Skip to main content

Wege des Abbaues von Kohlenhydraten bei Sauerstoffatmung und Gärungen

  • Chapter
  • 105 Accesses

Part of the book series: Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie ((532,volume 12))

Abstract

Energy required for vital function whether in the animal, the bacterium or the higher plant is obtained by burning fuel. In most plant tissues the fuel is sugar or one of its storage products (either di- or polysaccharides). In other instances it is fat, and in a few plants, protein storage products may be burned to provide energy. The energy available in these molecules, in the form of bond energy, is derived from the sun either directly or indirectly. For this energy to become available to the cell, a series of transformations must occur which, in the case of the sugars and their related products, and for at least part of the fat molecule, involves the formation of phosphorylated compounds. In short, if substrates are to be used as energy sources they must first undergo phosphorylation. This appears to be true for almost all instances of sugar oxidation. There are, however, a few isolated cases in some animal tissues and especially in bacteria where prior phosphorylation may not be required.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature

  • Albaum, H. G.: The incorporation of radiophosphorus during growth. The biology of phosphorus, p. 55. East Lansing, Mich.: Michigan State College Press 1952.

    Google Scholar 

  • Albaum, H. G., M. Ogur and A. Hershfeld: The isolation of adenosine triphosphate from plant tissue. Arch. of Biochem. 27, 130 (1950).

    CAS  Google Scholar 

  • Albatjm, H. G., and W. W. Umbreit: Phosphorus transformations during the development of the oat embryo. Amer. J. Bot. 30, 553 (1943).

    Google Scholar 

  • Albatjm, H. G., and W. W. Umbreit: Differentiation between ribose-3-phosphate and ribose-5-phosphate by means of the orcinol-pentose reaction. J. of Biol. Chem. 167, 369 (1947).

    Google Scholar 

  • Arnon, D.I.: The glycolytic cycle in the breakdown and synthesis of carbohydrates in green leaves. A Symposium on Phosphorus Metabolism, Vol. II, p. 67. Baltimore, Md., U.S.A.: Johns Hopkins Press 1952.

    Google Scholar 

  • Axelrod, B., R. S. Bandurski and J. Campbell: In P. K. Stumpf: Phosphate assimilation in higher plants. A Symposium on Phosphorus Metabolism, Vol. II, p. 39. Baltimore, Md., U.S.A.: Johns Hopkins Press 1952.

    Google Scholar 

  • Axelrod, B., and R. S. Bandurski: Phosphoglyceryl kinase in higher plants. J. of Biol. Chem. 204, 939 (1953).

    CAS  Google Scholar 

  • Axelrod, B., R. S. Bandurski and P. Saltman: Phosphate uptake by pea meal extracts. Federat. Proc. 10, 158 (1951).

    Google Scholar 

  • Axelrod, B., P. Saltman, R. S. Bandurski and R.S. Baker: Phosphohexokinase in higher plants. J. of Biol. Chem. 197, 89 (1952).

    CAS  Google Scholar 

  • Ball, E. G., G. W. Mdller and H. J. Evans: Hexokinase activity in a callus culture of Vinca rosea. Plant Physiol. 30, Suppl. V (1955).

    Google Scholar 

  • Benson, A. A., S. Kawaguchi, P. Hayes and M. Calvin: The path of carbon in photosynthesis. XVI. Kinetic relationships of intermediates in steady state photosynthesis. J. Amer. Chem. Soc. 74, 4477 (1952).

    CAS  Google Scholar 

  • Boser, H.: Reindarstellung und Analyse der Phosphoglukomutase aus Kartoffeln. Z. physiol. Chem. 307, 240 (1957).

    CAS  Google Scholar 

  • Buchanan, J. G.: The path of carbon in photosynthesis. XIX. The identification of sucrose in sugar beet leaves. Arch. of Biochem. a. Biophysics 44, 140 (1953).

    CAS  Google Scholar 

  • Campbell, J. M., and R. S. Bandurski: Adenylate kinase in plant tissue. Amer. Soc. Plant Physiol. (AIBS), Sept. 1952 (Abstr.).

    Google Scholar 

  • Cardini, C. E.: Activation of plant phospho-glucomutase by glucose 1–6 diphosphate. Enzymologie (Den Haag) 15, 44 (1951).

    CAS  Google Scholar 

  • Cardint, C. E., L. F. Leloir and J. Chiriboga: The biosynthesis of sucrose. J. of Biol. Chem. 214, 149 (1955).

    Google Scholar 

  • Hageman, R. H., and D.I. Arnon: The isolation of triosephosphate dehydrogenase from pea seeds. Arch. of Biochem. a. Biophysics 55, 162 (1955).

    CAS  Google Scholar 

  • Hanes, C. S.: The breakdown and synthesis of starch by an enzyme from pea seeds. Proc. Roy. Soc. Lond., Ser. B 128, 421 (1939).

    Google Scholar 

  • Hassid, W. Z.: Isolation of a hexose monophosphate from pea leaves. Plant Physiol. 13, 641 (1938).

    PubMed  CAS  Google Scholar 

  • Hassid, W. Z., and R. S. Bean: Synthesis of disaccharides with pea preparations. 3ème Congr. Internat, de Biochimie, Liege, Belgium, Conférences et Rapports, p. 163, 1956.

    Google Scholar 

  • Hobson, P. N., W.J. Whelan and S. Peat: A de-branching enzyme in bean and potato. Biochemic. J. 47, xxxix (1950).

    CAS  Google Scholar 

  • Leloir, L. F.: The metabolism of hexosephosphates. A Symposium on Phosphorus Metabollsm, Vol. I, p. 67. Baltimore, Md., U.S.A.: Johns Hopkins Press 1951.

    Google Scholar 

  • Leloir, L. F., and C. E. Cardini: The biosynthesis of sucrose. J. Amer. Chem. Soc. 75, 6084 (1953).

    CAS  Google Scholar 

  • Leloir, L. F., and C. E. Cardini: The biosynthesis of sucrose phosphate. J. of Biol. Chem. 214, 157 (1955).

    CAS  Google Scholar 

  • Looms, W. D., and P. K. Stumpf: In P. K. Stumpf, Phosphate assimilation in higher plants. A Symposium on Phosphorus Metabolism, Vol.11, p. 39. Baltimore, Md., U.S.A.: Johns Hopkins Press 1952.

    Google Scholar 

  • Mayaudon, J., A. A. Benson and M. Calvin: Ribulose-1,5-diphosphate from, and CO2 fixation by Tetragonia expansa leaves extract. Biochim. et Biophysica Acta 23, 342 (1957).

    CAS  Google Scholar 

  • Needham, D. M.: The adenosinetriphosphatase activity of myosin preparations. Biochemic J. 36, 113 (1942).

    CAS  Google Scholar 

  • Neufeld, E. F., V. Ginsburg, E. W. Putnam, D. Fanshier and W. Z. Hassid: Formation and interconversion of sugar nucleotides by plant extracts. Arch. of Biochem. a. Biophysics 69, 602 (1957).

    CAS  Google Scholar 

  • Owens, R. G.: Improved method for isolation of adenosine di- and triphosphates, Science (Lancaster. Pa.) 122, 415 (1955).

    CAS  Google Scholar 

  • Racker, E., and I. Krlmsky: The mechanism of oxidation of aldehydes by glycer-aldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 198, 731 (1952).

    CAS  Google Scholar 

  • Ramasarma, T., J. Ram Sri and K. V. Giri: Phosphoglucomutase of green gram (Phaseolus radiatus). Arch. of Biochem. a. Biophysics 53, 167 (1954).

    CAS  Google Scholar 

  • Saltman, P.: Hexokinase in higher plants. J. of Biol. Chem. 200, 145 (1953).

    CAS  Google Scholar 

  • Slein, M. W.: Phosphohexose isomerases. Federat. Proc. 13, 299 (1954).

    Google Scholar 

  • Somers, G. F., and E.L. Cosby: The conversion of fructose-6-phosphate into glucose-6-phosphate in plant extracts. Arch. of Biochem. 6, 295 (1945).

    CAS  Google Scholar 

  • Stafford, H., R. C. Barnett, E. E. Conn and B. Vennesland: The oxidation of monosaccharides by TPN dependent enzymes. Amer. Soc. Plant Physiol. (AIBS), Sept. 1952 (Abstr.).

    Google Scholar 

  • Stumpf, P. K.: Carbohydrate metabolism in higher plants. III. Breakdown of fructose diphosphate by pea extracts. J. of Biol. Chem. 182, 261 (1950).

    CAS  Google Scholar 

  • Stumpf, P. K.: Fat metabolism in higher plants. III. Enzymic oxidation of glycerol. Plant Physiol. 30, 55 (1955).

    PubMed  CAS  Google Scholar 

  • Tewfik, S., and P. K. Stumpf: Carbohydrate metabolism in higher plants. J. of Biol. Chem. 192, 519 (1951).

    CAS  Google Scholar 

  • Weissbach, A., P. Z. Smyrniotis and B. L. Horecker: The enzymatic formation of ribulose diphosphate. J. Amer. Chem. Soc. 76, 5572 (1954).

    CAS  Google Scholar 

  • Withner, C. L., and T. Sar-dinsky: Phytase and phosphorus in germinating corn seedlings. Amer. Soc. Plant Physiol. (AIBS), Sept. 1954 (Abstr.).

    Google Scholar 

  • Allen, S. H. G., and D. M. Powelson: Effect of chloramphenicol on glucose oxidation in Escherichia coli. Science 127, 1341–1342 (1958).

    PubMed  CAS  Google Scholar 

  • Altermatt, H. A., A. C. Blackwood and A. C. Neish: Anaerobic dissimilation of D-xylose-1-C14, D-xylose-2-C14 and D-xylose-5-C14 by Leuconostoc mesenteroides. Canad. J. Biochem. a. Physiol. 33, 622–626 (1955).

    CAS  Google Scholar 

  • Altermatt, H. A., F. J. Simpson and A. C. Neish: The fermentation of D-allose and D-glucose by Aerobacter aerogenes. Canad. J. Microbiol. 1, 473–478 (1955 a).

    CAS  Google Scholar 

  • Altermatt, H. A., F. J. Simpson and A. C. Neish: Anaerobic dissimilation of D-ribose-1-C14, D-xylose-1-C14, D-xylose-2-C14 and D-xylose-5-C14 by Aerobacter aerogenes. Canad. J. Biochem. a. Physiol. 33, 615–621 (1955b).

    CAS  Google Scholar 

  • Anderson, D. G., H. A. Stafford, E. E. Conn and B. Vennesland: The distribution in higher plants of triphosphopyridine nucleotide-linked enzyme systems capable of reducing glutathione. Plant Physiol. 27, 675–684 (1952).

    PubMed  CAS  Google Scholar 

  • Axelrod, B., and R. S. Bandurski: Oxidative metabolism of hexose phosphates by higher plants. Federat. Proc. 11,182 (1952).

    Google Scholar 

  • Axelrod, B., R. S. Bandurski, C. M. Greiner and R. Jang: The metabolism of hexose and pentose phosphates in higher plants. J. of Biol. Chem. 202, 619–634 (1953).

    CAS  Google Scholar 

  • Axelrod, B., and R. Jang: Purification and properties of phosphoriboisomerase from Alfalfa. J. of Biol. Chem. 209, 847–855 (1954).

    CAS  Google Scholar 

  • Barker, H. A., and F. Lipmann: The rôle of phosphate in the metabolism of Propionibacterium pentosaceum. J. of Biol. Chem. 179, 247–257 (1949).

    CAS  Google Scholar 

  • Barnett, R. C., H. A. Stafford, E. E. Conn and B. Vennesland: Phosphogluconic dehydrogenase in higher plants. Plant Physiol. 28, 115–122 (1953).

    PubMed  CAS  Google Scholar 

  • Beevers, H.: Intermediates of the pentose phosphate pathway as respiratory substrates. Plant Physiol. 31, 339–347 (1956).

    PubMed  CAS  Google Scholar 

  • Beevers, H., and M. Gibbs: Participation of the oxidative pathway in yeast respiration. Nature (Lond.) 173, 640–641 (1954 a).

    PubMed  CAS  Google Scholar 

  • Beevers, H., and M. Gibbs: Investigation on the path of carbohydrate breakdown in plants. 8. Congr. Internat. Bot., Paris, Sect. 11, 109 (1954b).

    Google Scholar 

  • Beevers, H., and M. Gibbs: The direct oxidation pathway in plant respiration. Plant Physiol. 29, 322–324 (1954 c).

    PubMed  CAS  Google Scholar 

  • Beevers, H., and M. Gibbs: Position of C14 in alcohol and carbon dioxide formed from labeled glucose by corn root tips. Plant Physiol. 29, 318–321 (1954d).

    PubMed  CAS  Google Scholar 

  • Bergmann, E. D., U. J. Littauer and B. E. Volcani: Breakdown of pentose phosphate in Escherichia coli. Biochim. et Biophysica Acta 13, 288–289 (1954;.

