomato varieties. Proc. Amer. Soc. Horticult. Sci. 54, 253–260 (1949).Google Scholar
  525. Kodama, S.: Influence of temperature on the tissue respiration of mouse and frog liver in vitro. Tohoku J. Exper. Med. 30, 11–15 (1936).Google Scholar
  526. Könemann, B.: Über den Stoffwechsel von Bratknospen im’ Laufe der Nachreife. Planta (Berl.) 46, 516–544 (1956).CrossRefGoogle Scholar
  527. Kbameb, P. J.: Water relations of plant cells and tissues. Annual Rev. Plant Physiol. 6, 253–272 (1955).CrossRefGoogle Scholar
  528. Kbebs, H.A.: Body size and tissue respiration. Biochem. et biophysica Acta 4, 249–269 (1950).CrossRefGoogle Scholar
  529. Kulkabni, R. A., and A. Sbeenivasan: Biosynthesis of vitamin C during germination certain related enzyme systems. J. Sci. Ind. Res. (India) B 13, 704–707 (1954).Google Scholar
  530. Kubsanov, A. L., and M. V. Tubkina: Cit. by A. L. Kubsanov: Recent advances in plant physiology in the U.S.S.R. Annual Rev. Plant Physiol. 7, 401–436 (1956).CrossRefGoogle Scholar
  531. Lachaux, M.: La respiration des tissues vegetales isolees cultivee in vitro. C. r. Acad. Sci. Paris 219, 291–293 (1944).Google Scholar
  532. Langbidge, J.: Biochemical mutations in the crucifer, Arabidopsis thaliana. Nature (Lond.) 176, 260–261 (1955).CrossRefGoogle Scholar
  533. Lehningeb, A. L.: Physiology of mitochondria. In: Internat. Symposium on Enzymes: Units of Biological Structure and Function, edit, by D. H. Gaebleb. New York: Academic Press 1956.Google Scholar
  534. Leopold, A. C., and F. S. Guebnsey: Respiratory responses to red and infra red light. Physiol. Plantarum (Copenh.) 7, 30–40 (1954).CrossRefGoogle Scholar
  535. Link, G.K.K., and D.R. Goddabd: Studies 185–190 (1951). — on the metabolism of plant neoplasms. I. Oxygen uptake of crown-gall tissues. Bot. Gaz. 113Google Scholar
  536. Link, G. K. K., and R. M. Klein: Studies on the metabolism of plant neoplasms. II, The terminal oxidase patterns of crown-gall and auxin tumors of tomato. Bot. Gaz. 113, 190–195 (1951).CrossRefGoogle Scholar
  537. Lioret, C.: Action du “lait de coco“ sur les échanges gaseux respira-toires de tissus de Grown-Gall de Scorsonère (Scorzonera hispanica L.) cultives in vitro. C. r. Acad. Sci. Paris 234, 648–650 (1952).Google Scholar
  538. Loneragan, J. F., and D. I. Arnon: Molybdenum in the growth and metabolism of Chlorella. Nature (Lond.) 174, 459 (1954).CrossRefGoogle Scholar
  539. Lopushanskii, P. I., and G. Kh. Molotkovskh : Intensity of respiration of metameric formations of walnut and the phenomenon of polarity. Dokl. Akad. Nauk SSSR. 100, 1179–1182 (1955) [Russian].Google Scholar
  540. Lund, H. A., J. B. Hanson and J. S. Kahn: Increased mitochondrial synthesis as a basis for auxin-induced respiration. Plant Physiol. 31, xxii (1956).CrossRefGoogle Scholar
  541. Mac Vicar, R., and R. H. Burris: The relation of boron to certain plant oxidases. ArcH., of Biochem. 17, 31–39 (1948).Google Scholar
  542. Makower, U., and S. Schwimmer: Inhibition of enzymic color formation in potato by adenosine triphosphate. Biochim. et biophysica Acta (Amsterd.) 14, 156–157 (1954).CrossRefGoogle Scholar
  543. Marré, E., e O. Servettaz: Fisiologia vegetalle — Ricerche sulla fisionomia respiratoria caratteristica di tessuti in fase di attiva crescita protoplasmatica. Deidrogenasi a TPN e deidrogenasi a DPN. Atti R. Accad. naz. Lincei, O. Sci. fisiche, mat. natur. 16, 521–527 (1954).Google Scholar
  544. Mars H. P. B., and D. R. Goddard: Respiration and fermentation in the carrot, Daucus carota. I. Respiration. Amer. J. Bot. 26, 724–728 (1939).CrossRefGoogle Scholar
  545. Martin, A. E.: The present status of the infra red gas analyzer. Heaton Works. J. 6 (35) (no date).Google Scholar
  546. Miller, C., and F. Skoog: Regulation of growth in tobacco tissue cultures. Plant Physiol. 30, xxxv (1955).Google Scholar
  547. Montfort, C.: Zur Frage der Atmungssteigerung grüner Laubblätter durch ultraviolettreiche Strahlung. Planta (Berl.) 38, 119–122 (1950).CrossRefGoogle Scholar
  548. Montfort, C., u. H. Föckler: Licht und Atmung bei Licht- und Dunkelgeweben, grünen und farblosen Organen. Planta (Berl.) 28, 515–534 (1938).CrossRefGoogle Scholar
  549. Montfort, C., u. H. Hahn: Atmung und Assimilation als dynamische Kennzeichen abgestufter Trockenresistenz bei Farnen und höheren Pflanzen. Planta (Berl.) 38, 503–515 (1950).CrossRefGoogle Scholar
  550. Moyse, A.: Respiration et metabolism azote. (Étude de physiologie foliaire.) Paris: Hermann & Cie. 1950.Google Scholar
  551. Newcomb, E. H.: The use of cultured tissue in a study of the metabolism controlling cell enlargement. Ann. Biol. 31, 395–414 (1955).Google Scholar
  552. Niedergang-Kamien, E.: Chemical alteration of auxin transport. Plant Physiol. 30, V (1955).Google Scholar
  553. Ogur, M.: Respiration in a polyploid series of Saccharomyces. ArcH., of Biochem. a. Biophysics 53, 484–490 (1954),CrossRefGoogle Scholar
  554. Ohta, J.: The metabolism of myxomycetous plasmodium. J. of Biochem. (Tokyo) 41, 489–497 (1954).Google Scholar
  555. Okunuki, K.: Über den Gaswechsel der Pollen. I. Acta phytochim. 9, 267–285 (1937).Google Scholar
  556. Paec, H. K., and M. V. Tracey (Editors): Modern methods of plant analysis. Vol. I, Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  557. Pal, N. L.: Studies on the respiration of conjugating Spirogyra with special reference to fat metabolism. New Phytologist 33, 241–273 (1935).CrossRefGoogle Scholar
  558. Pearson, J. A., and R. N. Robertson: The physiology of growth in apple fruits. VI. The control of respiration rate and synthesis. Austral. J. Biol. Sci. 7, 1–17 (1954).Google Scholar
  559. Peters, R. A. (Chairman): Nutritional values of wartime foods. Medical Research Council War Memorandum No 14. London: Her Majesty’s Stationery Office 1954.Google Scholar
  560. Petrie, A.H.K., and R.F. Williams: Physiological ontogeny in plants and its relation to nutrition. V. The effect of nitrogen and phosphorus supplies on the respiration rate of the leaves. Austral. J. Exper. Biol. Med. 16, 347–360 (1938).CrossRefGoogle Scholar
  561. Pirson, A.: Functional aspects in mineral nutrition of green plants. Annual Rev. Plant Physiol. 6, 71–114 (1955).CrossRefGoogle Scholar
  562. Plantefol, L., et R. Gautheret: Sur l’intensite des échanges respiratories des tissus vegetaux en culture. C. Acad. Sci. Paris 213, 627–629 (1941).Google Scholar
  563. Pollock, B. M.: The respiration of Acer buds in relation to the inception and termination of the winter rest. Physiol. Plantarum (Copenh.) 6, 47–64 (1953).CrossRefGoogle Scholar
  564. Price, C. A., A. Fonnesu and R. E. Davies : Movements of water and ions in mitochondria. Biochemie. J. 64, 754–768 (1956).Google Scholar
  565. Price, C. A., and K.V. Thimann: Dehydrogenase activity and respiration; A quantitative comparison. Plant Physiol. 29, 495–500 (1954).PubMedCrossRefGoogle Scholar
  566. Price, J. M., E. C. Miller, J. A. Miller and C. M. Weber: Studies on the intracellular composition of livers from rats fed various aminoazodyes. Cancer Res. 9, 398–402 (1949).PubMedGoogle Scholar
  567. Price, W., and P. J. Allen: Studies on respiration and flow in the myxomycete, Physarum polycephalum. Amer. J. Bot. 29 (10), 15s-16s (1942).Google Scholar
  568. Pshenova, K. V.: Oxidases of the essential-oil plants. Biochimija 21, 279–287 (1956) [Russian].Google Scholar
  569. Rabideau, G. S., and W. G. Whaley: The growth and metabolism of excised roots in culture. II. The respiratory rates of excised tomato roots. Plant Physiol. 25, 334–339 (1950).PubMedCrossRefGoogle Scholar
  570. Richards, F. J.: Physiological studies in plant nutrition. VIII. The relation of respiration rate to the carbohydrate and nitrogen metabolism of the barley leaf as determined by phosphorus and potassium supply. Ann. of Bot., N. S. 2, 491–534 (1938).Google Scholar
  571. Roberts, D. W. A.: Physiological and biochemical studies in plant metabolism. VI. The effect of ontogeny on the physiological heterogeniety in the first leaf of wheat. Canad. J. Bot. 30, 558–570 (1952).CrossRefGoogle Scholar
  572. Rosenstock, G.: Kohlendioxyd-Entbindung nichtassimilierender Gewebe in Licht. Kritische Studien zum Problem der Lichtatmung. Planta (Berl.) 40, 70–92 (1951).CrossRefGoogle Scholar
  573. Roubaix, J. de, and O. Lazar: Respiratory metabolism of the sugar beet from seed to seed. Publ. techn. Inst, beige, Amelior. Betterave 1, 3–16 (1954). Ref. Chem. Abstr. 49, 1152iGoogle Scholar
  574. Ruhland, W., u. Ramshorn, K.: Aerobe Gärung in aktiven pflanzlichen Meristemen. Planta (Berl.) 28, 471–514 (1938).CrossRefGoogle Scholar
  575. Samis, H. R. M.: Dormancy in woody plants. Annual Rev. Plant Physiol. 5, 183–204 (1954).CrossRefGoogle Scholar
  576. Sato, K.: Some observations on the consumption of oxygen by rice roots in water cultures. Proc. Crop. Sci. Soc. Japan 21, 16–17 (1952) [Japanese].CrossRefGoogle Scholar