    CAS  Google Scholar 

  • Bernstein, I.A.: Biosynthesis of ribose in Escherichia coli grown on C14-labelled glucose. J. of Biol. Chem. 221, 873–878 (1956).

    CAS  Google Scholar 

  • Blackmann, F. F.: Analytical studies in plant respiration. III. Proc. Roy. Soc. Lond., Ser. B 103, 491–523 (1928).

    Google Scholar 

  • Boysen Jensen, P.: Studien über den genetischen Zusammenhang zwischen der normalen und intramolekularen Atmung der Pflanzen. Kgl. danske Vidsk. Selsk. biol. Medd. 4, 3–34 (1923).

    Google Scholar 

  • Boysen Jensen, P.: Über die Einwirkung der Monojodessigsäure auf Atmung und Gärung. Biochem. Z. 236, 211–218 (1931).

    Google Scholar 

  • Brodie, A. F., and F. Lipmann F. Lipmann: Identification of a gluconolactonase. J. of Biol. Chem. 212, 677–685 (1955).

    CAS  Google Scholar 

  • Campbell, J. J. R., and F. C. Norris: The intermediate metabolism of Pseudomonas aeruginosa 4. The absence of an Embden-Meyerhof system as evidenced by phosphorus distribution. Canad. J. Res., Sect. C 28, 203–212 (1950).

    Google Scholar 

  • Campbell, J. J. R., and F. N. Stokes: Tricarboxylic acid cycle in Pseudomonas aeruginosa. J. of Biol. Chem. 190, 853–858 (1951).

    CAS  Google Scholar 

  • Claridge, C. A., and C. H. Werkman: Evidence for alternate pathways for the oxidation of glucose by Pseudomonas aeruginosa. J. Bacter. 68, 77–79 (1954).

    CAS  Google Scholar 

  • Cochrane, V. W.: Metabolism of species of Streptomyces. J. Bacter. 69, 256–263 (1955).

    CAS  Google Scholar 

  • Cochrane, V. W., and P. L. Hawley: The metabolism of species of Streptomyces 9. Metabolism of pentose and hexose phosphates. J. Bacter. 71, 308–314 (1956).

    CAS  Google Scholar 

  • Cochrane, V. W., H. D. Peck Jr. and A. Harrison: The metabolism of species of Streptomyces 7. The hexosemono-phosphate shunt and associated reactions. J. Bacter. 66, 17–23 (1953).

    CAS  Google Scholar 

  • Cohen, S. S.: Adaptive enzyme formation in the study of uronic acid utilization by the K-12 strain of Escherichia coli. J. of Biol. Chem. 177, 607–619 (1949).

    CAS  Google Scholar 

  • Cohen, S. S.: Studies on the distribution of the oxidative pathway of glucose-6-phosphate utilization. Biol. Bull. 99, 369 (1950).

    PubMed  CAS  Google Scholar 

  • Cohen, S. S.: Utilization of gluconate and glucose in growing and virusinfected Escherichia coli. Nature (Lond.) 168, 746 (1951a).

    CAS  Google Scholar 

  • Cohen, S. S.: The synthesis of nucleic acids by virus-infected bacteria. Bacter. Rev. 15, 131–146 (1951b).

    CAS  Google Scholar 

  • Cohen, S. S.: Studies on D-ribulose and its enzymatic conversion to D-arabinose. J. of Biol. Chem. 201, 71–84 (1953).

    CAS  Google Scholar 

  • Cohen, S. S., and H. Barner: Enzymatic adaptation in a thymine requiring strain of Escherichia coli. J. Bacter. 69, 59–66 (1955).

    CAS  Google Scholar 

  • Cohen, S. S., and D. B. McNair Scott: Formation of pentosephosphate from 6-phosphogluconate. Science (Lancaster, Pa.) 111, 543–544 (1950).

    PubMed  CAS  Google Scholar 

  • Cohen, S. S., D. B. McNair Scott and M. Lanning: Pentose production and utilization by enzyme systems of Escherichia coli. Federat. Proc. 10, 173 (1951).

    Google Scholar 

  • Cohen, S. S., and R. Raff: Adaptive enzymes in the estimation of gluconate, D-arabinose, and D-ribose. J. of Biol. Chem. 188, 501–508 (1951).

    CAS  Google Scholar 

  • Cohen, S. S., and L. Roth: The phosphogluconate pathway of carbohydrate metabolism in the multiplication of bacterial viruses. J. Bacter. 65, 490–495 (1953).

    CAS  Google Scholar 

  • Conn, E. E., and B. Vennesland: Glutathione reductase of wheat germ. J. of Biol. Chem. 192, 17–28 (1951).

    CAS  Google Scholar 

  • Cori, O., and F. Lipmann: The primary oxidation product of enzymatic glucose-6-phosphate oxidation. J. of Biol. Chem. 194, 417–425 (1952).

    CAS  Google Scholar 

  • Daly, J. M., R. M. Sayre and J. H. Pazur: The hexose monophosphate shunt as the major respiratory pathway during sporulation of rust of safflower. Plant Physiol. 32, 44–48 (1957).

    PubMed  CAS  Google Scholar 

  • Dedonder, R.: Quelques aspects de la glycolyse chez Bacillus subtilis et Bacillus megatherium. 2. Congr. Biochim. Paris, S. 77, 1952.

    Google Scholar 

  • Dickens, F.: Mechanism of carbohydrate oxidation. Nature (Lond.) 138, 1057 (1936).

    CAS  Google Scholar 

  • Dickens, F.: Oxidation of phosphohexonate and pentose phosphoric acids by yeast enzymes. Biochemic. J. 32, 1626–1645 (1938 a).

    CAS  Google Scholar 

  • Dickens, F.: Yeast fermentation of pentose phosphoric acid. Biochemic. J. 32, 1645–1653 (1938b).

    CAS  Google Scholar 

  • Dickens, F., and D. H. Williamson: Transformation of pentose phosphates by enzymes of animal origin. Nature (Lond.) 176, 400–401 (1955).

    CAS  Google Scholar 

  • Dische, Z.: Phosphorylierung der im Adeno-sin enthaltenen d-Ribose und nachfolgender Zerfall des Esters unter Triosephosphatbildung im Blute. Naturwiss. 26, 252–253 (1938).

    CAS  Google Scholar 

  • Dische, Z.: Dümont: Über die Wirkung des kohlenstoffsauren Gases auf das Obst. Neues J. Pharmacie 3, 2. Teil, 563–566 (1819).

    Google Scholar 

  • Earl, J. M., and M. Gibbs: Effect of tissue age on hexose metabolism. An enzyme study with pea root. Plant Physiol. 30, Suppl., 4 (1955).

    Google Scholar 

  • Eaton, N. R., and H. P. Klein: The oxidation of glucose and acetate by Saccharomyces cerevisiae. J. Bacter. 68, 110–116 (1954).

    CAS  Google Scholar 

  • Entner, N., and M. Doudoroff: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. of Biol. Chem. 196, 853–862 (1952).

    CAS  Google Scholar 

  • Entner, N., and R. Y. Stanier: Studies on the oxidation of glucose by Pseudomonas fluorescens. J. Bacter. 62, 181–186 (1951).

    CAS  Google Scholar 

  • Fiebre, C. W. de, and S. G. Knight: The oxidation of glucose by Penicillium chrysogenum. J. Bacter. 66, 170–172 (1953).

    Google Scholar 

  • Fincham, J. R. S.: The occurrence of glutamic dehydrogenase in Neurospora and its apparent absence in certain mutant strains. J. Gen. Microbiol. 5, 793–806 (1951).

    PubMed  CAS  Google Scholar 

  • Friedman, S.: The influence of amino acids on fructose utilization in the luminous bacterium, Achromobacter fischeri. J. Bacter. 67, 523–529 (1954).

    CAS  Google Scholar 

  • Gary, N. D., R. E. Klausmeier and R. C. Bard: Metabolic patterns of nutritionally differentiated cell types of Bacillus subtilis. J. Bacter. 68, 437–443 (1954).

    CAS  Google Scholar 

  • Gentile, A. C.: Carbohydrate metabolism and oxalic acid synthesis by Botrytis cinerea. Plant Physiol. 29, 257–261 (1954).

    PubMed  CAS  Google Scholar 

  • Geest, H., and J. O. Lampen: Fermentation of l-C14-D-xylose by Lactobacillus pentosus. J. Bacter. 61, 97–98 (1951).

    Google Scholar 

  • Geest, H., and J. O. Lampen: J. of Biol. Chem. 194, 555–562 (1952).

    Google Scholar 

  • Ghiretti, F., and E. S. G. Barron: The pathway of glucose oxidation in Cory-nebacterium creatinovorans. Biochim. et Biophysica Acta 15, 445–460 (1954).

    CAS  Google Scholar 

  • Gibbs, M.: Triosephosphate dehydrogenase and glucose-6-phosphate dehydrogenase in the pea plant. Nature (Lond.) 170, 164–165 (1952).

    CAS  Google Scholar 

  • Gibbs, M.: Metabolism of hexose phosphate and pentose phosphate by plant leaves and roots. Federat. Proc. 12, 208 (1953).

    Google Scholar 

  • Gibbs, M.: The respiration of the pea plant. Oxidation of hexose phosphate and pentose phosphate by cell-free extracts of pea leaves. Plant Physiol. 29, 34–39 (1954).

    PubMed  CAS  Google Scholar 

  • Gibbs, M., and H. Beevers: Glucose dissimilation in the higher plant. Effect of age of tissue. Plant Physiol. 30, 343–347 (1955).

    PubMed  CAS  Google Scholar 

  • Gibbs, M., V. W. Cochrane, L. M. Paege and H. Wolin: Fermentation of d-xylose-1-C14 by Fusarium Uni Bolley. Arch. of Biochem. a, Biophysics 50, 237–242 (1954).

    CAS  Google Scholar 

  • Gibbs, M., J. M. Earl and J. L. Ritchie: Respiration of the pea plant. Metabolism of hexose phosphate and triose phosphate by cell-free extracts of pea roots. Plant Physiol. 30, 463–467 (1955a).

    PubMed  CAS  Google Scholar 

  • Gibbs, M., J. M. Earl and J. L. Ritchie: Metabolism of ribose-1-C14 by cell-free extracts of yeast. J. of Biol. Chem. 217, 161–168 (1955 b).

    CAS  Google Scholar 

  • Gibbs, M., and B. L. Horecker: The mechanism of pentose phosphate conversion to hexose monophosphate. II. With pea leaf and pea root preparations. J. of Biol. Chem. 208, 813–820 (1954).

    CAS  Google Scholar 

  • Gibbs, M., and R. D. de Moss: A new mechanism of ethanol formation in the heterolactic fermentation. Federat. Proc. 10,189 (1951).

    Google Scholar 

  • Gibbs, M., and R. D. de Moss: Anaerobic dissimilation of C14-labelled glucose and fructose by Pseudomonas lindneri. J. of Biol. Chem. 207, 689–694 (1954).

    CAS  Google Scholar 

  • Gilvarg, C.: Utilization of glucose-1-C14 by yeast. J. of Biol. Chem. 199, 57–64 (1952).

    CAS  Google Scholar 

  • Glaser, L., and D. H. Brown: Purification and properties of D-glucose-6-phosphate dehydrogenase. J. of Biol. Chem. 216, 67–79 (1955).

    CAS  Google Scholar 

  • Glock, G., and P. McLean: Further studies on the properties and assay of glucose-6-phosphate dehydrogenase and 6-phospho-gluconate dehydrogenase of rat liver. Biochemic. J. 55, 400–408 (1953).

    CAS  Google Scholar 

  • Gunsalus, I. C., and M. Gibbs: The heterolactic fermentation. II. Position of C14 in the products of glucose dissimilation by Leuconostoc mesenteroides. J. of Biol. Chem. 194, 871–875 (1952).

    CAS  Google Scholar 

  • Gunsalus, I. C., B. L. Horecker and W. A. Wood: Pathways of carbohydrate metabolism in microorganisms. Bacter. Rev. 19, 79–128 (1955).

    CAS  Google Scholar 

  • Haba, G. de la, I. G. Leder and E. Racker: Enzymatic formation of ribulose-5-phos-phate from “active aldehyde” and triosephosphate. Federat. Proc. 12, 194 (1953).

    Google Scholar 

  • Haba, G. de la, I. G. Leder and E. Racker: Crystalline transketolase from bakers’ yeast: isolation and properties. J. of Biol. Chem. 214, 409–426 (1955).

    Google Scholar 

  • Hachisuka, Y., N. Asano, M. Kaneko and T. Kanbe: Evolution of respiratory enzyme system during germination of Bacillus subtilis. Science (Lancaster, Pa.) 124, 174–175 (1956;.

    PubMed  CAS  Google Scholar 

  • Hauge, J. G., T. E. King and V. H. Cheldelin: Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter suboxydans. J. of Biol. Chem. 214, 11–25 (1955).

    CAS  Google Scholar 

  • Heald, K., and C. Long: The phosphorylation of D-ribose by extracts of Escherichia coli. Biochemic. J. 59, 316–322 (1955).

    CAS  Google Scholar 

  • Heath, E. C., and H. Koffler: Biochemistry of filamentous fungi. II. The quantitative significance of an „oxidative pathway“ during the growth of Penicillium chrysogenum. J. Bacter. 71, 174–181 (1956).

    CAS  Google Scholar 

  • Heath, E. C., D. L. Nasser and H. Koffler: Biochemistry of filamentous fungi. III. Alternative routes for the breakdown of glucose by Fusarium Uni. Arch. of Biochem. a. Biophysics 64, 80–87 (1956).

    CAS  Google Scholar 

  • Hochster, R. M.: Conversion of D-xylose to D-xylulose phosphate by extracts of Pseudomonas hydrophila. Biochim. et Biophysica Acta 16, 292–293 (1955 a).

    CAS  Google Scholar 

  • Hochster, R. M.: The formation of phosphorylated sugars from D-xylose by extracts of Pseudomonas hydrophila. Canad. J. Microbiol. 1, 346–363 (1955 b).

    CAS  Google Scholar 

  • Hochster, R. M.: Inhibition of the xylose isomerase of Pseudomonas hydrophila by sulfhydryl reagents and the effect of glutathione. Canad. J. Microbiol. 1, 589–595 (1955 c).

    CAS  Google Scholar 

  • Hochster, R. M.: Pyridine nucleotide specifities and rates of formation of glucose-6-phosphate and of 6-phosphogluconate dehydrogenases in Aspergillus flavus-oryzae. Arch. of Biochem. a. Biophysics 66, 499–501 (1957).

    CAS  Google Scholar 

  • Höchster, R. M., and B. A. Stone: Anaerobic conversion of D-xylulose to triose phosphate and hexose phosphate by extracts of Pseudomonas hydrophila. Canad. J. Microbiol. 2, 132–138 (1956).

    Google Scholar 

  • Hochster, R. M., and R. W. Watson: Phosphorylation of xylose by extracts of Pseudomonas hydrophila. Nature (Lond.) 170, 357–358 (1952).

    CAS  Google Scholar 

  • Hochster, R. M., and R. W. Watson: Xylose isomerase. J. Amer. Chem. Soc. 75, 3284 (1953).

    CAS  Google Scholar 

  • Hochster, R. M., and R. W. Watson: Enzymatic isomerization of D-xylose to D-xylulose. Arch. of Biochem. a. Biophysics 48, 120–129 (1954).

    CAS  Google Scholar 

  • Hoffmann-Ostenhof, O.: Enzymologie. Wien: Springer 1954.

    Google Scholar 

  • Hoogerheide, J. C.: Bijdrage tot de kennis van de reactie van Pasteur. Diss. Delft 1935.

    Google Scholar 

  • Horecker, B. L.: Phosphogluconic acid metabolism. Federat. Proc. 9, 185–186 (1950).

    Google Scholar 

  • Horecker, B. L.: A new pathway for the oxidation of carbohydrate. Brewers Digest 28, 214–220 (1953).

    Google Scholar 

  • Horecker, B. L., J. Hurwitz and P. Z. Smyrniotis: Xylulose-5-phosphate and the formation of sedoheptulose-7-phosphate with liver transketolase. J. Amer. Chem. Soc. 78, 692–694 (1956).

    CAS  Google Scholar 

  • Horecker, B. L., and A. H. Mehler: Carbohydrate metabolism. Annual Rev. Biochem. 24, 207–274 (1955).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: The enzymatic production of ribose-5-phosphate from 6-phosphogluconate. Arch. of Biochem. 29, 232–233 (1950).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: Ketopentose-phosphate formation in the enzymatic degradation of phosphoglu-conate. Federat. Proc. 10, 199–200 (1951a).

    Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: Phosphogluconic acid dehydrogenase from yeast. J. of Biol. Chem. 193,371–381 (1951 b).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: Enzymatic breakdown of pentosephosphate. Federat. Proc. 11, 232 (1952 a).

    Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: The enzymatic formation of sedoheptulose phosphate from pentose phosphate. J. Amer. Chem. Soc. 74, 2123 (1952b).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: The fixation of carbon dioxide in 6-phosphogluconic acid. J. of Biol. Chem. 196, 135–142 (1952c).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: The coenzyme function of thiamine pyrophosphate in pentose metabolism. J. Amer. Chem. Soc. 75,1009–1010 (1953a).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: Transaldolase: The formation of fructose-6-phosphate from sedoheptulose-7-phosphate. J. Amer. Chem. Soc. 75, 2021–2022 (1953b).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: Reversibility of glucose-6-phos-phate oxidation. Biochim. et Biophysica Acta 12, 98–102 (1953 c).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: Purification and properties of yeast transaldolase. J. of Biol. Chem. 212, 811–825 (1955).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: Rôle of xylulose 5-phosphate in the transketolase reaction. Federat. Proc. 15, 277 (1956).

    Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis, H. H. Hiat and P. A. Marks: Tetrose phosphate and the formation of sedoheptulose diphosphate. J. of Biol. Chem. 212, 827–836 (1955).

    CAS  Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis and H. Klenow: Rôle of sedoheptulose in carbohydrate metabolism. Federat. Proc. 12, 219–220 (1953 a).

    Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose phosphate from pentose phosphate. J. of Biol. Chem. 205, 661–682 (1953b).

    CAS  Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis and J. E. Seegmtller: The enzymatic conversion of 6-phosphogluconate to ribulose-5-phosphate and ribose-5-phosphate. J. of Biol. Chem. 193, 383–396 (1951).

    CAS  Google Scholar 

  • Humphreys, T. E., and W. M. Dugger Jr: The effect of 2,4-dichlorophenoxyacetic acid on pathways of glucose catabolism in higher plants. Plant Physiol. 32, 136–140 (1957).

    PubMed  CAS  Google Scholar 

  • Hurwttz, J.: Enzymatic interconversion of ribulose-5-phosphate and xylulose-5-phosphate. Federat. Proc. 15, 278–279 (1956).

    Google Scholar 

  • Hurwttz, J., A. Weissbach, B. L. Horecker and P. Z. Smyrniotis: Spinach phosphoribulokinase. J. of Biol. Chem. 218, 769–783 (1956).

    Google Scholar 

  • James, W. O., and H. Beevers: The respiration of Arum spadix. A rapid respiration resistant to cyanide. New Phytologist 49, 353–374 (1950).

    Google Scholar 

  • Katznelson, H.: Production of pyruvate from 6-phosphogluconate by bacterial plant pathogens and legume bacteria. Nature (Lond.) 175, 551–552 (1955).

    CAS  Google Scholar 

  • Katznelson, H., and S. W. Tanenbaum: Observations on maltose oxidation by Acetobacter melanogenum. J. Bacter. 68, 368–372 (1954).

    CAS  Google Scholar 

  • Kaushal, R., P. Jowett and T. K. Walker: Formation of glycolaldehyde by enzymic scission of pentoses. Nature (Lond.) 167, 949 (1951).

    CAS  Google Scholar 

  • Krros, P. A., T. E. King and V. H. Cheldelin: Carbohydrate metabolic pathways in Acetobacter suboxydans. Federat. Proc. 15, 289–290 (1956).

    Google Scholar 

  • Klein, H. P., and M. Doudoroff: The mutation of Pseudomonas putrefaciens to glucose utilization and its enzymatic basis. J. Bacter. 59, 739–750 (1950).

    CAS  Google Scholar 

  • Kornberg, A.: Enzymatic synthesis of triphosphopyridine nucleotide. J. of Biol. Chem. 182, 805–813 (1950).

    CAS  Google Scholar 

  • Kostytschew, S.: Über die Anteilnahme der Zymase am Atmungsprozesse der Samenpflanzen. Biochem. Z. 15, 164–195 (1909).

    Google Scholar 

  • Kostytschew, S.: Über Zuckeroxydation bei der Pflanzenatmung. Z. physiol. Chem. 67, 116–137 (1910).

    Google Scholar 

  • Kovachevich, R., and W. A. Wood: Carbohydrate metabolism by Pseudomonas fluorescens. III. Purification and properties of a 6-phosphogluconate dehydrase. J. of Biol. Chem. 213, 745–756 (1955 a).

    CAS  Google Scholar 

  • Kovachevich, R., and W. A. Wood: IV. Purification and properties of 2-keto-3-deoxy-6-phospho-gluconate aldolase. J. of Biol. Chem. 213, 757–767 (1955b).

    CAS  Google Scholar 

  • Krebs, H. A., S. Gtjrin and L. V. Eggleston: The pathway of oxidation of acetate in baker’s yeast. Biochemic. J. 51, 614–628 (1952).

    CAS  Google Scholar 

  • Kuhn, R., u. H. Tiedemann: Zum Stoffwechsel des Lactobacillus bifidus; die Umsetzung von radioaktiver 14C-1-glucose. Z. Naturforsch. 8 b, 428–436 (1953).

    Google Scholar 

  • Lampen, J. O.: Metabolism of desoxyribose nucleosides in animal tissues and in Escherichia coli. In: W. D. McElroy and B. Glass (edit.), Phosphorus Metabolism, vol. 1, p. 160–170 Baltimore: Hopkins Press 1951.

    Google Scholar 

  • Lampen, J. O.: Formation of ribose phosphate from xylose by extracts of Lactobacillus pentosus. J. of Biol. Chem. 204, 999–1010 (1953).

    CAS  Google Scholar 

  • Lanning, M. C., and S. S. Cohen: The mechanism of ribose formation in Escherichia coli. J. of Biol. Chem. 207,193–199 (1954).

    CAS  Google Scholar 

  • Leaver, F. W., and H. G. Wood: Evidence from fermentation of labelled substrates which is inconsistent with present concept of propionic acid fermentation. J. Cellul. a. Comp. Physiol. 41, Suppl., 225–240 (1953).

    CAS  Google Scholar 

  • Lechartier, G., et F. Bellamy: De la fermentation des fruits. C. r. Acad. Sci. Paris 69, 446–469 (1869);

    Google Scholar 

  • Lechartier, G., et F. Bellamy: De la fermentation des fruits. C. r. Acad. Sci. Paris 75, 1203–1206 (1872);

    Google Scholar 

  • Lechartier, G., et F. Bellamy: De la fermentation des fruits. C. r. Acad. Sci. Paris 79, 1000–1009 (1874).

    Google Scholar 

  • Lewis, K. F., H. J. Blumenthal, R. S. Weinrach and S. Weinhouse: An isotope tracer study of glucose catabolism in Pseudomonas fluorescens. J. of Biol. Chem. 216,273–286 (1955).

    CAS  Google Scholar 

  • Lewis, K. F., H. J. Blumenthal, C. E. Wenner and S. Weinhouse: Estimation of glucose catabolism pathways. Federat. Proc. 13, 252 (1954).

    Google Scholar 

  • Ley, J. de: The phosphorylation of some carbohydrates, connected with direct oxidation by Aerobacter cloacae. Enzymologia 16, 99–104 (1953).

    Google Scholar 

  • Ley, J. de: The hexose monophosphate oxidative route in Aerobacter cloacae. Enzymologia 18, 33–46 (1957).

    Google Scholar 

  • Ley, J. de, and S. Cornut: Direct oxidation of glucose by Aerobacter sp. Nature (Lond.) 168, 515–516 (1951).

    Google Scholar 

  • Lipmann, F.: Fermentation of phosphogluconic acid. Nature (Lond.) 138, 588–589 (1936).

    CAS  Google Scholar 

  • Long, C.: The conversion of D-ribose into D-ribose-5-phosphate by extracts of Escherichia coli. Biochemic. J. 59, 322–329 (1955).

    CAS  Google Scholar 

  • Lundsgaard, E.: Die Monojodessigsäurewirkung auf die enzymatische Kohlenhydratspaltung. Biochem. Z. 220, 1–7 (1930 a).

    CAS  Google Scholar 

  • Lundsgaard, E.: Über die Einwirkung der Monojodessigsäure auf den Spaltungs- und Oxydationsstoffwechsel. Biochem. Z. 220, 8–18 (1930b).

    CAS  Google Scholar 

  • Mac Gee, J., and M. Doudoroff: A new phosphorylated intermediate in glucose oxidation. J. of Biol. Chem. 210, 617–626 (1954).

    CAS  Google Scholar 

  • Marmur, J., and F. Schlenk: Glycolaldehyde and glycolaldehyde phosphate as reaction components in enzymatic pentose formation. Arch. of Biochem. a. Biophysics 31, 154–155 (1951).

    CAS  Google Scholar 

  • Marré, E., e O. Servettaz: Attivita glucosio-6-fosfato deidrogenasica e cresita in Pisum sativum. Rend. Istit. Lombardo, Cl. Sci. 37, 135–149 (1954a).

    Google Scholar 

  • Marré, E., e O. Servettaz: Prime ricerche fisionomia enzimatica caratteristica della fotosintesi. Nouvo Giorn. bot. ital. 61, 378–383 (1954b).

    Google Scholar 

  • Mttsuhashi, S., and J. O. Lampen: Conversion of d-xylose to d-xylulose in extracts of Lactobacillus pentosus. J. of Biol. Chem. 204,1011 to 1018 (1953).