  577. Schade, A. L., L. Bergmann and A. Byer: Studies on the respiration of the white potato. I. Prehminary investiga-tions of the endogenous respiration of potato slices and catechol oxidase activity. ArcH., of Biochem. 18, 85–96 (1948).Google Scholar
  578. Schneider, W. C.: Intracellular distribution of enzymes. I. The distribution of succinic dehydrogenase, cytochrome oxidase, adenosinetriphosphatase, and phosphorus compounds in normal rat tissues. J. of Biol. Chem. 165, 585–593 (1946).Google Scholar
  579. Schwanitz, F.: Untersuchungen an polyploiden Pflanzen. VII. Zur Atmung von diploiden und autotetraploiden Pflanzen. Züchter 20, 76–81 (1950).Google Scholar
  580. Schwinck, L.: Nachweis von Adenosintriphosphorsäure (ATP) in Grünalgen und Helodea sowie Einbau von radioaktivem Phosphor (32P) bei der Photosynthese. Planta (Berl.) 47, 165–218 (1956).CrossRefGoogle Scholar
  581. Simon, E.W.: The action of nitrophenols on respiration and glucose assimilation in yeast. J. of Exper. Bot. 4, 377–392 (1953).CrossRefGoogle Scholar
  582. Sing, H. B. N.: The correlation between life duration and respiratory phenomena. Proc. Indian Acad. Sci. 2, 387–402 (1935).Google Scholar
  583. Smit, H. F. G., C. L. Hamner and R.F. Carlson: Changes in food reserves and respiratory capacity of bindweed tissues accompanying herbicidal action of 2, 4-dichlorophenoxyacetic acid. Plant Physiol. 22, 58–65 (1947).CrossRefGoogle Scholar
  584. Spear, I., and K. V. Thimann: The interrelation between CO2 and photoperiodism in Kalanchoe. II. The effect of prolonged darkness and high temperatures. Plant Physiol. 29, 414–417 (1954).PubMedCrossRefGoogle Scholar
  585. Steward, F. C., and C. Preston: Metabolic processes of potato discs under conditions conducive to salt accumulation. Plant Physiol. 15, 23–61 (1940).PubMedCrossRefGoogle Scholar
  586. Stiles, W., and K. W. Dent: Researches on plant respiration. VI. The respiration.in air and in nitrogen of thin slices of storage tissue. Ann. of Bot., N. S. 11, 1–34 (1947).Google Scholar
  587. Stiles, W., and W. Leach: Respiration in plants. London: Methuen & Co. 1952.Google Scholar
  588. Syrett, P. J.: Respiration changes and internal ATP concentration in Chlorella. ArcH., of Biochem. a. Biophysics 75, 471–24 (1958).CrossRefGoogle Scholar
  589. Thimann, K. V., and A.C. Leopold: Plant growth hormones. In: The Hormones, edit, by G. Pincus and K. V. Thimann vol. Ill, p. 1–56. New York: Academic Press 1955.Google Scholar
  590. Thimann, K. V., and G. M. Loos: Protein synthesis during water uptake by tuber tissue. Plant Physiol. 32, 274–279 (1957).PubMedCrossRefGoogle Scholar
  591. Thimann, K. V., C. S. Yocum and D.P. Hackett: Terminal oxidases and growth in plant tissues. III. Terminal oxidation in potato tuber tissue. ArcH., of Biochem. 53, 239–257 (1954).CrossRefGoogle Scholar
  592. Tombesi, L.: Cytochrome oxidase and pyruvic oxidase and intensity of respiration during some phases of the vegetative cycle of Triticum vulgare, Pisum sativum, and Vicia faba major. Ann. sper. agrar. (Rome) 9, 855–864 (1955) [Italian].Google Scholar
  593. Turkina, M.V.: The synthesis and transportation of sucrose in the sugar beet plant. Biochimija 19, 357–363 (1954) [Russian].Google Scholar
  594. Ullric, H. H., and W. Ruhland: Mikrorespirometrische Untersuchungen an höheren Pflanzen. I. Planta (Berl.) 5, 360–380 (1928).CrossRefGoogle Scholar
  595. Umbreit, W. W., R. H. Burris and J. F. Stauffer: Manometric techniques and tissue metabolism. Minneapolis, Minn.: Burgess Publ. Co. 1949.Google Scholar
  596. Uritani, I., T. Akazawa and M. Uritani: Increase of respiratory rate in sweet potato tuber infected with black-rot. Nature (Lond.) 174, 1060 (1954).CrossRefGoogle Scholar
  597. Vallee, B. L.: The biochemistry, physiology, and pathology of zinc. Physiologic. Rev. 1959 (in press).Google Scholar
  598. Vegis, A.: Formation of the resting condition in plants. Experientia (Basel) 12, 94–99 (1956).CrossRefGoogle Scholar
  599. Wagenaar, S.: A preliminary study of photoperiodic and formative processes in relation to metabolism, with special reference to the effect of night temperature. Meded. Landbouw-hoogeschool Wageningen 54 (2), 45–101 (1954).Google Scholar
  600. Went, F. W.: Experimental control of plant growth. Chron. bot. 17, 292 (1957).Google Scholar
  601. Wetzel, K.: Zur Physiologie der organischen Säuren in grünen Pflanzen. Planta (Berl.) 476–525 (1927).Google Scholar
  602. Whittam, R., and R. E. Davies: Energy requirements for ion transport in steady-state systems. Nature (Lond.) 173, 494 (1954).CrossRefGoogle Scholar
  603. Wildman, S. G., and J. Bonner: The proteins of green leaves. I. Isola-tion, enzymatic properties and auxin content of spinach cytoplasmic proteins. ArcH., of Biochem. 14, 381 (1947).Google Scholar
  604. Willenbrink, J.: Über die Hemmung des Stoff transports in den Siebröhren durch lokale Inaktivierung verschiedener Atmungsenzyme. Planta (Berl.) 48, 269–342 (1957).CrossRefGoogle Scholar
  605. Williams, R.F.: Redistribution of mineral elements during development. Annual Rev. Plant Physiol. 6, 25–42 (1955).CrossRefGoogle Scholar
  606. Wolfe, M.: The effect of molybdenum upon the nitrogen metabolism of Anabaena cylindrica. II. A more detailed study of the action of molybdenum in nitrate assimilation. Ann. of Bot. 18, 309–325 (1954).Google Scholar
  607. Aarts, J. F. T.: On the keepability of flowers. Meded. Landbouwhogesch. Wageningen 57, 1–62 (1957) [Holländisch mit engl. Zus.fass.].Google Scholar
  608. Ball, N. G.: A physiological investigation of the ephemeral flowers of Tumtvera ulmi-folia L. var. degans Urb. New Phytologist 32, 13–63 (1933).CrossRefGoogle Scholar
  609. Bendall, D. S., and R. Hill: Cytochrome components in the spadix of Arum maculatum. New Phytologist 55, 206–212 1956CrossRefGoogle Scholar
  610. Bonner jr., W. D., and C. S. Yocum: Spectroscopic and enzymatic observations on the spadix of Skunk Cabbage. Plant Physiol. 31, XLI (1956).Google Scholar
  611. Bonnier, G., et L. Man-gin: Recherches sur les variations de la respiration avec le developpement des plantes. Ann. Sci. nat., VII. ser., Bot. 2, 315–364 (1885).Google Scholar
  612. Boou, H.L.: The protoplasmatic membrane regarded as a complex system. Rec. Trav. bot. neerl. 37, 1–77 (1940).Google Scholar
  613. Bory de St. Vincent, J. B. G. M.: Sur la chaleur des vegetaux. J. de Phys., Chim., Hist, nat., Arts 44, 280–289 (1804); wörtlich abgedruckt aus Bory de St. Vincent, J.B.G.M.: Voyage dans les quatre principales iles de mers d’Afrique, Bd. 2, S. 66–80. Paris: F. Buis-son 1804.Google Scholar
  614. Cahours, A.: Recherches sur la respiration des fleurs. C. R. Acad. Sci. (Paris) 58, 1206–1209 (1864).Google Scholar
  615. Caspary, R.: Über Wärmeentwicklung in der Blüte von Victoria regia. Mber. kgl. Akad. Wiss. (Berlin), für Dez. 1855, 1856, 711–756.Google Scholar
  616. Champigny, M. L.: Variations de la composition minerale du perianth de Narcissus pseudonarcissus au cours de son developpement. Rev. gen. Bot. 60, 475–484 (1953).Google Scholar
  617. Combes, R.: Étude bio-chimique de la fleur. La nutrition minerale de la corolle. C. R. Acad. Sci. (Paris) 200, 578–580 (1935a).Google Scholar
  618. La nutrition azotee de la fleur. C. R. Acad. Sci. (Paris) 200, 1970–1972 (1935b).Google Scholar
  619. La nutrition glucidique de la corolle. C. R. Acad. Sci. (Paris) 203, 1282–1284 (1936).Google Scholar
  620. Curtel, G.: Recherches physiologiques sur les enveloppes florales. C. R. Acad. Sci. (Paris) 111, 539–541 (1890).Google Scholar
  621. Recherches physiologiques sur la fleur. Ann. Sci. nat., VIII. ser., Bot. 6, 221–308 (1898).Google Scholar
  622. Czapek, F.: Biochemie der Pflanzen, 2. Aufl., Bd. 3. Jena: Gustav Fischer 1921.Google Scholar
  623. Dunal, M. F.: Considerations sur les fonctions des organes floraux colores ou glanduleux. Montpellier 1829. Zit. nach Candolle, A. P. de: Physiologie végétale, Bd. 2, S. 554. Paris: Bechet Jeune 1832.CrossRefGoogle Scholar
  624. Eberhardt, F.: Der Atmungsverlauf alternder Blätter und reifender Früchte. Planta (Berl.) 45, 57–65 (1955).CrossRefGoogle Scholar
  625. Erickson, R. O.: Respiration of developing anthers. Nature (Lond.) 159, 275–276 (1947).CrossRefGoogle Scholar
  626. Eriksson, J.: Über Wärmebildung durch intramolekulare Atmung der Pflanzen. Unters, bot. Inst. Tübingen 1, 105–133 (1881).Google Scholar
  627. Fischer, H.: Gaswechselmessungen an Blütenblättern. Z. Bot. 46, 85–97 (1958).Google Scholar
  628. Garreau: Relations qui existent entre l’oxygene consomme par le spadice de l’Arum italicum, en état de paroxysme, et la chaleur qui se produit. Ann. Sci. nat., III. sér, , Bot. 16, 250–256 (1851).Google Scholar
  629. Genevois, L.: Sur la fermentation et sur la respiration chez les vegetaux chlorophylliens. Rev. gén. Bot. 40, 654–654, 735–744 (1928); 41, 49–63, 119–128, 154–184, 252–271 (1929).Google Scholar
  630. Gessner, F.: Stoffwanderungen in bestäubten Orchideenblüten. Biol. Zbl. 67, 457–477 (1948).Google Scholar