    Google Scholar 

  • Molliard, M.: Sur une nouvelle fermentation acide produite par le Sterig-matocystis nigra. C. r. Acad. Sci. Paris 174, 881–883 (1922).

    CAS  Google Scholar 

  • Moore, W. B., A. C. Blackwood and A. C. Neish: The metabolism of seven-carbon sugars, acids and alcohols by bacteria and yeasts. Canad. J. Microbiol. 1, 198–205 (1954).

    CAS  Google Scholar 

  • Mortenson, L. E., P. B. Hamilton and P. W. Wilson: Dissimilation of 6-phosphogluconate by Azotobacter vinelandii. Biochim. et Biophysica Acta 16, 238–244 (1955).

    CAS  Google Scholar 

  • Mortenson, L. E., and P. W. Wilson: Initial stages in the breakdown of carbohydrates by Azotobacter vinelandii. Arch. of Biochem. a. Biophysics 53, 425–435 (1954).

    CAS  Google Scholar 

  • Mortenson, L. E., and P. W. Wilson: Metabolism of ribose-5-phosphate by Azotobacter vinelandii. J. of Biol. Chem. 213, 713–721 (1955).

    CAS  Google Scholar 

  • Moss, R. D. de: Routes of ethanol formation in bacteria. J. Cellul. a. Comp. Physiol. 41, Suppl., 207–224 (1953).

    Google Scholar 

  • Moss, R. D. de: Oxidation of 6-phosphogluconate by Leuconostoc mesenteroides. Bacter. Proc. 1954,109.

    Google Scholar 

  • Moss, R. D. de, R. C. Bard and I. C. Gunsalus: The mechanism of the heterolactic fermentation: a new route of ethanol formation. J. Bacter. 62, 499–511 (1951).

    Google Scholar 

  • Moss, R. D. de, I. C. Gunsalus and R. C. Bard: A glucose-6-phosphate dehydrogenase in Leuconostoc mesenteroides. J. Bacter. 66, 10–16 (1953).

    Google Scholar 

  • Müller, D.: Studien über ein neues Enzym Glykoseoxydase. I. Biochem. Z. 199,136–143 (1928).

    Google Scholar 

  • Müller, D.: Studien über einneues Enzym Glykoseoxydase. IL Biochem. Z. 205, 111–143 (1929).

    Google Scholar 

  • Narrod, S.A. and W. A. Wood: Gluconate and 2-ketogluconate phosphorylation by extracts of Pseudomonas fluorescens. Bacter. Proc. 1954, 108.

    Google Scholar 

  • Negelein, E., u. W. Gerischer: Verbesserte Methode zur Gewinnung des Zwischenferments aus Hefe. Biochem. Z. 284, 289–296 (1936).

    CAS  Google Scholar 

  • Neish, A. C., and A. C. Blackwood: The anaerobic dissimilation of sedoheptulose-2-C14 and sedoheptulose-3-C14 by Aerobacter aerogenes. Canad. J. Biochem. a. Physiol. 33, 323–331 (1955).

    CAS  Google Scholar 

  • Neish, A. C., and F. J. Simpson: The anaerobic dissimilation of d-glucose-1-C14, D-arabinose-1-C14 and L-arabinose-1-C14 by Aerobacter aerogenes. Canad. J. Biochem. a. Physiol. 32, 147–153 (1954).

    CAS  Google Scholar 

  • Newburgh, R. W., C. A. Claridge and V. H. Cheldelin: Carbohydrate oxidation by the wheat smut fungus, Tilletia carries. J. of Biol. Chem. 214, 27–35 (1955).

    CAS  Google Scholar 

  • Nord, F. F., and R. P. Mull: Recent progress in the biochemistry of Fusaria. Adv. Enzymol. 5, 165–205 (1945).

    Google Scholar 

  • Norris, F. C., and J. J. R. Campbell: The intermediate metabolism of Pseudomonas aeruginosa. III. The application of paper chromatography to the identification of gluconic and 2-ketogluconic acids, intermediates in glucose oxidation. Canad. J. Res., Sect. C 27, 253–261 (1949).

    Google Scholar 

  • Nossal, P. M., I. A. Hansen and J. N. Ladd: The mechanism of yeast respiration. I. Preparation of actively respiring cell-free yeast extracts. Biochim. et Biophysica Acta 23,103–115 (1957).

    CAS  Google Scholar 

  • Ochoa, S.: Biosynthesis of dicarboxylic and tricarboxylic acids by carbon dioxide fixation. S E B Symposia. 5: Carbon dioxide fixation and photosynthesis, p. 29–51. Cambridge 1951.

    Google Scholar 

  • Ochoa, S., J. B. V. Salles and P. J. Ortiz: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. J. of Biol. Chem. 187, 863–874 (1950).

    CAS  Google Scholar 

  • Palladin, W.: Die Arbeit der Atmungsenzyme der Pflanzen unter verschiedenen Verhältnissen. Z. physiol. Chem. 47, 406–451 (1906).

    Google Scholar 

  • Palladin, W., u. S. Kostytschew: Anaerobe Atmung, Alkoholgärung und Acetonbüdung bei den Samenpflanzen. Z. physiol. Chem. 48, 214–239 (1906).

    CAS  Google Scholar 

  • Palleroni, N. J., R. Contopoulou and M. Doudoroff: Metabolism of carbohydrates by Pseudomonas saccharophila.II. Nature of the kinase reaction involving fructose. J. Bacter. 71, 202–207 (1956).

    CAS  Google Scholar 

  • Palleroni, N. J., and M. Doudoroff: Mannose isomerase of Pseudomonas saccharophila. J. of Biol. Chem. 218, 535–548 (1956).

    CAS  Google Scholar 

  • Pfeffer, W.: Das Wesen und die Bedeutung der Atmung in der Pflanze. Landwirtsch. Jb. 7, 805–834 (1878).

    Google Scholar 

  • Pflüger, E.: Beiträge zur Lehre von der Respiration. I. Über die physiologische Verbrennung in den lebendigen Organismen. Pflügers Arch. 10, 251–367 (1875).

    Google Scholar 

  • Purjewicz, K.: Die Bildung und Zersetzung der organischen Säuren bei den höheren Pflanzen. Bot. Zbl. 58, 368–374 (1894).

    Google Scholar 

  • Racker, E.: Enzymatic formation and breakdown of pentose phosphate. Federat. Proc. 7, 180 (1948).

    CAS  Google Scholar 

  • Racker, E.: Enzymatic synthesis of desoxypentose phosphate. Nature (Lond.) 167, 408–409 (1951).

    CAS  Google Scholar 

  • Racker, E.: Alternative pathways of glucose and fructose metabolism. Adv. Enzymol. 15, 141–182 (1954).

    CAS  Google Scholar 

  • Racker, E., G. de la Haba and I. G. Leder: Thiamine pyrophosphate, a coenzyme of transketolase. J. Amer. Chem. Soc. 75, 1010 (1953).

    CAS  Google Scholar 

  • Racker, E., G. de la Haba and I. G. Leder: Transketolase-catalyzed utilization of fructose-6-phosphate and its significance in a glucose-6-phosphate oxidation cycle. Arch. of Biochem. a. Biophysics 48, 238–240 (1954).

    CAS  Google Scholar 

  • Reazin Jr. G. H.: The metabolism of glucose by the alga Ochromonas malhamensis. Plant Physiol. 31, 299–303 (1956).

    PubMed  CAS  Google Scholar 

  • Reazin Jr. G. H.: The metabolism of glucose by the alga Ochromonas malhamensis. Plant Physiol. 31, 299–303 (1956).

    PubMed  CAS  Google Scholar 

  • Reazin Jr. G. H.: The metabolism of glucose by the alga Ochromonas malhamensis. Plant Physiol. 31, 299–303 (1956).

    PubMed  CAS  Google Scholar 

  • Roberts, I.Z. and E.L. Wolffe: Utilization of labelled fructose-6-phosphate and fructose-1, 6-phosphate by Escherichia coli. Arch. of Biochem. a. Biophysics 33, 165–166 (1951)

    CAS  Google Scholar 

  • Rollo: Experiences et observations sur le sucre. Ann. de Chim. 25, 37–50 (1978)

    Google Scholar 

  • Sable, H. Z.: Phosphorylation of ribose and adenosine in yeast extracts. Proc. Soc. Exper. Biol. a. Med. 75, 215–219 (1950).

    CAS  Google Scholar 

  • Sable, H. Z.: Pentose metabolism in extracts of yeast and animal tissues. Biochim. et Biophysica Acta 8, 687–697 (1952).

    CAS  Google Scholar 

  • Sable, H. Z., and J. A. Guarino: Phosphorylation of gluconate in yeast extracts. J. of Biol. Chem. 196, 395–402 (1952).

    CAS  Google Scholar 

  • Santer, M., and S. Ajl: Metabolic reactions of Pasteurella pestis. III. The hexose monophosphate shunt in the growth. J. Bacter. 69, 713–718 (1955).

    CAS  Google Scholar 

  • Schramm, M., Z. Gromet and S. Hestrin: Rôle of hexose phosphate in synthesis of cellulose by Acetobacter xylinum. Nature (Lond.) 179, 28–29 (1957).

    CAS  Google Scholar 

  • Schramm, M., and E. Racker: Formation of erythrose-4-phosphate and acetyl phosphate by a phosphorolytic cleavage of fructoses-phosphate. Nature (Lond.) 179, 1349–1350 (1957).

    CAS  Google Scholar 

  • Scott, D. B. McNair, and S. S. Cohen: The origin and metabolism of ribose. J. Cellul. a. Comp. Physiol. 38, Suppl. 1, 173–201 (1951a).

    Google Scholar 

  • Scott, D., B. McNair, and S. S. Cohen: Enzymatic formation of pentose phosphate from 6-phosphogluconate. J. of Biol. Chem. 188, 509–529 (1951b).

    CAS  Google Scholar 

  • Scott, D., B. McNair, and S. S. Cohen: Preparation, properties and assay of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of E. coli. Federat. Proc. 11, 284 (1952).

    Google Scholar 

  • Scott, D., B. McNair, and S. S. Cohen: The oxidative pathway of carbohydrate metabolism in Escherichia coli. I. The isolation and properties of glucose-6-phosphate and 6-phosphogluconate dehydrogenase. Biochemic J. 55, 23–33 (1953 a).

    CAS  Google Scholar 

  • Scott, D., B. McNair, and S. S. Cohen: II. Quantitative studies of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Biochemic. J. 55, 33–36 (1953 b).

    CAS  Google Scholar 

  • Seegmiller, J. E., and B. L. Horecker: Metabolism of 6-phosphogluconic acid in liver and bone marrow. J. of Biol. Chem. 194, 261–268 (1952).

    CAS  Google Scholar 

  • Shu, P., and G. A. Ledingham: Enzymes related to carbohydrate metabolism in uredospores of wheat stem rust. Canad. J. Microbiol. 2, 489–495 (1956).

    CAS  Google Scholar 

  • Sih, C. J., P. B. Hamilton and S. G. Knight: Demonstration of the pentose cycle reactions in Pénicillium chrysogenum. J. Bacter. 73, 447–451 (1957).

    CAS  Google Scholar 

  • Sih, C. J., and S. G. Knight: Carbohydrate metabolism of Pénicillium chrysogenum. J. Bacter. 72, 694–699 (1956).

    CAS  Google Scholar 

  • Simpson, F. J., and W. A. Wood: L-ribulose-5-phosphate: Formation by purified kinase from Aerobacter aerogenes. J. Amer. Chem. Soc. 78, 5452–5453 (1956).

    CAS  Google Scholar 

  • Slein, M. W.: Xylose isomerase from Pasteurella pestis. J. Amer. Chem. Soc. 77, 1663–1667 (1955).

    CAS  Google Scholar 

  • Sokatch, J. T., and J. C. Gunsalus: The enzymes of an adaptive gluconate fermentation pathway in Streptococcus faecalis. Bacter. Proc. 1954, 109–110.

    Google Scholar 

  • Spencer, J. F. T., A. C. Neish and A.C. Blackwood: Polyhydric alcohol production by osmophüic yeast. Studies with C14-labelled glucose. Canad. J. Biochem. a. Physiol. 34, 495–501 (1956).

    CAS  Google Scholar 

  • Srere, P. A., J. R. Cooper, V. Klybas and E. Backer: Xylulose-5-phosphate, a new intermediate in the pentose phosphate cycle. Arch. of Biochem. a. Biophysics 59, 535–538 (1955).

    CAS  Google Scholar 

  • Srere, P. A., H. L. Kornberg and E. Racker: Conversion of pentose phosphate to hexose phosphate catalyzed by purified enzymes. Federat. Proc. 14, 285–286 (1955).

    Google Scholar 

  • Stone, B. A., and R. M. Höchster: On the mechanism of the aerobic oxidation of D-xylose and of D-ribose-5-phosphate by cell-free extracts of Pseudomonas hydrophila. Canad. J. Microbiol. 2, 623–643 (1956).