  631. Gioelli, F.: Contribute alio studio della tem-peratura delle infiorescenze delle Palme e Aracee. Nouvo Giorn. bot, ital, 37, 638–642 (1930).CrossRefGoogle Scholar
  632. Green, J. R.: Researches on the germination of the pollen grain and the nutrition of the pollen tube. Phil. Trans. B 185, 385–409 (1894).CrossRefGoogle Scholar
  633. Griesel, W. O., and J. B. Biale: Respiratory trend in perianth segments of Magnolia grandiflora. Plant Physiol. 32, XLIV (1957).Google Scholar
  634. Hackett, D. P.: Respiratory mechanism in the flowers of Skunk Cabbage (Symplo-carpus foetidus). Plant Physiol. 31, XL–XLI (1956).CrossRefGoogle Scholar
  635. Respiratory mechanism in the Aroid spadix. J. exp. Bot. 8, 157–171 (1957).Google Scholar
  636. Hackett, D. P., and E. W. Simon: Oxidative activity of particles prepared from the spadix of Arum maculatum. Nature (Lond.) 173, 162–163 (1954).CrossRefGoogle Scholar
  637. Hahn, M.: Chemische Vorgänge im zellfreien Gewebssaft von Arum maculatum. Ber. dtsch. ehem. Ges. 33, 3555–3560 (1900).CrossRefGoogle Scholar
  638. Hellmers, H., and L. Machlis: Exogenous substrate utilization and fermentation by the pollen of Pinus ponderosa. Plant Physiol. 31, 284–289 (1956).PubMedCrossRefGoogle Scholar
  639. Herk, A. W. H. van: Die chemischen Vorgänge im Sauro-matum-Kolben. Rec. Trav. bot. neerl. 34, 69–156 (1937a).Google Scholar
  640. Herk, A. W. H. van: Die chemischen Vorgänge im Sauromatum-Kolben. IL Mitteilung. Proc. kon. ned. Akad. Wet. 40, 607–614 (1937b).Google Scholar
  641. Herk, A. W. H. van: Die chemischen Vorgänge im Sauromatum-Kolben. III. Mitteilung. Proc. kon. ned. Akad. Wet. 40, 709–719 (1937c).Google Scholar
  642. Herk, A. W. H. van, u. N.P. Badenhuizen: Über die Atmung und Katalasewirkung im Sauromatum-Kolben. Proc. kon. ned. Akad. Wet. 37, 99–105 (1934).Google Scholar
  643. Hoppe, O.: Beobachtungen der Wärme in der Blütenscheide von Colocasia odora (Arum cordifolium). Nova Acta 41, I, 197–252 (1879).Google Scholar
  644. Hsiang, T. H. T.: Physiological and biochemical changes accompanying pollination in orchid flowers. I. General observations and water relations. Plant Physiol. 26, 441–455 (1951a).PubMedCrossRefGoogle Scholar
  645. Hsiang, T. H. T.: Physiological and biochemical changes accompanying pollination in orchid flowers. II. Respiration, catalase activity, and chemical constituents. Plant Physiol. 26, 708–721 (1951b).PubMedCrossRefGoogle Scholar
  646. James, W. O., and H. Beevers: The respiration of Arum spadix. A rapid respiration resistant to cyanide. New Phytologist 49, 353–374 (1950).CrossRefGoogle Scholar
  647. James, W. O., and D. C. Elliott: Cyanide resistant mitochondria from the spadix of an Arum. Nature (Lond.) 175, 89 (1955).CrossRefGoogle Scholar
  648. Jumelle, H.: Recherches physiologiques sur le developpement des plantes annuelles. Rev. gen. Bot. 1, 101–122, 195–203, 258–279, 318–329, 359–389, 430–437 (1889).Google Scholar
  649. Knoch, E.: Untersuchungen über die Morphologie, Biologie und Physiologie der Blüte von Victoria regia. Biblioth. Botanica, H. 47. Stuttgart: Erwin Nagele 1899.Google Scholar
  650. Knoll, F.: Insekten und Blumen. Experimentelle Arbeiten zur Vertiefung unserer Kenntnisse über die Wechselbeziehungen zwischen Pflanzen und Tieren. IV. Arum-Blütenstande und ihre Besucher. Abh. zool.-bot. Ges. (Wien) 12, 383–481 (1926).Google Scholar
  651. Kostytschew, S.: Pflanzenatmung. Berlin: Springer 1924.CrossRefGoogle Scholar
  652. Kraus, G.: Über die Blüthenwärme bei Arum italicum. Abh. naturforsch. Ges. (Halle) 16, 35–76 (1883).Google Scholar
  653. Kraus, G.: Über die Blüthenwärme bei Arum italicum. Zweite Abhandlung. Abh. naturforsch. Ges. (Halle) 16, 257–360 (1885).Google Scholar
  654. Kraus, G.: Physiologisches aus den Tropen. III. Über Blüthenwärme bei Cycadeen, Palmen und Araceen. Ann. Jard. bot. Buitenzorg 13, 217–275 (1896).Google Scholar
  655. Lamarck, J. B.: More française, Bd. 3. Paris 1778.Google Scholar
  656. Lausch, E.: Untersuchungen über Calcium-Rücktransport in höheren Pflanzen. Flora (Jena) 145, 542–588 (1958).Google Scholar
  657. Lehmann: Über Wärmeentwicklung an den Blumen von Victoria regia. Ber. 29. Vers, dtsch. Naturf. u. Ärzte (Wiesbaden) 1852, 273–274.Google Scholar
  658. Leick, E.: Untersuchungen über die Blütenwärme der Araceen. Diss. Greifswald 1910.Google Scholar
  659. Leick, E.: Beiträge zum Wärmephänomen der Araceen-blütenstände. I. Teil. Mitt. naturwiss. Verein Neuvoimmern u. Rügen 45, 1–32 (1913).Google Scholar
  660. Leick, E.: Die Erwärmungstypen der Araceen und ihre blütenbiologische Bedeutung. Ber. dtsch. bot. Ges. 33, 518–536 (1915).Google Scholar
  661. Leick, E.: Eigenwärmemessungen an Blüten der „Königin der Nacht“. Ber. dtsch. bot. Ges. 34, 14–22 (1916).Google Scholar
  662. Leick, E.: Beiträge zum Wärmephänomen der Araceen-blütenstände. II. Teil. Mitt. naturwiss. Verein Neuvorpommern u. Rügen 48, 1–36 (1921).Google Scholar
  663. Maige, A.: Sur la respiration de la fleur. C. R. Acad. Sci. (Paris) 142, 104–106 (1906).Google Scholar
  664. Leick, E.: Recherches sur la respiration de la fleur. Rev. gen. Bot. 19, 8–28 (1907).Google Scholar
  665. Maige, G.: Recherches sur la respiration de l’étamine et du pistil. Rev. gén. Bot. 21, 32–38 (1909).Google Scholar
  666. Maige, G.: Recherches sur la respiration des differentes pièces florales. Ann. Sci. nat., IX. ser., Bot. 14, 1–62 (1911f).Google Scholar
  667. Mangin, L.: Recherches sur le pollen. Bull. Soc. bot. France 33, 337–342, 512–517 (1886).Google Scholar
  668. Matthaei, H.: Vergleichende Untersuchungen des Eiweiß-Haushalts beim Streckungswachstum von Blütenblättern und anderen Organen. Planta (Berl.) 48, 468–522 (1957).CrossRefGoogle Scholar
  669. Miyake, K.: Physiological observations on Nelumbo nueifera. Bot. Mag. (Tokyo) 12, 85–101, 112–117 (1898).Google Scholar
  670. Mothes, K.: Die natürliche Regulation des pflanzlichen Eiweißstoffwechsels. Ber. dtsch. bot. Ges. 51, (31)–(46) (1933).Google Scholar
  671. Norman, R.W. van: Cyanide-resistant respiration in Skunk Cabbage. Plant Physiol. 30, XXIX (1955).Google Scholar
  672. O’Kelley, J. C.: External carbohydrates in growth and respiration of pollen tubes in vitro. Amer. J. Bot. 42, 322–327 (1955).CrossRefGoogle Scholar
  673. Okunuki, K.: Über den Gaswechsel der Pollen. Bot. Mag. (Tokyo) 46, 701–721 (1932a).Google Scholar
  674. Okunuki, K.: Über den Gaswechsel des Pollens von Lilium auratum Lindl. Bot. Mag. (Tokyo) 47, 45–62 (1932b).Google Scholar
  675. Okunuki, K.: Über den Gaswechsel des Pollens von Thea sinensis L. Bot. Mag. (Tokyo) 47, 300–312 (1933).Google Scholar
  676. Okunuki, K.: Über den Gaswechsel der Pollen. I. Acta phytochim. (Tokyo) 9, 267–285 (1937).Google Scholar
  677. Okunuki, K.: Über den Gaswechsel der Pollen. II Acta phytochim. (Tokyo) 11, 27–64 (1939a).Google Scholar
  678. Okunuki, K.: Über den Gaswechsel der Pollen. III. Weitere Untersuchungen über die Dehydrasen aus den Pollenkörnern. Acta phytochim. (Tokyo) 11, 65–80 (1939 b).Google Scholar
  679. Okunuki, K.: Über den Gaswechsel der Pollen. IV. Zur Kenntnis der Diaphorase aus den Pollenkörnern. Acta phytochim. (Tokyo) 11, 249–260 (1940).Google Scholar
  680. Passerini, N.: Sullo sviluppo di calore in aleune piante e sulla temperatura che assumuno gli organi vegetali durante la insolazione. Nuovo Giorn. bot. ital. 8, 64–74 (1901).Google Scholar
  681. Phdilis, E., and T. G. Mason: Further studies on transport in the cotton plant. VI. Inter-changes between the tissues of the corolla. Ann. Bot. 50, 679–697 (1936).Google Scholar
  682. Pringsheim, E. G.: Untersuchungen über den Respirationsquotienten verschiedener Pflanzenteile. Jb. wiss. Bot. 81, 579–608 (1935).Google Scholar
  683. Rosé, E.: Étude des échanges gazeux et de la variation des sucres et des glucosides au cours de la formation des pigments anthocyaniques dans les fleurs de Cobaea scandens. Rev. gén. Bot. 26, 257–270 (1914).Google Scholar
  684. Rosenstock, G.: Die Atmung von Orchideen-Infloreszenzen im Verlauf der Vegetationsperiode. Z. Bot. 44, 77–87 (1956).Google Scholar
  685. Ruhland, W., u. H. Ullrich: Aerobe Gärung in wachsenden Pflanzengeweben. Ber. sächs. Akad. Wiss. (Leipzig), Math.-phys. Kl. 88, 11–20 (1936).Google Scholar
  686. Sachs, J.: Handbuch der Experimentalphysiologie der Pflanzen. Leipzig: Engelmann 1865.Google Scholar
  687. Sande-Bakhuyzen, H. L. van de: Studies on wheat grown under constant conditions. Food Res. Inst., Stanford Univ., Calif. 1937.Google Scholar
  688. Sanders, C. B.: A preliminary investigation into the metabolism concurrent with the heat production in some Aroids. Rep. 76th Meeting Brit. Assoc. Adv. Sci. York 1906, 739–740, London 1907.Google Scholar
  689. Saussure, T. de: De Taction des fleurs sur Fair, et de la chaleur propre. Ann. Chim. et Phys. 21, 279–303 (1822).Google Scholar
  690. Schumacher, W.: Über Eiweißumsetzungen in Blütenblättern. Jb. wiss. Bot. 75, 581–608 (1931).Google Scholar