    Google Scholar 

  • Strauss, B. S., and S. Pierog: Gene interactions: the mode of action of the suppressor of acetaterequiring mutants of Neurospora crassa. J. Gen. Microbiol. 10, 221–235 (1954).

    PubMed  CAS  Google Scholar 

  • Stumpf, P. K.: Glycolytic enzymes in higher plants. Annual Rev. Plant Physiol. 3, 17–34 (1952).

    Google Scholar 

  • Stumpf, P. K., and B. L. Horecker: The rôle of xylulose-5-phosphate in xylose metabolism of Lactobacillus pentosus. J. of Biol. Chem. 218, 753–768 (1956).

    CAS  Google Scholar 

  • Tager, J. M., and J. B. Biale: Carboxylase and aldolase activity in the ripening banana. Physiol. Plantarum (Copenh.) 10. 79–85 (1957).

    CAS  Google Scholar 

  • Tamiya, H.: Über die Verwendbarkeit von verschiedenen Kohlenstoffverbindungen im Bau- und Betriebsstoffwechsel der Schimmelpilze. Acta phytochim (Tokyo) 6, 1–129 (1932).

    CAS  Google Scholar 

  • Tewftk, S., and P. K. Stumpf: Carbohydrate metabolism in higher plants. IV. Observations on triose phosphate dehydrogenase. J. of Biol. Chem. 192, 519–526 (1951a).

    Google Scholar 

  • Tewftk, S., and P. K. Stumpf: V. Enzvmic oxidation of fructose diphosphate. J. of Biol. Chem. 192, 527–533 (1951b).

    Google Scholar 

  • Trautwein, K., u. J. Wassermann: Die pH-Empfindlichkeit der atmenden und gärenden Bierhefe. Umschaltung von Gärung auf Atmung. Biochem. Z. 236, 35–53 (1931).

    CAS  Google Scholar 

  • Trautwein, K., u. K. Weigand: Die direkte Ver-atmung von Zucker durch Hefen. Biochem. Z. 240, 423–429 (1931).

    CAS  Google Scholar 

  • Turner, J. F., and L. W. Mapson: Aerobic inhibition of glycolysis. Nature (Lond.) 181, 270 (1958).

    CAS  Google Scholar 

  • Turner, J. S.: On the relation between respiration and fermentation in yeast and the higher plants. New Phytologist 36, 142–169 (1937).

    CAS  Google Scholar 

  • Vandemark, P. J., and W. A. Wood: The pathway of glucose dissimilation by Micro-bacterium lacticum. J. Bacter. 71, 385–392 (1956).

    CAS  Google Scholar 

  • Vandemark, P. J., and G. M. Fukui: An enzymatic study of the utilization of gluconic acid by Propionibacterium pentosaceum. J. Bacter. 72, 610–614 (1956).

    CAS  Google Scholar 

  • Wagner-Jauregg, T., u. H. Rauen: Über die enzvmatische Dehydrierung von Citronen-säure. Biochem. Z. 233, 215–222 (1935).

    CAS  Google Scholar 

  • Wang, C. H., J. J. Bialy and C. M. Gilmour: Glucose metabolism in Streptomyces griseus. Federat. Proc. 15, 378–379 (1956).

    Google Scholar 

  • Wang, C. H., C.M. Gilmour and V. H. Cheldelin: Comparative study of glucose catabolism in microorganisms. Abstracts 7. Internat. Congr. Microbiol., Stockholm 1958, S. 147.

    Google Scholar 

  • Warburg, O., u. W. Christian: Über Aktivierung der Robisonschen Hexose-Mono-Phosphorsäure in roten Blutzellen und die Gewinnung aktivierender Fermentlösungen. Biochem. Z. 242, 206–227 (1931).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Verbrennung von Robison-Ester durch Triphospho-pyridin-nucleotid. Biochem. Z. 287, 440–441 (1936).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Abbau von Robison-Ester durch Triphospho-pvridin nucleotid. Biochem. Z. 292, 287–295 (1937).

    CAS  Google Scholar 

  • Warburg, O., W. Christian u. A. Griese: Wasserstoffübertragendes Coferment, seine Zusammensetzung und Wirkungsweise. Biochem. Z. 282, 157–205 (1935).

    CAS  Google Scholar 

  • Wirth, J., and E. F. Nord: Essential steps in the enzymatic breakdown of hexoses and pentoses. Interaction between dehydrogenation and fermentation. Arch. of Biochem. 1, 143–163 (1942).

    CAS  Google Scholar 

  • Wood, W. A., and R. F. Schwerdt: Carbohydrate oxidation by Pseudomonas fluorescens. I. The mechanism of glucose and gluconate oxidation. J. of Biol. Chem. 201, 501–511 (1953a).

    CAS  Google Scholar 

  • Wood, W. A., and R. F. Schwerdt: II. Mechanism of hexose phosphate oxidation. J. of Biol. Chem. 206, 625–635 (1954).

    CAS  Google Scholar 

  • Wortmann, J.: Über die Beziehungen der intramolekularen zur normalen Atmung der Pflanzen. Arb. bot. Inst. Würzburg 2, 500–520 1880).

    Google Scholar 

  • Arnon, D. I.: Glyceraldehyde phosphate dehydrogenase of green plants. Science (Lancaster, Pa.) 116, 635–637 (1952).

    PubMed  CAS  Google Scholar 

  • Axelrod, B., and R. S. Bandurski: Oxidative metabolism of hexose phosphates by higher plants. Federat. Proc. 11, 182 (1952).

    Google Scholar 

  • Axelrod, B., and R. S. Bandurski: Phospho-glyceryl kinase in higher plants. J. of Biol. Chem. 204, 939–948 (1953).

    CAS  Google Scholar 

  • Beevers, H., and M. Gibbs: The direct oxidation pathway in plant respiration. Plant Physiol. 29, 322–324 (1954).

    PubMed  CAS  Google Scholar 

  • Calvin, M.: The photosynthetic carbon cycle. J. Chem. Soc. Lond. 1956, 1895–1915.

    Google Scholar 

  • Gibbs, M.: Triose phosphate dehydrogenase and glucose 6-phosphate dehydrogenase in the pea plant. Nature (Lond.) 170, 164 (1952).

    CAS  Google Scholar 

  • Gibbs, M., and B. L. Horecker: The mechanism of pentose phosphate conversion to hexose monophosphate. II. With pea leaf and pea root preparations. J. of Biol. Chem. 208, 813–820 (1954).

    CAS  Google Scholar 

  • Gunsalus, I. C., B. L. Horecker and W. A. Wood: Pathways of carbohydrate metabolism in microorganisms. Bacter. Rev. 19, 79–128 (1955).

    CAS  Google Scholar 

  • Hageman, R. H., and D. I. Arnon: Changes in glyceraldehyde phosphate dehydrogenase during the life cycle of a green plant. Arch. of Biochem. a. Biophysics 57, 421–436 (1955).

    CAS  Google Scholar 

  • Hough, L., and J. K. N. Jones: The synthesis of sugars from simpler substances. Part V. Enzymic synthesis of sedoheptulose. J. Chem. Soc. Lond. 1953, 342–345.

    Google Scholar 

  • Miller, G.W.: Properties of enolase in extracts from pea seed. Plant Physiol. 33, 199–206 (1958).

    PubMed  CAS  Google Scholar 

  • Stumpf, P. K.: Carbohydrate metabolism in higher plants. I. Pea aldolase. J. of Biol. Chem. 176, 233–241 (1948).

    CAS  Google Scholar 

  • Stumpf, P. K.: Carbohydrate metabolism in higher plants. III. Breakdown of fructose diphosphate by pea extracts. J. of Biol. Chem. 182, 261–272 (1950).

    CAS  Google Scholar 

  • Tager, S. M.: The role of the pentose cycle in the ripening banana. S. Afr. J. Sci. 53, 167–170 (1956).

    CAS  Google Scholar 

  • Tewftk, S., and P.K. Stumpf: Carbohydrate metabolism in higher plants. II. The distribution of aldolase in plants. Amer. J. Bot. 36, 567–571 (1949).

    Google Scholar 

  • Tewftk, S., and P.K. Stumpf: Carbohydrate metabolism in higher plants. IV. Observations on triose phosphate dehydrogenase. J. of Biol. Chem. 192, 519–526 (1951).

    Google Scholar 

  • Wood, H. G.: Significance of alternate pathways in the metabolism of glucose. Physiologic. Rev. 35, 841–859 (1955).

    CAS  Google Scholar 

  • Arigoni, D.: Zur Biogenese pentacyclischer Triterpene in einer höheren Pflanze. Expe-rientia (Basel) 14, 153–155 (1958).

    CAS  Google Scholar 

  • Baddiley, J.: The structure of coenzyme A. Adv. Enzymol. 16, 1–21 (1955).

    CAS  Google Scholar 

  • Baddiley, J., D.E. Hughes, A.P. Mathias and W. S. Pierpont: The phosphorylation of pantothenic acid by Lactobacillus arabinosus. Biochemic. J. 56, XXII (1954).

    Google Scholar 

  • Barker, H. A.: Recent investigations on the formation and utilisatition of active acetate. In: W. D. McElroy and B. Glass, Phosphorus Metabolism, Vol.1, p. 204–245. Baltimore: John Hopkins Press 1951.

    Google Scholar 

  • Barner, H. D., and D. J. O’Kane: Acetaldehyde oxidation in the absence of pyruvate oxidation factor. J. Bacter. 64, 381–386 (1952).

    CAS  Google Scholar 

  • Barner, H. D., and D. J. O’Kane: Beilsteins Handbuch der organischen Chemie, Bd. II, S. 97. Berlin: Springer 1920.

    Google Scholar 

  • Beinert, H.: Studies on the fatty acid oxidizing system of animal tissues. II. β-Ketoacyl derivates of coenzyme A. J. of Biol. Chem. 205, 575–584 (1953).

    CAS  Google Scholar 

  • Beinert, H., D. E. Green, P. Hele, H. Hift, R.W.v. Korff and C. V. R. Makrishnan: The acetate activating enzyme system of heart muscle. J. of Biol. Chem. 203, 35–45 (1953).

    CAS  Google Scholar 

  • Belitzer, W. A., u. J. T. Zybakowa: Über den mit der Atmung gekoppelten Phosphoryherungsmechanismus. Biokhymiya 4, 516–535 (1939).

    Google Scholar 

  • Berg, P.: Participation of adenyl-acetate in the acetate-activating system. J. Amer. Chem. Soc. 77, 3163–3164 (1955).

    CAS  Google Scholar 

  • Berg, P.: Acyl adenylates: an enzymatic mechanism of acetate activation. J. of Biol. Chem. 222, 991–1013 (1956a).

    CAS  Google Scholar 

  • Berg, P.: Acyl adenylates: the synthesis and properties of adenyl acetate. J. of Biol. Chem. 222,1015–1023 (1956b).

    CAS  Google Scholar 

  • Berman, R., I.B. Wilson and D. Nachmansohn: Choline acetylase specificity in relation to biological function. Biochim. et Biophysica Acta 12, 315–324 (1953).

    CAS  Google Scholar 

  • Bernhauer, K.: Grundzüge der Chemie und Biochemic der Zuckerarten. Berlin: Springer 1933.

    Google Scholar 

  • Bernhauer, K.: Biochemic der oxydativen Garungen. Erg. Enzymforsch. 3, 185–226 (1934).

    CAS  Google Scholar 

  • Bessman, S. P., and F. Lipmann: The enzymatic transacetylation between aromatic amines. Arch. of Biochem. a. Biophysics 46, 252–254 (1953).

    CAS  Google Scholar 

  • Bloch, K., and D. Rittenberg: Sources of acetic acid in the animal body. J. of Biol. Chem. 155, 243–254 (1944).

    CAS  Google Scholar 

  • Bloch, K., and D. Rittenberg: An estimation of acetic acid formation in the rat. J. of Biol. Chem. 159, 45–58 (1945).

    CAS  Google Scholar 

  • Brady, R. O.: Fluoroacetyl coenzyme A. J. of Biol. Chem. 217, 213–224 (1955).

    CAS  Google Scholar 

  • Bloch, K., and D. Rittenberg: The enzymatic synthesis of fatty acids by aldol condensation. Proc. Nat. Acad. Sci. U.S.A. 44, 993–998 (1958).

    Google Scholar 

  • Brady, R. O., J. V. Formica and G. J. Koval: The enzymatic synthesis of sphingosine. J. of Biol. Chem. 233, 1072 (1958).

    CAS  Google Scholar 

  • Brady, R.O., and E. R. Stadtman: Enzymatic thioltransacetylation. J. of Biol. Chem. 211, 621–629 (1954).

    CAS  Google Scholar 

  • Bratton, A.C., and E.K. Marshall: A new coupling component for sulfanilamide determination. J. of Biol. Chem. 128, 537–550 (1939).

    CAS  Google Scholar 

  • Breslow, R.: On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Amer. Chem. Soc. 80, 3719–3726 (1958).

    CAS  Google Scholar 

  • Breusch, F. L.: Breakdown of fat acids in tissues. I. The breakdown of β-keto acids. Enzymologia (Den Haag) 11, 169–173 (1944).