  691. Schumacher, W.: Weitere Beobachtungen über das Welken ephemerer Blüten. Planta (Berl.) 42, 42–55 (1953).CrossRefGoogle Scholar
  692. Senebier, J.: Physiologie végétale, Bd. 3. Genéve: J. J. Paschoud 1800.Google Scholar
  693. Smirnow, A. J.: Über die biochemischen Eigentümlichkeiten des Alterns der Laubblätter. Planta (Berl.) 6, 687–776 (1928).CrossRefGoogle Scholar
  694. Stern, H., and P. J. Kirk: The oxygen consumption of the microspores of Tritium in relation to the mitotic cycle. J. gen. Physiol. 31, 243–248 (1948).PubMedCrossRefGoogle Scholar
  695. Strasburger, E.: Die Coniferen und Gnetaceen. Eine morphologische Studie. Leipzig: Hermann Dabis 1872.Google Scholar
  696. Tischler, G.: Pollenbiologische Studien. Z. Bot. 9, 417–488 (1917).Google Scholar
  697. Vrouk, G., et Vriese, W. H. de: Nouvelles experiences sur Pelevation de la temperature du spadice d’une Colocasia odora (Caladium odorum), faites au Jardin Botanique d’Amsterdam. Ann. Sci. nat., II ser., Bot. 11, 65–85 (1839).Google Scholar
  698. Vrouk, G., et Vriese, W. H. de: Nouvelles experiences sur les changements que subit l’atmosphere pendant le développement de la temperature elevee dans un spadice de Colocasia odora, faites dans le jardin botanique d’Amsterdam. Ann. Sci. nat., II ser., Bot. 14, 359–362 (1840).Google Scholar
  699. Weevers, Th. : De werking der ademhalingsenzymen van Sauromatum venosum Schott. Versl. kon. ned. Akad. Wet. 20, 206–213 (1911).Google Scholar
  700. White, J.: The influence of pollination on the respiratory activity of the gynaecium. Ann. Bot. 21, 487–499 (1907).Google Scholar
  701. Yamaha, G.: Über die Zellatmung im Verlauf der Karyokinese bei den Pollenmutterzellen von Lilium longiflorum und Lilium speciosum. Proc. Imp. Acad. (Tokyo) 20, 107–109 (1944).Google Scholar
  702. Yocum, C. S., and D. P. Hackett: Participation of cytochromes in the respiration of the Aroid spadix. Plant Physiol. 32, 186–191 (1957).PubMedCrossRefGoogle Scholar
  703. Ziegler, H.: Untersuchungen über die Leitung und den Transport der Assimilate. Planta (Berl.) 47, 447–500 (1956).CrossRefGoogle Scholar
  704. Akamine, E., R. E. Young and J. B. Biale: Respiration and ethylene production in the purple passion fruit. Proc. Amer. Soc. Horticult. Sci. 69, 221–225 (1957).Google Scholar
  705. Allen, F. W., and L. L. Claypool: Modified atmospheres in relation to the storage life of Bartlett pears. Proc. Amer. Soc. Horticult. Sci. 52, 192–204 (1948).Google Scholar
  706. Allen, P. J.: Toxins and tissue respiration. Phytopathology 43, 221–229 (1953).Google Scholar
  707. Allentoff, N., W. R. Phillips and F. B. Johnston: A 14C study of carbon dioxide fixation in the apple. I.The distribution of incorporated 14C in the detached Mcintosh apple. J. Sci. Food a. Agricult. 5, 231–234 (1954a).CrossRefGoogle Scholar
  708. Allentoff, N., W. R. Phillips and F. B. Johnston: A 14C study of carbon dioxide fixation in the apple. II. Rates of carbon dioxide fixation in the detached Mcintosh apple. J. Sci. Food a. Agricult. 5, 234–238 (1954b).CrossRefGoogle Scholar
  709. Appleman, C. O., and C. M. Conrad: Pectic constituents of peaches and their relation to softening of the fruit. Maryland Agricult. Exper. Stat. Bull. 283 (1926).Google Scholar
  710. Avron, M., and J. B. Biale: Metabolic processes in cytoplasmic particles of the avocado fruit. III. The operation of the tricarboxylic acid cycle. Plant Physiol. 32, 100–105 (1957a).PubMedCrossRefGoogle Scholar
  711. Avron, M., and J. B. Biale: Metabolic processes in cytoplasmic particles of the avocado fruit. V. Effect of oxaloacetate on the oxidation of pyruvate and succinate. J. of Biol. Chem. 225, 699–708 (1957b).Google Scholar
  712. Bain, J. M., and R. N. Robertson: The physiology of growth in apple fruits. Austral. J. Sci. Res. B 4, 75–91 (1951).Google Scholar
  713. Bandurski, R. S., and C. M. Greiner: The enzymatic synthesis of oxaloacetate from phosphorylenolpyruvate and carbon dioxide. J. of Biol. Chem. 204, 781–786 (1953).Google Scholar
  714. Barnell, H. R.: Studies in tropical fruits. XI. Carbohydrate metabolism of the banana fruit during ripening under tropical conditions. Ann. of Bot. 5, 217–247 (1941).Google Scholar
  715. Barnell, H. R.: Studies in tropical fruits. XV. Hemicellulose metabolism of the banana fruit during storage and ripening. Ann. of Bot. 7, 297–323 (1943).Google Scholar
  716. Barnell, H. R., and E. Barnell: Studies in tropical fruits. XVI. The distribution of tannins within the bananas and the changes in their condition and amount during ripening. Ann. of Bot. 9, 77–99 (1945).Google Scholar
  717. Bartholomew, E. T., and W. B. Sinclair: The lemon fruit. Berkeley and Los Angeles: University of California Press 1951.Google Scholar
  718. Bernhart, D. N., and A. R. Wreath: Colorimetric determination of phosphorus by modified phospho-molybdate method. Analyt. Chemistry 27, 440–441 (1955).CrossRefGoogle Scholar
  719. Biale, J. B.: Effect of emanations from several species of fungi on respiration and color development of citrus fruits. Science (Lancaster, Pa.) 91, 458–459 (1940).Google Scholar
  720. Biale, J. B.: The climacteric rise in respiration rate of the Fuerte avocado fruit. Proc. Amer. Soc. Horticult. Sci. 39, 137–142 (1941).Google Scholar
  721. Biale, J. B.: Effect of oxygen concentration on respiration of the Fuerte avocado fruit. Amer. J. Bot. 33, 363–373 (1946a).CrossRefGoogle Scholar
  722. Biale, J. B.: Cyanide resistant respiration in avocado tissue. Amer. Assoc. Adv. Sci. Abst. of Annual Meeting 1946b.Google Scholar
  723. Biale, J. B.: Respiration of citrus fruits in relation to metabolism of fungi. II. Effects of emanations of Penicillium digitatum, Sacc. on lemons at different stages of ripeness. Proc. Amer. Soc. Horticult. Sci. 52, 187–191 (1948).Google Scholar
  724. Biale, J. B.: Postharvest physiology and biochemistry of fruits. Annual Rev. Plant Physiol. 1, 183–206 (1950).CrossRefGoogle Scholar
  725. Biale, J. B.: Physiological requirements of citrus fruits. Citrus Leaves 34, 6–7, 31–33 (1954).Google Scholar
  726. Biale, J. B., and A. D. Shepherd: Respiration of citrus fruits in relation to metabolism of fungi. I. Effects of emanations of Penicillium digitatum, Sacc. on lemons. Amer. J. Bot. 28, 263–270 (1941).CrossRefGoogle Scholar
  727. Biale, J. B., and R. E. Young: Critical oxygen concentrations for the respiration of lemons. Amer. J. Bot. 34, 301–309 (1947).CrossRefGoogle Scholar
  728. Biale, J. B., and R. E. Young: Oxidative phosphorylation in relation to ripening of the avocado fruit. Amer. Soc. Plant Physiol. Western Section, Absts. p. 3, June 16–18, 1953.Google Scholar
  729. Biale, J. B., and R. E. Young: Fruit respiration in relation to applied ethylene. Plant Physiol. 1959 (in press).Google Scholar
  730. Biale, J. B., R. E. Young and A. J. Olmstead: Fruit respiration and ethylene production. Plant Physiol. 29, 168–174 (1954).PubMedCrossRefGoogle Scholar
  731. Biale, J. B., R. E. Young, C. S. Popper and W. E. Appleman: Metabolic processes in cytoplasmic particles of the avocado fruit. I. Preparative procedure, cofactor requirements and oxidative phosphorylation. Physiol. Plantarum (Copenh.) 10, 48–63 (1957).CrossRefGoogle Scholar
  732. Blackman, F. F.: Analytic studies in plant respiration. III. Formulation of a catalytic system for the respiration of apples and its relation to oxygen. Proc. Roy. Soc. Lond., Ser. B 103, 491–523 (1928).CrossRefGoogle Scholar
  733. Blackman, F. F., and P. Parija: Analytic studies in plant respiration. I. The respiration of a population of senescent ripening apples. Proc. Roy. Soc. Lond., Ser. B 103, 422–445 (1928).Google Scholar
  734. Borgström, G.: The physiological rôle of ethylene and other volatile substances in maturing fruits. Sver Pomol. Foren. Arsskr. 46, 202–223 (1945).Google Scholar
  735. Brooks, C.: An apparatus for the extraction of internal atmospheres from fruits and vegetables. Proc. Amer. Soc Horticult. Sci. 35, 202–203 (1938).Google Scholar
  736. Buhleb, D. R., E. Hansen, B. E. Christensen and C. H. Wang: The conversion of C14O2 and CH3-C14O-COOH to citric and malic acids in the tomato fruits. Plant Physiol. 31, 192–195 (1956).CrossRefGoogle Scholar
  737. Buhler, D. R., E. Hansen and C. H. Wang: Incorporation of ethylene into fruits. Nature (Lond.) 179, 48–49 (1957).CrossRefGoogle Scholar
  738. Chace, E. M., and F. E. Denny: Use of ethylene in the coloring of citrus fruits. J. Industr. Engin. Chem. 16, 339–340 (1924).CrossRefGoogle Scholar
  739. Chandler, W. H.: Deciduous Orchards. Philadelphia: Lea & Febiger 1957.Google Scholar
  740. Chow, C. T.: Metabolic studies of rose petals and avocado fruit. Doctoral Diss., Univ. of Calif., Los Angeles 1955.Google Scholar
  741. Chow, C. T., and J. B. Biale: Metabolic processes in cytoplasmic particles of the avocado fruit. II. Participation of cytochrome c in the electron transport chain. Physiol. Plantarum (Copenh.) 10, 64–75 (1957).CrossRefGoogle Scholar
  742. Church, C. G., and E. M. Chace: Some changes in the composition of California avocados during growth. U. S. Dept. Agricult. Bull. 1073, 1–22 (1922).Google Scholar
  743. Claypool, L. L.: Internal gas in fruits as influenced by external treatments. I. Carbon dioxide. Proc Amer. Soc. Horticult. Sci. 36, 374–378 (1939).Google Scholar
  744. Claypool, L. L., and F. W. Allen: Carbon dioxide production of deciduous fruits held at different oxygen levels during transit periods. Proc. Amer. Soc. Horticult. Sci. 51, 103–113 (1948).Google Scholar
  745. Claypool, L. L., and F. W. Allen: The influence of temperature and oxygen level on the respiration and ripening of Wickson plums. Hilgardia (Berkeley, Calif.) 21, 129–160 (1951).Google Scholar
  746. Claypool, L. L., and R. M. Keefer: A colorimetric method for CO2 determination in respiration studies. Proc. Amer. Soc. Horticult. Sci. 40, 177–186 (1942).Google Scholar
  747. Claypool, L. L., E. C. Maxie and P. Esau: Effect of aeration rate on the respiratory activity of some deciduous fruits. Proc. Amer. Soc. Horticult. Sci. 66, 125–134 (1955).Google Scholar
  748. Claypool, L. L., and S. Ozbek: Some influence of temperature and carbon dioxide on the respiration and storage life of the Mission fig. Proc. Amer. Soc. Horticult. Sci. 60, 226–230 (1952).Google Scholar
  749. Clendenning, K. A.: The respiratory and ripening behaviour of the tomato fruit on the plant. Canad. J. Res., Sect. C 20, 197–203 (1942).CrossRefGoogle Scholar
  750. Conrad, C. M.: A furfural yielding substance as a splitting product of protopectin during the ripening of fruits. Plant Physiol. 5, 93–103 (1930).PubMedCrossRefGoogle Scholar
  751. Cousins, H. H.: Annual report of the Dept. of Agriculture, Jamaica 1910.Google Scholar
  752. Crocker, W.: Growth of Plants. New York: Reinhold Publishing Co. 1948.Google Scholar
  753. Denny, F. E.: Hastening the coloration of lemons. J. Agricult. Res. 27, 757–769 (1924a).Google Scholar
  754. Denny, F. E.: Effect of ethylene upon respiration of lemons. Bot. Gaz. 77, 322–329 (1924b).CrossRefGoogle Scholar
  755. Denny, F. E.: Gas content of plant tissue and respiration measurements. Contrib. Boyce Thompson Inst. 14, 257–276 (1946).Google Scholar
  756. Doesburg, J. J.: Relation between the solubilization of pectin and the fate of organic acids during maturation of apples. J. Sci. Food a. Agricult. 8, 206–216 (1957).CrossRefGoogle Scholar
  757. Eaks, I. L., and L. L. Morris: Respiration of cucumber fruits associated with physiological injury at chilling temperatures. Plant Physiol. 31, 308–314 (1956).PubMedCrossRefGoogle Scholar
  758. Eberhardt, F.: Der Atmungsverlauf alternder Blätter und reifender Früchte. Planta (Berl.) 45, 57–67 (1955).CrossRefGoogle Scholar
  759. Elmer, O. H.: Growth inhibition of potato sprouts by the volatile products of apples. Science (Lancaster, Pa.) 75, 193 (1932).Google Scholar
  760. Emmett, A. M.: Changes in the chemical composition of pears stored at different temperatures. Ann. of Bot. 43, 270–308 (1929).Google Scholar
  761. Fidler, J. C.: A comparison of the aerobic and anaerobic respiration of apples. J. of Exper. Bot. 2, 41–64 (1951).CrossRefGoogle Scholar
  762. Fidler, J. C.: The effect of ethylene on the rate of respiration of apples as a function of temperature. VIII. Internat. Congr. of Botany, Paris, Sect. 11 and 12, p. 392, 1954.Google Scholar
  763. Gane, R.: Production of ethylene by some ripening fruits. Nature (Lond.) 134, 1008 (1934).CrossRefGoogle Scholar
  764. Gane, R.: A study of the respiration of bananas. New Phytologist 34, 383–402 (1936).Google Scholar
  765. Gane, R.: The respiration of bananas in presence of ethylene. New Phytologist 36, 170–178 (1937).CrossRefGoogle Scholar
  766. Gerber, C.: Recherches sur la maturation des fruits charnus. Ann. Sci. natur. (Paris), Sér, VIII (Bot.) 4, 1–280 (1896).Google Scholar
  767. Gerhardt, F.: Simultaneous measurement of carbon dioxide and organic volatiles in the internal atmosphere of fruits and vegetables. J. Agricult. Res. 64, 207–219 (1942).Google Scholar
  768. Gerhardt, F., and D. F. Allmendinger: The influence of naphthalene-acetic acid spray on the maturity and storage physiology of apples, pears, and sweet cherries. J. Agricult. Res. 73, 189–206 (1946).Google Scholar
  769. Gerhardt, F., H. English and E. Smith: Respiration, internal atmosphere, and moisture studies of sweet cherries during storage. Proc. Amer. Soc. Horticult. Sci. 41, 119–123 (1942).Google Scholar
  770. Gerhardt, F., G. F. Sainsbury and H. W. Siegelman: Air purification for fruit. Ice a. Refrig. 124, 15–19, 54 (1953).Google Scholar
  771. Gerhardt, F., and H. W. Siegelman: Storage of pears and apples in the presence of ripened fruit. J. Agricult. a. Food Chem. 3, 428–433 (1955).CrossRefGoogle Scholar
  772. Gore, H. C.: Studies on fruit respiration. U. S. Dept. Agricult., Bur. Chem. Bull. 142, 5–40 (1911).Google Scholar
  773. Griffith, D. G., and N. A. Potter: Effect of ethylene upon respiratory activity of apples in gas storage, with special reference to stage of maturity. J. Horticult. Sci. 26, 1–7 (1950).Google Scholar
  774. Griffiths, D. C., and N. A. Potter and A. C. Hulme: Data for the study of the metabolism of apples during growth and storage. J. Horticult. Sci. 25, 266–288 (1955).Google Scholar
  775. Gustafson, F. C.: Intramolecular respiration of tomato fruits. Amer. J. Bot. 17, 1011–1027 (1930).CrossRefGoogle Scholar
  776. Hackney, F. M. V.: Studies in the metabolism of apples. VI. Preliminary investigations on the respiration of sliced apple tissue. Proc. Linnean Soc. N. S. Wales 70, 333–345 (1945).Google Scholar
  777. Haller, M. H.: Changes in the pectic constituents of apples in relation to softening. J. Agricult. Res. 39, 739–746 (1929).Google Scholar
  778. Haller, M. H., P. L. Harding, J. M. Lutz and D. H. Rose: The respiration of some fruits in relation to temperature. Proc. Amer. Soc. Horticult. Sci. 28, 583–589 (1931).Google Scholar
  779. Haller, M. H., and J. M. Ltjtz: Soft scald of Jonathan apples in relation to respiration. Proc. Amer. Soc. Horticult. Sci. 34, 173–176 (1937).Google Scholar
  780. Haller, M. H., and D. H. Rose: Apparatus for determination of CO2 and O2 of respiration. Science (Lancaster, Pa.) 75, 439–440 (1932).Google Scholar
  781. Haller, M. H., D. H. Rose and P. L. Harding: Studies on the respiration of strawberry and raspberry fruits. U. S. Dept. Agricult. Circ. 613, 1–13 (1941).Google Scholar
  782. Haller, M. H., D. H. Rose, J. M. Lutz and P. L. Harding: Respiration of citrus fruits after harvest. J. Agricult. Res. 71, 327–359 (1945).Google Scholar
  783. Hansen, E.: Quantitative study of ethylene production in relation to respiration of pears. Bot. Gaz. 103, 543–558 (1942).CrossRefGoogle Scholar
  784. Hansen, E.: Effect of 2,4-dichlorophenoxyacetic on the ripening of Bartlett pears. Plant Physiol. 21, 588–592 (1946).PubMedCrossRefGoogle Scholar
  785. Hansen, E., and B. E. Christensen: Chemical determination of ethylene in the emanations from apples and pears. Bot. Gaz. 101, 403–409 (1939).CrossRefGoogle Scholar
  786. Hansen, E., and H. Hartman: The occurrence in pears of metabolic gases other than carbon dioxide. Oregon Agricult. Exper. Stat. Bull. 342, 1–10 (1935).Google Scholar
  787. Hansen, E., and H. Hartman: Effect of ethylene and certain metabolic gases upon respiration and ripening of pears before and after cold storage. Plant Physiol. 12, 441–454 (1937).PubMedCrossRefGoogle Scholar
  788. Harding, P. L.: Physiological behavior of Grimes Golden apples in storage. Iowa Exper. Stat. Res. Bull. 182 (1935).Google Scholar
  789. Harley, C. P., and D. F. Fisher: Study of the internal atmosphere of apples in relation to soft scald. Proc. Amer. Soc. Horticult. Sci. 27, 271–275 (1931).Google Scholar
  790. Hartmann, C.: Quelques aspects du metabolisme des cerises et abricots au cours de la maturation et de la senescence. Fruits 12, 45–49 (1957).Google Scholar
  791. Harvey, E. M., and G. L. Rygg: Physiological changes in the rind of California oranges during growth and storage. J. Agricult. Res. 52, No 10 (1936).Google Scholar
  792. Harvey, R. B.: Artificial ripening of fruits and vegetables. Minnesota Agricult. Exper. Stat. Bull. 247, 1–36 (1928).Google Scholar
  793. Heinze, P. H., and C. C. Craft: Effectiveness of ethylene for ripening tomatoes. Proc. Amer. Soc. Horticult. Sci. 62, 397–404 (1953).Google Scholar
  794. Houghtaling, H. B.: A developmental analysis of size and shape in tomato fruits. Bull. Torrey Bot. Club 62, 243–252 (1935).CrossRefGoogle Scholar
  795. Howard, F. D., and M. Yamaguchi: Respiration and the oxidative activity of particulate fractions from developing pepper fruits (Capsicum annuum I.). Plant Physiol. 32, 418–423 (1957 a).PubMedCrossRefGoogle Scholar
  796. Howard, F. D., and M. Yamaguchi: Hydrogen transport and oxidative phosphorylation by particulates from developing pepper fruits. Plant Physiol. 32, 424–428 (1957b).PubMedCrossRefGoogle Scholar