    CAS  Google Scholar 

  • Brown, D. H.: The D-glucosamine-6-phosphate-N-acetylase of yeast. Biochim. et Biophysica Acta 16, 429–431 (1955).

    CAS  Google Scholar 

  • Brown, G. M., J. A. Craig and E. E. Snell: Relation of the Lactobacillus bulgaricus factor to pantothenic acid and coenzyme A. Arch. of Biochem. 27, 473–475 (1950).

    CAS  Google Scholar 

  • Buchanan, I. M., W. Sakami and S. Gurin: A study of the mechanism of fatty acid oxidation with isotopic acetoacetate. J. of Biol. Chem. 169,411–418 (1947 a).

    CAS  Google Scholar 

  • Buchanan, I.M., W. Sakami, S. Gurin and D. W. Wilson: Studies of the intermediates of acetoacetate oxidation with isotopic C. J. of Biol. Chem. 157, 747–748 (1945a).

    CAS  Google Scholar 

  • Buchanan, I.M., W. Sakami, S. Gurin and D. W. Wilson: Intermediates of acetate and acetoacetate oxidation with isotopic carbon. J. of Biol. Chem. 159, 695–709 (1945b).

    CAS  Google Scholar 

  • Buchanan, I.M., W. Sakami, S. Gurin and D. W. Wilson: Intermediates in the biological oxidation of isotopic acetoacetate. J. of Biol. Chem. 169, 403–410 (1947).

    CAS  Google Scholar 

  • Büchner, E., u. J. Meisenheimer: Die chemischen Vorgänge bei der alkoholischen Gärung. Ber. dtsch. chem. Ges. 38,620–630 (1905).

    Google Scholar 

  • Buffa, P., R. A. Peters and R. W. Wakelin: Biochemistry of fluoroacetate poisoning. Isolation of an active tricarboxylic acid fraction from poisoned kidney homogenates. Biochemic. J. 48,467–477 (1951).

    CAS  Google Scholar 

  • Burton, K.: The free energy change associated with the hydrolysis of the thiol ester bond of acetyl-coenzyme A. Biochemic. J. 59, 44–46 (1955).

    CAS  Google Scholar 

  • Burton, R.M., and E. R. Stadtman: The oxidation of acetaldehyde to acetyl coenzyme A. J. of Biol. Chem. 202, 873–890 (1953).

    CAS  Google Scholar 

  • Chang, H. C., and J. H. Gaddum: Cholinester in Gewebsextrakten. J. of Physiol. 79, 255–285 (1933).

    CAS  Google Scholar 

  • Cheldelin, V.H., J. G. Hauge and T. E. King: Oxidative dissimilation in pantothenate-deficient Acetobacter suboxidans cells. Proc. Soc. Exper. Biol. a. Med. 82, 144–147 (1953).

    CAS  Google Scholar 

  • Chin, C. H., and I. C. Gunsalus: Lipoic acid-mediated synthesis of acetoin from acetyl phosphate by E. coli. Federat. Proc. 13, 191–192 (1954).

    Google Scholar 

  • Chou, T. C., and F. Lipmann: Separation of acetyl transfer enzymes in pigeon liver extract. J. of Biol. Chem. 196, 89–103 (1952).

    CAS  Google Scholar 

  • Chou, T. C., and M. Soodak: The acetylation of D-glucosamine by pigeon liver extracts. J. of Biol. Chem. 196, 105–109 (1952).

    CAS  Google Scholar 

  • Claisen, L., u. E. Hori: Über eine Synthese der Aconitsäure. Ber. dtsch. chem. Ges. 24, 120–127 (1891).

    Google Scholar 

  • Colowick, S. P., H. M. Kalckar and C. F. Cori: Glucose phosphorylation and oxidation in cell-free tissue extracts. J. of Biol. Chem. 137, 343–356 (1941).

    CAS  Google Scholar 

  • Cross, R. I., I. V. Taggart, G. A. Covo and D. E. Green: Studies on the cyclo-phorase system. VI. The coupling of oxidation and phosphorvlation. J. of Biol. Chem. 177, 655–678 (1949).

    CAS  Google Scholar 

  • Dagley, S., and E. A. Dawes: Dissimilation of citric acid by bacterial extracts. Nature (Lond.) 172, 345–346 (1953a).

    CAS  Google Scholar 

  • Dagley, S., and E. A. Dawes: Dissimilation of citric acid by extracts of Aerobacter aero-genes. Biochemic. J. 55, XVI (1953b).

    CAS  Google Scholar 

  • Dakin, H.: Oxidations and reductions in the animal body. London: Longmans, Green & Co. 1912.

    Google Scholar 

  • Davidson, E. A., H. J. Blumenthal and S. Roseman: Studies on glucosamine-6-phosphate-N-acetylase. Bacter. Proc. 1956,108–109.

    Google Scholar 

  • De Busk, G. B., and L. J. Reed: Coenzymatic functions of thiamine pyrophosphate and lipothiamide pyrophosphate. Federat. Proc. 12,193–194(1953).

    Google Scholar 

  • Decker, K.: Die biologischen Reaktionen der aktivierten Acetessigsäure. Diss. München 1955.

    Google Scholar 

  • Decker, K.: Die aktivierte Essigsäure. Das Coenzym A und seine Acylderivate im Stoffwechsel der Zelle. Stuttgart: Ferdinand Enke 1959.

    Google Scholar 

  • De Tar, D.F., and F.H. Westheimer: The role of thiamin in carboxylase. J. Amer. Chem. Soc. 81, 175–178 (1959).

    Google Scholar 

  • Doherty, D.C., and F. Vaslow: Thermodynamic study of an enzyme-substrate complex of chymotrypsin. J. Amer. Chem. Soc. 74, 931–936 (1952).

    CAS  Google Scholar 

  • Dolin, M. I., and I. C. Gunsalus: Pyruvic acid metabolism. II. An acetoin-forming enzyme system in Streptococcus faecalis. J. Bacter. 62, 199–214 (1951).

    CAS  Google Scholar 

  • Dolin, M. I., and I. C. Gunsalus: A soluble pyruvate-ketobutyrate dehydrogenase system from Streptococcus faecalis M. J. Federat. Proc. 11, 203 (1952).

    Google Scholar 

  • Eisenberg, M. A.: The tricarboxylic acid cycle in Rhodospirillum rubrum. J. of Biol. Chem. 203, 815–836 (1953).

    CAS  Google Scholar 

  • Elliot, K. A. C., M. P. Benoy and Z. Baker: The metabolism of lactic and pyruvic acids in normal and tumour tissues. II. Rat kidney and transplantable tumours. Biochemic. J. 29, 1937–1950 (1935).

    Google Scholar 

  • Elliot, K. A. C., and M. E. Greig: The metabolism of lactic and pyruvic acids in normal and tumour tissues. IV. The formation of succinate. Biochemic. J. 31, 1021–1032 (1937a).

    Google Scholar 

  • Elliot, K. A. C., M. E. Greig and M. P. Benoy: The metabolism of lactic and pyruvic acids in normal and tumour tissues. III. Rat liver, brain and testis. Biochemic. J. 31, 1003–1020 (1937b).

    Google Scholar 

  • Elliot, K. A. C., and E. F. Schroeder: The metabolism of lactic and pyruvic acids in normal and tumour tissues. I. Methods and results with kidney cortex. Biochemic. J. 28, 1920–1939 (1934).

    Google Scholar 

  • Elliot, W.B., and G. Kalnitsky: The oxidation of acetate. J. Biol. Chem. 186, 477–486 (1950).

    Google Scholar 

  • Embden, G., u. A. Loeb: Über die Acetessigsäurebildung aus Essigsäure. Z. physiol. Chem. 88, 246–258 (1913).

    Google Scholar 

  • Feldberg, W., and T. Mann: Properties and distribution of the enzyme system which synthesizes acetylcholine in nervous tissues. J. of Physiol. 104, 411–425 (1946).

    CAS  Google Scholar 

  • Ferguson, J. J., I. F. Durr and H. Rudney: Enzymatic reduction of β-hydroxy-β-methylglutaryl coenzyme A (HMGCoA) to mevalonic acid in yeast. Federat. Proc. 17, 861 (1958).

    Google Scholar 

  • Friedmann, E.: Zur Kenntnis des Abbaues der Karbonsäuren im Tierkörper. XVII. Über die Bildung von Acetessigsäure aus Essigsäure bei der Leberdurchblutung. Biochem. Z. 55, 436–442 (1913).

    Google Scholar 

  • Gavard, R., et H. Descourtieux: Attaque phosphorylante du glucose par un extrait enzymatique de Clostridium butyricum. IV. Réaction couplée entre la triosephosphate dés-hydrogénase et certains enzymes du cycle des acides gras de Lynen. C. r. Acad. Sci. Paris 239, 201–203 (1954).

    PubMed  CAS  Google Scholar 

  • Goldman, D. S.: Studies on the fatty acid oxidizing system of animal tissues. VII. The β-ketoacyl coenzyme A cleavage enzyme. J. of Biol. Chem. 208, 345–357 (1954).

    CAS  Google Scholar 

  • Grafflin, A. L., and D. E. Green: Studies on the cyclophorase system. II. The complete oxidation of fatty acids. J. of Biol. Chem. 176, 1–9 (1948).

    Google Scholar 

  • Green, D.E.: Integrated enzyme activity in soluble extracts of heart muscle. Science (Lancaster, Pa.) 115, 661–665 (1952).

    PubMed  CAS  Google Scholar 

  • Green, D.E., and H. Beinert: Oxidative phosphorylation in a nonmitochondrial system of pig heart. In: W. D. McElroy and B. Glass, Phosphorus metabolism, vol. I, p. 330–343. Baltimore: John Hopkins Press 1951.

    Google Scholar 

  • Green, D. E., D. S. Goldman, S. Mn and H. Beinert: The acetoacetate activation and cleavage enzyme system. J. of Biol. Chem. 202, 137–150 (1953).

    CAS  Google Scholar 

  • Grob, E.C., u. R. Butler: Über die Biosynthese des β-Carotins bei Mucor Mentalis. Die Beteiligung der Essigsäure am Aufbau des Carotinmoleküls, untersucht mit Hilfe C14-markierter Essigsäure. Experientia (Basel) 10, 250–251 (1954a).

    CAS  Google Scholar 

  • Grob, E.C., u. R. Butler: Über die Biosynthese des β-Carotins bei Mucor Mentalis Wehmer. Die Beteiligung der Essigsäure am Aufbau der Carotinmolekel, insbesondere in den Ionongruppierungen, untersucht mit Hilfe C14-markierter Essigsäure. Helvet. chim. Acta 37, 1908–1912 (1954b).

    CAS  Google Scholar 

  • Gunsalus, I. C.: The chemistry and function of the pyruvate oxidation factor (lipoic acid). J. Cellul. a. Comp. Physiol. 41, Suppl. 1, 113–136 (1953).

    CAS  Google Scholar 

  • Gunsalus, I. C.: Group transfer and acyl-generating functions of lipoic acid derivatives. In: Mechanism of enzyme action. Edit. W. D. McElroy and B. Glass, p.599–604. Baltimore: John Hopkins Press 1954.

    Google Scholar 

  • Gunsaltjs, I. C., L. Struglia and D. J. O’Kane: Pyruvic acid metabolism. IV. Occurrence, properties and partial purification of pyruvate oxidation factor. J. of Biol. Chem. 194, 859–869 (1952).

    Google Scholar 

  • Gurin, S., and D. I. Crandall: The biological oxidation of fatty acids. Cold Spring Harbor Symp. Quant. Biol. 13, 118–128 (1948).

    CAS  Google Scholar 

  • Hager, L. P., J. D. Fortney and I. C. Gunsaltjs: Mechanism of pyruvate and a-keto-glutarate dehydrogenase systems. Federat. Proc. 12, 213 (1953).

    Google Scholar 

  • Hager, L. P., D. M. Geller and F. Lipmann: Flavoprotein-catalyzed pyruvate-oxidation in Lactobacillus del-bruckii. Federat. Proc. 13, 734–738 (1954).

    CAS  Google Scholar 

  • Hager, L. P., and I. C. Gunsalus: Lipoic acid dehydrogenase: The function of È. coli fraction B. J. Amer. Chem. Soc. 75, 5767–5768 (1953).

    CAS  Google Scholar 

  • Hallmann, N., and P. E. Simola: Mechanism of the biological citric acid synthesis. Science (Lancaster, Pa.) 90, 594–595 (1939).

    Google Scholar 

  • Hallmann, N., and P. E. Simola: Mechanism of the biological citric acid synthesis. Science (Lancaster, Pa.) 90, 594–595 (1939).

    Google Scholar 

  • Handschumacher, R. E., G. C. Mueller and F. M. Strong: An improved enzymatic assay for coenzyme A. J. of Biol. Chem. 189, 335–342 (1951).

    CAS  Google Scholar 

  • Harpur, R. P., and I. H. Quastel: Phosphorylation of d-glucosamine by brain extracts. Nature (Lond.) 164, 693–694 (1949).