  797. Huelin, F. E.: Effects of ethylene and of apple vapors on the sprouting of potatoes. Great Britain Dept. Sci. Ind. Res., Food Invest. Bd. Rept. 1932, 51–53 (1933).Google Scholar
  798. Huet, R.: Note sur la signification biochimique de la dureté dans le cas de la pulpe de la banane. Fruits 11, 395–399 (1956).Google Scholar
  799. Hulme, A. C.: Studies in the nitrogen metabolism of the apple fruit. Changes in the nitrogen metabolism of the apple during the normal and ethylene induced climacteric rise in rate of respiration. Biochemie. J. 43, 343–349 (1948).Google Scholar
  800. Hulme, A. C.: The relation between the rate of respiration of an apple fruit and its content of protein. I. The value of this relation immediately after picking. J. Horticult. Sci. 26, 118–129 (1951).Google Scholar
  801. Hulme, A. C.: Apparatus for the measurement of gaseous conditions inside an apple fruit. J. of Exper. Bot. 2, 65–85 (1951a).CrossRefGoogle Scholar
  802. Hulme, A. C.: The isolation of l-quinic acid from the apple fruit. J. of Exper. Bot. 2, 298–315 (1951b).CrossRefGoogle Scholar
  803. Hulme, A. C.: The isolation of chlorogenic acid from the apple fruit. Biochemie. J. 53, 337–340 (1953).Google Scholar
  804. Hulme, A. C.: Studies in the nitrogen metabolism of apple fruits. The climacteric rise in respiration in relation to changes in the equilibrium between protein synthesis and breakdown. J. of Exper. Bot. 5, 159–172 (1954).CrossRefGoogle Scholar
  805. Hulme, A. C.: Shikimic acids in apple fruits. Nature (Lond.) 178, 991–992 (1956).CrossRefGoogle Scholar
  806. Hulme, A. C.: Some aspects of the biochemistry of apple and pear fruits. Adv. Food Res. 8, 297–431 (1958).CrossRefGoogle Scholar
  807. Hulme, A. C., F. Kidd and C. West: The effect of carbon dioxide on the rise in the protein nitrogen of the apple fruit during the climacteric Great Britain Dept. Sci. Ind. Res., Food Invest. Bd. Rept. 1938, 51 (1939).Google Scholar
  808. Hulme, A. C., and G. E. Neal: A new factor in the respiration climacteric of apple fruits. Nature (Lond.) 179, 1192–1193 (1957).CrossRefGoogle Scholar
  809. Hunter, F. E.: Oxidative phosphorylation during electron transport. Phosphorus Metabolism, Vol. 1, p. 297–330, edit. by McElroy and Glass. 1951.Google Scholar
  810. Isaas, W. E.: The evolution of a growth inhibiting emanation from ripening peaches and plums. Trans. Roy. Soc. S. Africa 26, 307–317 (1938).CrossRefGoogle Scholar
  811. Jermyn, M. A., and F. A. Isherwood: Changes in the cell wall of the pear during ripening. Biochemie J. 64, 123–132 (1956).Google Scholar
  812. Jones, W. W., and H. Kubota: Some chemical and respirational changes in the papaya fruit during ripening, and the effects of cold storage on these changes. Plant Physiol. 15, 711–717 (1940).PubMedCrossRefGoogle Scholar
  813. Joslyn, M. A., and A. Sedky: The relative rates of destruction of pectin in macerates of various citrus fruits. Plant Physiol. 15, 675–687 (1940).PubMedCrossRefGoogle Scholar
  814. Kaltenbach, D.: Coloration et maturation artificielles des fruits et legumes par l’ethylene. Rev. Intern. Agr. 119, 81 (1938).Google Scholar
  815. Kar, B. K., and H. K. Banerjee: Studies in the physiology of some Indian fruits. III. Effect of ethylene on Mangifera indica and the evolution of total volatile products. Trans. Bose Res. Inst. 15, 179–189 (1943).Google Scholar
  816. Kertesz, A. I.: The Pectic Substances. New York: Interscience Publ. 1951.Google Scholar
  817. Kidd, F.: The respiration of fruits. Royal Institute of Great Britain. Weekly evening meeting 1934.Google Scholar
  818. Kidd, F., and C. West: The course of respiratory activity throughout the life of an apple. Great Britain Dept. Sci. Ind. Res., Food Invest. Bd. Rept. 1924, 27–33 (1925).Google Scholar
  819. Kidd, F., and C. West: Physiology of fruit. I. Changes in the respiratory activity of apples during their senescence at different temperatures. Proc. Roy. Soc. Lond., Ser. B 106, 93–109 (1930).CrossRefGoogle Scholar
  820. Kidd, F., and C. West: Effects of ethylene and of apple vapors on the ripening of fruits. Great Britain Dept. Sci. Ind. Res., Food Invest. Bd. Rept. 1932, 55–56 (1933).Google Scholar
  821. Kidd, F., and C. West: The influence of the composition of the atmosphere upon the incidence of the climacteric in apples. Great Britain Dept. Sci. Ind. Res., Food Invest. Bd. Rept. 1933, 51–57 (1934).Google Scholar
  822. Kidd, F., and C. West: The cause and control of low temperature breakdown in apples. Great Britain Dept. Sci. Ind. Res., Food Invest. Bd. Rept. 1934, 117–119 (1935).Google Scholar
  823. Kidd, F., and C. West: The cold storage and gas storage of English grown William’s Bon Chretien pears. Great Britain Dept. Sci. Ind. Res., Food Invest. Bd. Rept. 1936, 113–126 (1937).Google Scholar
  824. Kidd, F., and C. West: The effect of ethylene on the respiration activity and the climacteric of apples. Great Britain Dept, Sci. Ind. Res., Food Invest. Bd. Rept. 1937, 108–114 (1938).Google Scholar
  825. Kidd, F., and C. West: The uptake of oxygen by apples. Great Britain Dept. Sci. Ind. Res. Food Invest. Bd. Rept. 1937, 102–108 (1938a).Google Scholar
  826. Kidd, F., and C. West: Respiratory activity and duration of life of apples gathered at different stages of development and subsequently maintained at a constant temperature. Plant Physiol. 20, 467–504 (1945).PubMedCrossRefGoogle Scholar
  827. Kidd, F., and C. West: Note of assimilation of carbon dioxide by apple fruits after gathering. New Phytologist 46, 274 (1947).CrossRefGoogle Scholar
  828. Krotkov, G., and V. Helson: Carbohydrate metabolism of Mcintosh apples during their development on tree in cold storage. Canad. J. Res., Sect. C 24, 126–144 (1946).CrossRefGoogle Scholar
  829. Laties, G. G.: The physical environment and oxidative and phosphorylative capacities of higher plant mitochondria. Plant Physiol. 28, 557–575 (1953).PubMedCrossRefGoogle Scholar
  830. Laties, G. G.: Respiration and cellular work and the regulation of the respiration rate in plants. Survey of Biol. Progress 3, 215–299 (1957).Google Scholar
  831. Leblond, C.: Mesure de l’Intensité respiratoire des Organes végétaux à l’Aide de l’Analyseur de Gaz par Absorption de Rayonnement infra-rouge. J. Rech. Cent nat. Rech. sci., Paris 36, 293–300 (1956).Google Scholar
  832. Leonard, E. R.: Studies in tropical fruits. XVII. The respiration of bananas in different concentrations of oxygen at 53° F and during subsequent ripening in air at 68° F. Ann. of Bot. 11, 299–331 (1947).Google Scholar
  833. Leonard, E. R., and C. W. Ward-law: Studies in tropical fruits. XII. The respiration of bananas during storage at 53° F and ripening at controlled temperatures. Ann. of Bot. 5, 379–423 (1941).Google Scholar
  834. Lieberman, M.: Isolation of cytoplasmic particles with cytochrome oxidase activity from apples. Science (Lancaster, Pa.) 127, 189–190 (1958).Google Scholar
  835. Lieberman, M., and J. B. Biale: Oxidative phosphorylation by sweet potato mitochondria and its inhibition by polyphenols. Plant Physiol. 31, 420–424 (1956).PubMedCrossRefGoogle Scholar
  836. Loesecke, H. W. v.: Bananas. New York and London: Interscience Publishers 1949.Google Scholar
  837. Loewus, F. A., R. Jang and C. G. Seegmiller: The conversion of C14 labeled sugars to l-ascorbic acid in ripening strawberries. J. of Biol. Chem. 222, 649–664 (1956).Google Scholar
  838. Magness, J. R.: Composition of gases in intercellular spaces of apples and potatoes. Bot. Gaz. 70, 308–316 (1920).CrossRefGoogle Scholar
  839. Magness, J. R., and W. S. Ballard: The respiration of Bartlett pears. J. Agricult. Res. 32, 801–832 (1926).Google Scholar
  840. Magness, J. R., and H. C. Diehl: Physiological studies on apples in storage. J. Agricult. Res. 27, 1–38 (1924).Google Scholar
  841. Marcellin, P.: Le role respectif de la cuticule et des discontinuités de la surface des pommes dans les exchanges de gaz carbonique avec l’atmosphere ambiante. Rev, Gen. Bot. 63, 193–202 (1956).Google Scholar
  842. Marks, J. D., R. Bernlohr and J. E. Varner: Esterification of phosphate in ripening fruit. Plant Physiol. 32, 259–262 (1957).PubMedCrossRefGoogle Scholar
  843. Marshall, R. E.: Cherries and Cherry Products. New York and London: Interscience Publishers 1954.Google Scholar
  844. Mattus, G. E.: Rate of respiration and volatile production of Bartlett pears following removal from air and controlled atmosphere storage. Proc. Amer. Soc. Horticult. Sci. 55, 199–211 (1950).Google Scholar
  845. McColloch, R. J., and Z. I. Kertesz: Recent developments of practical significance in the field of pectic enzymes. Food Technol. 3, 94–96 (1949).Google Scholar
  846. McCready, R. M., and E. A. McComb: Pectic constituents in ripe and unripe fruit. Food Res. 19, 530–535 (1954).CrossRefGoogle Scholar
  847. McKee, H. S., L. Nestel and R. N. Robertson: Physiology of pea fruits. II. Soluble nitrogenous constituents in the developing fruit. Austral. J. Biol. Sci. 8, 467–175 (1955).Google Scholar
  848. McKee, H. S., R. N. Robertson and J. B. Lee: Physiology of pea fruits. I. The developing fruit. Austral. J. Biol. Sci. 8, 137–163 (1955).Google Scholar
  849. McKee, H.S., and G.E. Urbach: The physiology of growth in apple fruits. Austral. J.Biol. Sci. 6, 369–378 (1953).Google Scholar
  850. Meyerhoff, O.: Über den Einfluß des Sauerstoffs auf die alkoholische Gärung der Hefe. Biochem. Z. 162, 43–86 (1925).Google Scholar
  851. Miller, E. V.: Physiology of citrus fruits in storage. Bot. Review 12, 393–423 (1946).CrossRefGoogle Scholar
  852. Miller, E. V.: The story of ethylene. Sci. Monthly 65, 335–342 (1947).Google Scholar
  853. Miller, E. V.: The physiology of citrus fruits in storage. Bot. Review 24, 43–59 (1958).CrossRefGoogle Scholar
  854. Miller, E. V., J. R. Winston and D. F. Fisher: Production’of epinasty by emanations from normal and decaying citrus fruits and from Penicillium digitatum. J. Agricult. Res. 60, 269–277 (1940).Google Scholar
  855. Miller, E. V., J. R. Winston and H. A. Schomer: Physiological studies of plastid pigments in rinds of maturing oranges. J. Agri-cult. Res. 60, 259–267 (1940).Google Scholar
  856. Millerd, A., J. Bonner, B. Axelrod and R. Bandurski: Oxidative and phosphorylative activity of plant mitochondria. Proc. Nat. Acad. Sci. U. S. A. 37, 855–862 (1951).CrossRefGoogle Scholar
  857. Millerd, A., J. Bonner and J. B. Biale: The climacteric rise in fruit respiration as controlled by phosphorylative coupling. Plant Physiol. 28, 521–531 (1953).PubMedCrossRefGoogle Scholar
  858. Mitchell, J. E., and P. C. Marth: Effects of 2. 4-dichlorophenoxyacetic acid on the ripening of detached fruit. Bot. Gaz. 106, 199–207 (1944).CrossRefGoogle Scholar
  859. Müller-Thurgau, H., u. O. Schneider-Orelli: Reifevorgänge bei Kernobstfrüchten. Landw. Jb. Schweiz. 22, 760–774 (1908).Google Scholar
  860. Neal, G. E., and A. C. Hulme: The organic acid metabolism of Bramley’s Seedling apple peel. J. of Exper. Bot. 9, 142–157 (1958).CrossRefGoogle Scholar
  861. Nelson, R.: Storage and transportational diseases of vegetables due to suboxidation. Michigan Agricult. Exper. Stat. Techn. Bull. 81 (1926).Google Scholar
  862. Nelson, R. C.: The quantity of ethylene present in apples. Plant Physiol. 12, 1004–1005 (1937).PubMedCrossRefGoogle Scholar
  863. Nelson, R. C.: Quantitative study of the production of ethylene by ripening Mcintosh apples. Plant Physiol. 15, 149–151 (1940).PubMedCrossRefGoogle Scholar
  864. Niederl, J. B., M. W. Brenner and J. N. Kelley: The identification and estimation of ethylene in the volatile products of ripening bananas. Amer. J. Bot. 25, 357–361 (1938).CrossRefGoogle Scholar
  865. Niemer, H., u. W. Zimmermann: Über Fruchtinjektionen. I. Mitt. Z. Biol. 103, 266–269 (1950).Google Scholar
  866. Niemer, H., u. W. Zimmermann: Über Fruchtinjektionen. II. Mitt. Z. Biol. 104, 139–143 (1951).Google Scholar
  867. Nitsch, J.P.: The physiology of fruit growth. Annual Rev. Plant Physiol. 4, 199–236 (1953).CrossRefGoogle Scholar
  868. Paech, K.: Pflanzenphysiologische Grundlagenforschung. Landw. Jb. 85, 653 (1938).Google Scholar
  869. Paech, K.: Pflanzenphysiologische Grundlagen der Kaltlagerung von Obst und Gemüse. Forschungsdienst 8, 233–256 (1939).Google Scholar
  870. Paech, K.: Biologische Grundlagen der Frischhaltung pflanzlicher Lebensmittel. In: Handbuch der Kältetechnik (edit, by R. Plank), Bd. 9, S. 223–310. Berlin-Göttingen-Heidelberg: Springer 1952.Google Scholar
  871. Paech, K., u. F. Eberhardt: Altern und Zelltod. In: Handbuch der Pflanzenphysiologie, Bd. II, S. 908–936. 1956.Google Scholar
  872. Parija, P.: Analytic studies in plant respiration. II. The respiration of apples in nitrogen and its relation to respiration in air. Proc. Roy. Soc. Lond., Ser. B 103, 446–490 (1928).CrossRefGoogle Scholar
  873. Pasteur, L.: Études sur la biere, ses maladies, causes qui les provoguent, procede pour la rendre inalterable; avec une theorie nouvelle de la fermentation. Paris: Gauthier-Villars 1876.Google Scholar
  874. Pauling, L., R.E. Wood and J. H. Sturdivant: An instrument for determining the partial pressure of oxygen in a gas. J. Amer. Chem. Soc. 68, 795–798 (1946).CrossRefGoogle Scholar
  875. Pearson, J. A., and R. N. Robertson: The physiology of growth in apple fruits. VI. The control of respiration rate and synthesis. Austral. J. Biol. Sci. 7, 1–17 (1954).Google Scholar
  876. Pentzer, W. T., C. E. Asbury and K. C. Hamner: The effect of sulphur dioxide fumigation on the respiration of grapes. Proc. Amer. Soc. Horticult. Sci. 30, 258–260 (1934).Google Scholar
  877. Pentzer, W. T., and P. H. Heinze: Postharvest physiology of fruits and vegetables. Annual Rev. Plant Physiol. 5, 205–224 (1954).CrossRefGoogle Scholar
  878. Platenius, H.: Effect of temperature on the respiration rate and the respiratory quotient of some vegetables. Plant Physiol. 17, 179–197 (1942).PubMedCrossRefGoogle Scholar
  879. Porritt, S.W.: The rôle of ethylene in fruit storage. Sci. Agricult. 31, 99–112 (1951).Google Scholar
  880. Postlmayr, H. L., B. S. Luh, and S. J. Leonard: Characterization of pectin changes in freestone and clingstone peaches during ripening and processing. Food. Technol. 10, 618–625 (1956).Google Scholar
  881. Pratt, H. K.: Studies on the physiology of Penicillium digitatum Saccardo. Doctoral diss., Univ. of Calif., Los Angeles 1944.Google Scholar
  882. Pratt, H. K.: Ripening studies with Honey Dew melons. Proc. Conf. on Transport, of Perishables, at Davis, Calif., p. 104–110, 1953.Google Scholar
  883. Pratt, H. K., and J. B. Biale: Relation of an active emanation to respiration in the avocado fruit. Plant Physiol. 19, 519–528 (1944).PubMedCrossRefGoogle Scholar
  884. Pratt, H.K., R.E. Young and J. B. Biale: The identification of ethylene as a volatile product of ripening avocados. Plant Physiol. 23, 526–531 (1948).PubMedCrossRefGoogle Scholar
  885. Rakitin, Y. V.: Effect of ethylene on the activity of carboxylase in ripening fruits. Biokhimya 11, 1 (1946).Google Scholar
  886. Robertson, R. N., and J. F. Turner: The physiology of growth of apple fruits. II. Respiratory and other metabolic activities as function of cell number and cell size in fruit development. Austral, J. Sci. Res. B 4, 92–107 (1951).Google Scholar
  887. Romani, R. J.: Intracellular metabolism of the avocado fruit. Doctoral diss., Univ. of Calif., Los Angeles 1955.Google Scholar
  888. Romani, R. J., and J. B. Biale: Metabolic processes in cytoplasmic particles of the avocado fruit: IV. Ripening and the supernatant factor. Plant Physiol. 32, 662–668 (1957).PubMedCrossRefGoogle Scholar
  889. Rosa, J. T.: Ripening of tomatoes with ethylene. Proc. Amer. Soc. Horticult. Sci. 22, 315–322 (1925).Google Scholar
  890. Roux, E. R.: Respiration and maturity in peaches and plums. Ann. of Bot. 4, 317–327 (1940).CrossRefGoogle Scholar
  891. Saltman, P., G. Kumitake, H. Spolter and C. Stitts: The dark fixation of CO2 by succulent leaves: The first products. Plant Physiol. 31, 464–468 (1956).PubMedCrossRefGoogle Scholar
  892. Schroeder, C. A.: Growth and development of the Fuerte avocado fruit. Proc. Amer. Soc. Horticult. Sci. 61, 103–109 (1953).Google Scholar
  893. Seegmiller, C. G., B. Axelrod and R. M. McCready: Conversion of glucose 1-C14 to pectin in the boysenberry. J. of Biol. Chem. 217, 765–775 (1955).Google Scholar
  894. Siegelman, H. W.: Detection and identification of polyphenoloxidase substrates in apple and pear skins. Arch. of Biochem. a. Biophysics 56, 97–102 (1955).CrossRefGoogle Scholar
  895. Siegelman, E.W., and H. A. Schomer: Effect of scald on apple skin respiration. Plant Physiol. 29, 429–431 (1954).PubMedCrossRefGoogle Scholar
  896. Sievers, A. F., and R. H. True: A preliminary study of the forced curing of lemons as practiced in California. U. S. Dept. Agricult. Bur. Plant Ind. Bull. 232 (1912).Google Scholar
  897. Sinclair, W. B., and P. R. Crandall: Carbohydrate fractions of lemon peel. Plant Physiol. 24, 681–705 (1949).PubMedCrossRefGoogle Scholar
  898. Smith, H. W.: The histological structure of the flesh of the apple in relation to growth and senescence. J. Pomol. Horticult. Sci. 18, 249–260 (1940).Google Scholar
  899. Smith, H. W.: A new method for the determination of the composition of the internal atmosphere of fleshy plant organs. Ann. of Bot. 11, 363–368 (1947).Google Scholar
  900. Smith, H. W.: Cell multiplication and cell enlargement in the development of the flesh of the apple fruit. Ann. of Bot. 14, 23–38 (1950).Google Scholar
  901. Smock, R. M.: Influence of controlled atmosphere storage on respiration of Mcintosh apples. Bot. Gaz, 104, 178–184 (1942).CrossRefGoogle Scholar
  902. Smock, R. M.: Physiology of deciduous fruits in storage. Bot. Review 10, 560–598 (1944).CrossRefGoogle Scholar