    CAS  Google Scholar 

  • Hele, P.: The acetate activating enzyme of beef heart. J. of Biol. Chem. 206, 671–676 (1954).

    CAS  Google Scholar 

  • Hilz, H.: Über die Bildungsweise der „aktivierten Essigsäure“. Diss. München 1953.

    Google Scholar 

  • Hoagland, M. B., and G. D. Novelli: Biosynthesis of coenzyme A from phospho-pantetheine and of pantethein from pantothenate. J. of Biol. Chem. 207, 767–773 (1954).

    CAS  Google Scholar 

  • Holzer, H., u. H. W. Goedde: Zwei Wege von Pyruvat zu Acetyl-Coenzym A in Hefe. Biochem. Z. 329,175–191 (1957).

    PubMed  CAS  Google Scholar 

  • Hornberger, C. S., R. F. Heitmiller, I. C. Gunsalus, G. H. F. Schnakenberg and L. J. Reed: Synthesis of d, L-α-lipoic acid. J. Amer. Chem. Soc. 75, 1273–1277 (1953).

    CAS  Google Scholar 

  • Hunter, F. E., and L. F. Leloir: Citric acid formation from acetoacetic and oxalacetic acids. J. of Biol. Chem. 159, 295–310 (1945).

    CAS  Google Scholar 

  • Jagannathan, V., and R. S. Schweet: Pyruvic oxidase of pigeon breast muscle. I. Purification and properties of the enzyme. J. of Biol. Chem. 196, 551–562 (1952).

    CAS  Google Scholar 

  • Jones, M. E.: Diskussion im Rahmen des „Symposium on chemistry and function of coenzyme A“. Federat, Proc. 12, 708–710 (1953).

    CAS  Google Scholar 

  • Jones, M. E., S. Black, R. M. Flynn and F. Ltpmann: Acetyl coenzyme A synthesis through pyrophosphoryl split of adenosine triphosphate. Biochim. et Biophysica Acta 12, 141–149 (1953).

    CAS  Google Scholar 

  • Jones, M. E., F. Llp-mann, H. Hilz and F. Lynen: On the enzymatic mechanism of coenzyme A acetylation with adenosine triphosphate and acetate. J. Amer. Chem. Soc. 75, 3285–3286 (1953).

    CAS  Google Scholar 

  • Juni, E.: Mechanisms of formation of acetoin bv bacteria. J. of Biol. Chem. 195, 715–726 (1952).

    CAS  Google Scholar 

  • Kaplan, N. O., and F. Lipmann: Reactions between acetate, acetyl phosphate and the adenylic acid system in tissue and bacterial extracts. Federat. Proc. 7, 163 (1948 a).

    CAS  Google Scholar 

  • Kaplan, N. O., and F. Lipmann: The assay and distribution of coenzyme A. J. of Biol. Chem. 174, 37–44 (1948b).

    CAS  Google Scholar 

  • Katz, J., I. Lieberman and H. A. Barker: Acetylation of amino acids by enzymes of Clostridium kluyveri. J. of Biol. Chem. 200, 417–429 (1953 a).

    CAS  Google Scholar 

  • Kaplan, N. O., and F. Lipmann: Formation of propionyl-, butyryl-, and other acylglycines by enzymes of Clostridium kluyveri. J. of Biol. Chem. 200, 431–441 (1953 b).

    Google Scholar 

  • Knoop, F.: Oxydationen im Tierkörper. Ein Bild von den Hauptwegen physiologischer Verbrennungen. Stuttgart: Ferdinand Enke 1931.

    Google Scholar 

  • Knoop, F., u. C. Martius: Über die Bildung von Citronensäure. Z. physiol. Chem. 242, 1 (1936).

    Google Scholar 

  • Knox, W. E., B. N. Noyce and V. H. Auerbach: Studies on the cyclophorase system. III. Obligatory sparking of fatty acid oxidation. J. of Biol. Chem. 170, 117–122 (1948).

    Google Scholar 

  • Kornberg, H. L., and H. Beevers: The glyoxylate cycle as a stage in the conversion of fat to carbohydrate in castor beans. Biochim. et Biophysica Acta 26, 531–537 (1957). —

    CAS  Google Scholar 

  • Kornberg, H. L., and H. A. Krebs: Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature (Lond.) 179, 988–991 (1957).

    PubMed  CAS  Google Scholar 

  • Korkes, S., A. del Campillo, I. C. Gunsalus and S. Ochoa: Enzymatic synthesis of citric acid. IV. Pyruvate as acetyl donor. J. of Biol. Chem. 193, 721–735 (1951).

    CAS  Google Scholar 

  • Korkes, S., A. del Campillo, S. R. Korey, J. R. Stern, D. Nachmansohn and S. Ochoa: Coupling of acetyl donor systems with choline acetylase. J. of Biol. Chem. 198, 215–220 (1952a).

    CAS  Google Scholar 

  • Korkes, S., A. del Campillo and S. Ochoa: Pyruvate oxidation system of heart muscle. J. of Biol. Chem. 195, 541–547 (1952b).

    CAS  Google Scholar 

  • Korkes, S., J. R. Stern, I. C. Gunsalus and S. Ochoa: Enzymatic synthesis of citrate from pyruvate and oxalacetate. Nature (Lond.) 166, 439–440 (1950).

    CAS  Google Scholar 

  • Krampitz, L. O., G. Greull, C. S. Miller, J. B. Bicking, H. R. Skeggs and J. M. Sprague: An active acetalde-hyde-thiamine intermediate. J. Amer. Chem. Soc. 80,5893–5894(1958).

    CAS  Google Scholar 

  • Krebs, H.A.: The intermediary stages in the biological oxidation of carbohydrate. Adv. Enzymol. 3, 191–252 (1943).

    CAS  Google Scholar 

  • Krebs, H.A., and W. A. Johnson: The role of citric acid in intermediate metabolism in animal tissues. Enzymologia (Den Haag) 4, 148–156 (1937).

    CAS  Google Scholar 

  • Langenbeck, W., u. G. Faust: Acetoinbildung mit gereinigter Apocarboxylase und synthetischer Cocarboxylase. Z. physiol. Chem. 292, 73–75 (1953).

    CAS  Google Scholar 

  • Lehninger, A. L.: The relationship of the adenosine polyphosphates to fatty acid oxidation in homogenized liver preparations. J. of Biol. Chem. 157, 363–381 (1945).

    CAS  Google Scholar 

  • Lehninger, A. L.: On the activation of fatty acid oxidation. J. of Biol. Chem. 161, 437–451 (1946a).

    Google Scholar 

  • Lehninger, A. L.: Quantitative study of the products of fatty acid oxidation in liver suspensions. J. of Biol. Chem. 164, 291–306 (1946b).

    CAS  Google Scholar 

  • Lewintow, L., and G. D. Novelli: Enzymatic synthesis of coenzyme A from pantetheine and other fragments. 122. Meeting Amer. Chem. Soc. Atlantic City, Sept. 1952, Abstr. 33c—34c.

    Google Scholar 

  • Lewintow, L., and G. D. Novelli: The synthesis of coenzyme A from pantetheine: Preparation and properties of pantetheine kinase. J. of Biol. Chem. 207, 761–765 (1954).

    Google Scholar 

  • Liang, P.: Zit. nach H. Wieland u. R. G. Jennen, 1941.

    Google Scholar 

  • Lipmann, F.: Die Dehydrierung der Brenztraubensäure. Enzymologia (Den Haag) 4, 65–72 (1937).

    CAS  Google Scholar 

  • Lipmann, F.: A phosphorylated oxidation product of pyruvic acid. J. of Biol. Chem. 134,463–464 (1940).

    CAS  Google Scholar 

  • Lipmann, F.: Enzymic synthesis of acetyl phosphate. J. of Biol. Chem. 155, 55–70 (1944).

    CAS  Google Scholar 

  • Lipmann, F.: Acetylation of sulfanilamide by liver homogenates and extracts. J. of Biol. Chem. 160, 173–190 (1945).

    CAS  Google Scholar 

  • Lipmann, F.: Acetyl phosphate. Adv. Enzymol. 6, 231–267 (1946).

    CAS  Google Scholar 

  • Lipmann, F.: Biosynthetic mechanisms. Harvey Lect. 44, 99–123 (1948/49).

    PubMed  Google Scholar 

  • Lipmann, F.: On chemistry and function of coenzyme A. Bacter. Rev. 17, 1–16 (1953).

    CAS  Google Scholar 

  • Lipmann, F., M. E. Jones, S. Black and R. M. Flynn: Enzvmatic pyrophosphorylation of coenzyme A by adenosine triphosphate. J. Amer. Chem. Soc. 74, 2384–2385 (1952).

    CAS  Google Scholar 

  • Lipmann, F., M. E. Jones, S. Black and R. M. Flynn: The mechanism of the ATP-CoA-acetatereaction. J. Cellul. a. Comp. Physiol. 41, Suppl. 1, 109–112 (1953).

    CAS  Google Scholar 

  • Lipmann F., and N. O. Kaplan: A common factor in the enzymic acetylation of sulfanilamide and of choline. J. of Biol. Chem. 162, 743–744 (1946).

    CAS  Google Scholar 

  • Lipmann, F., N. O. Kaplan, G. D. Novelli, L. C. Tuttle and D. M. Guirard: Coenzyme for acetylation, a pantothenic acid derivative. J. of Biol. Chem. 167, 869–870 (1947).

    CAS  Google Scholar 

  • Lipmann, F., and L. C. Tuttle: The condensation of acetylphosphate with formate or CO2 in bacterial extracts. J. of Biol. Chem. 158, 505–519 (1945).

    CAS  Google Scholar 

  • Lipton, M. A., and E. S. G. Barron: On the mechanism of the anaerobic synthesis of acetylcholine. J. of Biol. Chem. 166, 367–380 (1946).

    CAS  Google Scholar 

  • Littlefield, J. W., and D. R. Sanadi: Role of the coenzyme A and diphosphopyridine nucleotide in the oxidation of pyruvate, J. of Biol. Chem. 199, 65–70 (1952).

    CAS  Google Scholar 

  • Long, C.: A general method for the estimation of a-keto-acids, and its apphcation to a-keto-acid metabolism in pigeon brain. Biochemic. J. 36, 807–814 (1942).

    CAS  Google Scholar 

  • Long, C.: The in vitro oxidation of pyruvic and a-ketobutyric acids by ground preparations of pigeon brain. The effect of inorganic phosphate and adenine nucleotide. Biochemic. J. 37, 215–225 (1943).

    CAS  Google Scholar 

  • Lynen, F.: Über die gemischten Anhydride aus Phosphorsäure und Essigsäure. Ber. dtsch. chem. Ges. 73, 367–375 (1940).

    Google Scholar 

  • Lynen, F.: Über den aeroben Phosphatbedarf der Hefe. Ein Beitrag zur Kenntnis der Pasteur-schen Reaktion. Liebigs Ann. 546, 120–141 (1941).

    CAS  Google Scholar 

  • Lynen, F.: Zum biologischen Abbau der Essigsäure. I. Über die „Induktionszeit” bei verarmter Hefe. Liebigs Ann. 552, 270–306 (1942).

    CAS  Google Scholar 

  • Lynen, F.: Fermente IL Fermente der biologischen Oxydation. Fiat-Review of German Science 1939 to 1946, vol III, p. 85–124. Wiesbaden 1948.

    Google Scholar 

  • Lynen, F.: Quantitative Bestimmung von Acyl-mercap-tanen mittels der Nitroprussid-Reaktion. Liebigs Ann. 574, 33–37 (1951).

    CAS  Google Scholar 

  • Lynen, F.: Functional group of coenzyme A and its metabolic relations, especially in the fatty acid cycle. Federat. Proc. 12, 683–691 (1953a).

    CAS  Google Scholar 

  • Lynen, F.: Mécanisme de la β-oxydation des acides gras. Bull. Soc. Chim. biol. Paris 35, 1061–1083 (1953 b).

    PubMed  CAS  Google Scholar 

  • Lynen, F.: Participation of coenzyme A in the oxidation of fat. Nature (Lond.) 174, 962–965 (1954).

    CAS  Google Scholar 

  • Lynen, F.: Lipide Metabolism. Annual Rev. Biochem. 24, 653–688 (1955a).

    CAS  Google Scholar 

  • Lynen, F.: Der Fettsäurecyclus. Angew. Chem. 67, 463–470 (1955b).

    CAS  Google Scholar 

  • Lynen, F.: New aspects of acetate incorporation into isoprenoid precursors. In: G.W.E. Wolstenholme, and M. O’Connor (editors), The Biosynthesis of Terpenes and Sterols. London: J. & A. Churchill 1959.

    Google Scholar 

  • Lynen, F., u. K. Decker: Das Coenzym A und seine biologischen Funktionen. Erg. Physiol. 49, 327–424 (1956).