  903. Smock, R. M., L. J. Edgerton and M. B. Hoffman: Some effects of maleic hydrazide on the softening and respiration of apple fruits. Proc. Amer. Soc. Horticult. Sci. 58, 69–72 (1951).Google Scholar
  904. Smock, R. M., and C. R. Gross: The effect of some hormone materials on the respiration and softening rates of apples. Proc. Amer. Soc. Horticult. Sci. 49, 67–77 (1947).Google Scholar
  905. Smock, R. M., and C. R. Gross: Studies in respiration of apples. Cornell Univ. Agricult. Exper. Stat., Ithaca, N. Y. Memoir 297, 1–47 (1950).Google Scholar
  906. Smock, R.M. and A.M. Neubert: Apples and Apple Products. New York and London: Interscience Publishers 1950.Google Scholar
  907. Southwick, F. W.: Effect of some growth regulating substances on the rate of softening respiration, and soluble solids content of peaches and apples. Proc. Amer. Soc. Horticult. Sci. 47, 84–90 (1946).Google Scholar
  908. Southwick, F. W.: Further studies on the influence of methyl naphthaleneacetate on ripening of apples and peaches. Proc. Amer. Soc. Horticult. Sci. 53, 169–173 (1949).Google Scholar
  909. Southwick, F. W., and H. W. Lachman: The effect of maleic hydrazide and water on the rate of respiration of harvested tomato fruits. Proc. Amer. Soc. Horticult. Sci. 61, 388–394 (1953).Google Scholar
  910. Stewart, W. S.: Effects of 2, 4-dichlorophenoxyacetic acid and 2, 4, 5-trichlorophenoxyacetic acid on citrus fruit storage. Proc. Amer. Soc. Horticult. Sci. 54, 109–117 (1949).Google Scholar
  911. Stiles, W., and W. Leach: On the use of the katharometer for the measurement of respiration. Ann. of Bot. 45, 461–488 (1931).Google Scholar
  912. Stolwijk, J. A., and S. P. Burg: A highly sensitive method for the determination of ethylene. Plant Physiol. 31 (Suppl.), 20 (1956).Google Scholar
  913. Tager, J. M.: The rôle of the pentose cycle in the ripening banana. S. Afric. J. Sci. 53, 167–170 (1956).Google Scholar
  914. Tager, J. M., and J. B. Biale: Carboxylase and aldolase activity in the ripening banana. Physiol. Plantarum (Copenh.) 10, 79–85 (1957).CrossRefGoogle Scholar
  915. Thomas, M., and J. C. Fidler: Studies in zymasis. VI. Zymasis by apples in relation to oxygen concentration. Biochemie J. 27, 1629–1642 (1933).Google Scholar
  916. Thompson, A. R., and F. E. Huelin: Volatile products of apples. II. Production of volatile esters by Granny Smith apples. Austral. J. Sci. Res. B 4, 544–553 (1951).Google Scholar
  917. Thompson, J. F., and G. P. Morrison: Determination of organic nitrogen. Control of variables in the case of Nessler’s reagent. Analyt. Chemistry 23, 1153–1157 (1951).CrossRefGoogle Scholar
  918. Thornton, N.C.: Carbon dioxide storage. III. The influence of carbon dioxide on the oxygen uptake by fruits and vegetables. Contrib. Boyce Thompson Inst. 5, 371–402 (1933).Google Scholar
  919. Thornton, N.C.: The facts about artificially ripen fruit. Food Industr. 12, 48–52 (1940).Google Scholar
  920. Tindale, G. B., S. A. Trout and F. E. Huelin: Investigations on the storage, ripening, and respiration of pears. J. Dept. Agricult. Victoria 36, 1–34 (1938).Google Scholar
  921. Trout, S. A., E. G. Hall, R. N. Robertson, M. V. Hackney and S. M. Sykes: Studies in the metabolism of apples. Austral. J. Exper. Biol. a. Med. Sci. 20, 219–231 (1942).CrossRefGoogle Scholar
  922. Trout, S. A., G. B. Tindale and F. E. Huelin: The storage of oranges with special reference to locality, maturity, respiration, and chemical composition. Australia, Council for Sci. Ind. Res. Pamphlet 80 (1938).Google Scholar
  923. Tukey, H. B., and J. C. Young: Histological study of the developing fruit of the sour cherry. Bot. Gaz. 100, 723–749 (1939).CrossRefGoogle Scholar
  924. Ulrich, R.: Variations de l’activité respiratoire de quelques fruits au cours de leur developpement. Bull. Soc. bot. France 93, 248–250 (1946).Google Scholar
  925. Ulrich, R.: La Vie des Fruits. Paris: Masson & Cie. 1952.Google Scholar
  926. Ulrich, R.: Postharvest physiology of fruits. Annual Rev. Plant Physiol. 9, 385–416 (1958).CrossRefGoogle Scholar
  927. Ulrich, R., et P. Marcellin: Voies et modalités des echanges de gaz carbonique et d’oxygene dex fruits avec l’atmosphere ambiante. J. Recherches C.N.R. S. 31, 241–251 (1955).Google Scholar
  928. Ulrich, R., and J. Mimault: Transformation des composés pectiques et respiration des poires en cours de maturation. Fruits 11, 467–470 (1956).Google Scholar
  929. Ulrich, R., and A. Paulin: Nouvelle observations sur la refrigeration des poires. II. Poires Comice et Passe-Crassane. Rev. Gen. Froid 30, 161–164 (1953).Google Scholar
  930. Ulrich, R., and A. Paulin: Sur la Physiologie de la Maturation des Poires Passe-Crassane a diverses Temperatures. C. r. Acad. Agricult. Fr. 43, 78–82 (1957).Google Scholar
  931. Ulrich, R., A. Paulin and O. Thaler: Nouvelles Experiences sur la Refrigeration de la Poire Passe-Crassane. Rev. Gen. Froid 33, 249–254 (1956).Google Scholar
  932. Umbreit, W. W., R. H. Burris and J. F. Stauffer: Manometric Techniques and Tissue Metabolism. Minneapolis: Burgess Publishing Co. 1949.Google Scholar
  933. Uota, M.: The application and ripening temperatures as related to the response of Bartlett pears to ethylene treatment. Amer. Soc. Horticult Sci. Western Meetings Absts. 1954.Google Scholar
  934. Uota, M.: Effect of temperature and ethylene on evolution o carbon dioxide, ethylene, and other oxidizable volatiles from three varieties of plum. Proc. Amer. Soc. Horticult. Sci. 65, 231–243 (1955).Google Scholar
  935. Uota, M., and D. H. Dewey: The respiration and volatile emanation of Bartlett pears as influenced by postharvest treatment with ethylene and 2,4,5-T. Proc. Amer. Soc. Horticult. Sci. 61, 257–264 (1953).Google Scholar
  936. Waggoner, P. E., and A. E. Dimond: Nonspecificity of the triple response for ethylene. Science (Lancaster, Pa.) 119, 123–124 (1954).Google Scholar
  937. Waller, J.C.: The katharometer as an instrument for measuring the output and intake of carbon dioxide by leaves. New Phyto-logist 25, 109–118 (1926).CrossRefGoogle Scholar
  938. Walls, L. P.: The nature of the volatile products from apples. J. Pomol. Horticult. Sci. 20, 59–67 (1942).Google Scholar
  939. Wang, C. H., E. Hansen and B. E. Christen-sen: Conversion of C14-labeled acetate to citric and malic acids in the tomato fruit. Plant Physiol. 28, 741–745 (1953).PubMedCrossRefGoogle Scholar
  940. Wardlaw, C. W., and E. R. Leonard: Studies in tropical fruits. I. Prehminary observations on some aspects of development, ripening, and senescence with special reference to respiration. Ann. of Bot. 50, 621 (1936).Google Scholar
  941. Wardlaw, C. W., and E. R. Leonard: Studies in tropical fruits. III. Preliminary observation on pneumatic pressures in fruit. Ann. of Bot. 2, 301–315 (1938).Google Scholar
  942. Wardlaw, C. W., and E. R. Leonard: Studies in tropical fruits. IV. Methods in the investigation of respiration with special reference to the banana. Ann. of Bot. 3, 27–42 (1939).Google Scholar
  943. Weurman, C.: Pectinase inhibitors in pears. Acta bot. neerl. 2, 107–121 (1953).Google Scholar
  944. Weurman, C.: Pectinase in pears. Acta bot. neerl. 3, 108–113 (1954).Google Scholar
  945. Whiting, G. C.: Occurrence of shikimic acid in gooseberry fruits. Nature (Lond.) 179, 531 (1957).CrossRefGoogle Scholar
  946. Wolfe, H. S.: Effect of ethylene on the ripening of bananas. Bot. Gaz. 92, 337–366 (1931).CrossRefGoogle Scholar
  947. Workman, M., and H. K. Pratt: Studies on the physiology of tomato fruits. II. Ethylene production at 20° C as related to respiration, ripening, and date of harvest. Plant. Physiol. 32, 330–334 (1957).PubMedCrossRefGoogle Scholar
  948. Young, L. C. T., and E. E. Conn: The reduction and oxidation of glutathione by plant mitochondria. Plant Physiol. 31, 205–211 (1956).PubMedCrossRefGoogle Scholar
  949. Young, R. E., and J. B. Biale: Oxygen content of gases automatically recorded and measured to within 0.01 per cent. Food Processing Nov. 1951.Google Scholar
  950. Young, R. E., and J. B. Biale: Carbon dioxide fixation by lemons in a CO2 enriched atmosphere. Plant Physiol. 31 (Suppl.), 23 (1956).CrossRefGoogle Scholar
  951. Young, R. E., and J. B. Biale: Carbon dioxide effects on fruits. I. Methodology. Amer. J. Bot. 1959 (in press).Google Scholar
  952. Young, R.E., H. K. Pratt and J. B. Biale: Identification of ethylene as a volatile product of the fungus Penicillium digitatum. Plant Physiol. 26, 304–310 (1951).PubMedCrossRefGoogle Scholar
  953. Young, R.E., H. K. Pratt and J. B. Biale: Manometric determination of low concentrations of ethylene. Analyt. Chemistry 24, 551–555 (1952).CrossRefGoogle Scholar
  954. Young, R. E., R. J. Romani and J. B. Biale: Carbon dioxide effects on fruit. II. The stimulation of respiration in lemons. Amer. J. Bot. 1959 (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • J. Christophersen
  • C. P. Whittingham
  • A. Quispel
  • Walter Stiles

There are no affiliations available