    Google Scholar 

  • Lynen, F., K. Decker, O. Wieland u. D. Reinwein: Zur Spezifität der Enzyme des Fettsäurecyclus. In: Biochemical problems of lipids. Proc. II. Internat. Conference, Gent, Juli 1955, Edit. G. Popják and E. le Breton. p. 142–154. London: Butterworth Scientific Publications 1956.

    Google Scholar 

  • Lynen, F., U. Henning, C. Bublitz, B. Sörbo u. L. Kröplin-Ruefp: Der chemische Mechanismus der Acetessigsäure-bildung in der Leber. Biochem. Z. 330, 269–295 (1958).

    PubMed  CAS  Google Scholar 

  • Lynen, F., u. H. Holzer: Über den Phosphatbedarf der Hefe. II. Die Umsetzung von Butylalkohol und Butyraldehyd. Liebigs Ann. 563, 213–239 (1949).

    CAS  Google Scholar 

  • Lynen, F., u. N. Neciullah: Zum Abbau von Bernsteinsäure, Äpfelsäure und Citronensäure durch Hefe. Liebigs Ann. 541, 203–218 (1939).

    CAS  Google Scholar 

  • Lynen, F., and S. Ochoa: Enzymes of fatty acid metabolism. Biochim. et Biophysica Acta 12, 299–314 (1953).

    CAS  Google Scholar 

  • Lynen, F., u. E. Reichert: Zur chemischen Struktur der “aktivierten Essigsäure”. Angew. Chem. 63,47–48 (1951).

    CAS  Google Scholar 

  • Lynen, F., E. Reichert u. L. Rueff: Zum biologischen Abbau der Essigsäure. VI. „Aktivierte Essigsäure”, ihre Isolierung aus Hefe und ihre chemische Natur. Liebigs Ann. 574,1–32 (1951).

    CAS  Google Scholar 

  • Lynen, F., L. Wessely, O. Wieland u. L. Rueff: Zur β-Oxydation der Fettsäuren. Angew. Chem. 64, 687 (1952).

    CAS  Google Scholar 

  • Maas, W. K.: Mechanism of enzymatic synthesis of pantothenic acid from β-alanine and pantoic acid. Federat. Proc. 13, 256–257 (1954).

    Google Scholar 

  • Maas, W. K., G. D. Novelli and F. Lepmann: Acetylation of glutamic acid by extracts of Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 39, 1004–1008 (1953).

    CAS  Google Scholar 

  • Madsen, N.B.: Test for isocitritase and malate synthetase in animal tissues. Biochim. et Biophysica Acta 27, 199–201 (1958).

    CAS  Google Scholar 

  • Mahler, H. R.: Role of coenzyme A in fatty acid metabolism. Federat. Proc. 12, 694–702 (1953).

    CAS  Google Scholar 

  • Marcus, A., and W. B. Elliott: Enzymatic reactions of fluoroacetate and fluoroacetyl coenzyme A. J. of Biol. Chem. 218, 823–830 (1956).

    CAS  Google Scholar 

  • Martius, C.: Der Mechanismus der Citronensäurebildung im Tierkörper im Zusammenhang mit dem Abbau der Brenztrauben-säure. Z. physiol. Chem. 279, 96–104 (1943).

    CAS  Google Scholar 

  • Martius, C.: Über die Unterbrechung des Citronen-säurecyclus durch Fluoressigsäure. Liebigs Ann. 561, 227–232 (1949).

    CAS  Google Scholar 

  • Martius, C., u. F. Knoop: Der physiologische Abbau der Citronensäure. Vorläufige Mitteilung. Z. physiol. Chem. 246, I—II (1937).

    CAS  Google Scholar 

  • Martius, C., u. F. Lynen: Probleme des Citronensäurecyclus. Adv. Enzymol. 10, 167–221 (1950).

    Google Scholar 

  • Medes, G., N. F. Floyd and S. Weinhouse: Fatty acid metabolism. IV. Ketone bodies as intermediates of acetate oxidation in animal tissues. J. of Biol. Chem. 162, 1–9 (1946).

    CAS  Google Scholar 

  • Mcllerd, A., and J. Bonner: Acetate activation and acetoacetate formation in plant systems. Arch. of Biochem. a. Biophysics 49, 343–355 (1954).

    Google Scholar 

  • Morgan, W. T., and L. A. Elson: A colorimetic method for the determination of N-acetylglucosamine and N-acetylchondrosamine. Biochemic. J. 28, 988–995 (1934).

    CAS  Google Scholar 

  • Moyed, H. S., and D. J. O’Kane: The enzymes of the pyruvate oxidase system of Proteus vulgaris. Arch. of Biochem. a. Biophysics 39, 457–458 (1952).

    CAS  Google Scholar 

  • Munoz, J. M., and L. R. Leloir: Fatty acid oxidation by liver enzymes. J. of Biol. Chem. 147, 355–362 (1942).

    Google Scholar 

  • Nachmansohn, D.: Die Rolle des Acetylcholins in den Elementarvorgängen der Nervenleitung. Erg. Physiol. 48, 575–683 (1955).

    PubMed  CAS  Google Scholar 

  • Nachmansohn, D., and M. Berman: Studies on choline acetylase. III. Preparation of the coenzyme and its effect on the enzyme. J. of Biol. Chem. 165, 551–563 (1946).

    CAS  Google Scholar 

  • Nachmansohn, D., I. B. Wilson, S. R. Korey and R. Berman: Choline acetylase. VI. Substitution of adenosinetriphosphate acetate by thiol-acetate. J. of Biol. Chem. 195, 25–35 (1952).

    CAS  Google Scholar 

  • Novelli, G.D.: Enzymatic synthesis and structure of CoA. Federat. Proc. 12, 675–681 (1953).

    CAS  Google Scholar 

  • Novelli, G. D., and F. Lipmann: The catalytic function of coenzyme A in citric acid synthesis. J. of Biol. Chem. 182, 213–228 (1950).

    CAS  Google Scholar 

  • Ochoa, S.: Efficiency of aerobic phosphorylation in cell-free heart extracts. J. of Biol. Chem. 151, 493–505 (1943).

    CAS  Google Scholar 

  • Ochoa, S.: Biological mechanisms of carboxylation and décarboxylation. Physiologic. Rev. 31, 56–106 (1951).

    CAS  Google Scholar 

  • Ochoa, S.: Enzymatic mechanisms in the citric acid cycle. Adv. Enzymol. 15, 183–270 (1954).

    CAS  Google Scholar 

  • Ochoa, S., J. Harting, M. J. Coon, J. R. Stern, A. Del-Camptllo and M.C. Schneider: Zit. bei J.R. Stern, in S.P.Colowick and N.O.Kaplan, Methods in Enzymology, Bd. I, S. 581–585. New York: Academic Press 1955.

    Google Scholar 

  • Ochoa, S., J. R. Stern and M. C. Schneider: Enzymatic svnthesis of citric acid. II. Crystalline condensing enzyme. J. of Biol. Chem. 193, 691–720 (1951).

    CAS  Google Scholar 

  • O’Kane, D. J.: Non-lipoic pyruvate systems: acetate formation by Proteus und acetyl phosphate formation by Clostridium. Federat. Proc. 13, 739–741 (1954).

    Google Scholar 

  • O’Kane, D. J., and I. C. Gunsalus: Pyruvic acid metabolism. A factor required for oxidation by Streptococcus faecalis. J. Bacter. 56, 499–505 (1948).

    Google Scholar 

  • Peters, R. A.: The study of enzymes in relation to selective toxicity in animal tissues. Symposia Soc. Exper. Biol. 3, 36–59 (1949).

    Google Scholar 

  • Peters, R. A.: Significance of biochemical lesions in the pyruvate oxidase system. Brit. Med. Bull. 9, 116–122 (1953).

    PubMed  CAS  Google Scholar 

  • Peters, R. A.: Der Chemismus einer altbekannten Vergiftung: Die Synthese zum Gift. Endeavour 13 (51), 147–154 (1954).

    CAS  Google Scholar 

  • Peters, R. A., H. M. Sinclair and R. H. S. Thompson: An analysis of the inhibition of pyruvate oxidation bv arsenicals in relation to the enzyme theory of vesication. Biochemic. J. 40, 516–524 (1946).

    CAS  Google Scholar 

  • Peters, R. A., R. W. Wakelin and P. Buffa: Biochemistry of fluoroacetate poisoning. Isolation of a crystalline inhibitor of citrate metabolism. Biochemic. J. 50, XIII (1952).

    Google Scholar 

  • Peters, R. A., R. W. Wakelin, D. E. A. Rivett and L. C. Thomas: Fluoroacetate poisoning: Comparison of synthetic fluorocitric acid with the enzymically synthesized fluorotricarboxylic acid. Nature (Lond.) 171, 1111–1112 (1953).

    CAS  Google Scholar 

  • Pinchot, G. B., and E. Racker: Ethyl alcohol oxidation and phosphorylation in extracts of E. coli. In: W. D. McElroy and B. Glass (Herausgeber), Phosphorus metabolism, vol. I, p. 366–369. Baltimore: John Hopkins Press 1951.

    Google Scholar 

  • Radin, N. S., D. Rittenberg and D. Shemin: The rôle of the acetic acid in the biosynthesis of heme. J. of Biol. Chem. 184, 755–767 (1950).

    CAS  Google Scholar 

  • Reed, L. J., and B. G. de Busk: Lipothiamide and its relation to a thiamine coenzyme required for oxidative décarboxylation of α-keto acids. J. Amer. Chem. Soc. 74, 3457 (1952a).

    CAS  Google Scholar 

  • Reed, L. J., and B. G. de Busk: Lipoic acid conjugase. J. Amer. Chem. Soc. 74, 4727–4728 (1952b).

    CAS  Google Scholar 

  • Reed, L. J., and B. G. de Busk: A conjugate of a-lipoic acid required for oxidation of pyruvate and a- ketoglutarate by an Escherichia coli mutant. J. of Biol. Chem. 199, 873–880 (1952 c).

    CAS  Google Scholar 

  • Reed, L. J., and B. G. de Busk: Chemical nature of an a-lipoic acid conjugate required for oxidation of pyruvate and a-ketoglutarate by an Escherichia coli mutant. J. of Biol. Chem. 199, 881–888 (1952d).

    CAS  Google Scholar 

  • Reed, L. J., and B. G. de Busk: Mechanism of enzymatic oxidative décarboxylation of pyruvate. J. Amer. Chem. Soc. 75, 1261–1262 (1953a).

    Google Scholar 

  • Reed, L. J., and B. G. de Busk: Metabolic functions of thiamine and lipoic acid. Physiologic. Rev. 33, 544–559 (1953 b).

    CAS  Google Scholar 

  • Rendina, G.: Enzymatic synthesis of methylmalonic semialdehyde. Federat. Proc. 16,237–238 (1957).

    Google Scholar 

  • Rittenberg, D. and K. Bloch: Biological reaction of AcOH. J. of Biol. Chem. 157, 749–750 (1945 a).

    CAS  Google Scholar 

  • Rittenberg, D. and K. Bloch: Utilization of acetic acid for the synthesis of fatty acids. J. of Biol. Chem. 160, 417–424 (1945b).

    CAS  Google Scholar 

  • Rose, I., M. Grtjnberg-Manago, S. Korey und S. Ochoa: Enzymatic phosphorylation of acetate. J. of Biol. Chem. 211, 737–756 (1954).

    CAS  Google Scholar 

  • Rtjdney, H., and J. J. Ferguson jr.: The biosynthesis of β-hydroxy-β-methylglutaryl-coenzyme J.A. J. Amer. Chem. Soc. 79, 5580–5581 (1957).

    Google Scholar 

  • Schaffer, N. K.N. K., S. C. May, and W. H. Summerson: Serine phosphoric acid from di-isopropylphosphoryl chymotrypsin. J. of Biol. Chem. 202, 67–76 (1953).

    CAS  Google Scholar 

  • Schweet, R. S., and K. Cheslock: Pyruvic oxidase of pigeon breast muscle. III. Factors influencing enzymatic activity. J. of Biol. Chem. 199, 746–756 (1952).

    Google Scholar 

  • Schweet, R. S., B. Katchman, R. M. Bock and V. Jagannathan: Pyruvic oxidase of pigeon breast muscle. II. Physico-chemical studies. J. of Biol. Chem. 196, 563–567 (1952).

    CAS  Google Scholar 

  • Seaman, G. R.: Effect of thioctic acid on the incorporation of carbon dioxide into pyruvate. J. Bacter. 65, 744–745 (1953).

    CAS  Google Scholar 

  • Seaman, G. R.: Preparation and properties of the succinate-cleaving enzyme. J. of Biol. Chem. 228, 149–161 (1957).

    CAS  Google Scholar 

  • Seaman, G. R., and M. Dell Naschke: Removal of thioctic acid from enzymes. J. of Biol. Chem. 213, 705–711 (1955).

    CAS  Google Scholar 

  • Simon, E. J., and D. Shemin: The preparation of S-succinyl coenzyme A. J. A.er. Chem. Soc. 75, 2520 (1953).

    CAS  Google Scholar 

  • Singer, T. P., and J. Pensky: Mechanism of acetoin synthesis by α-carboxylase. Biochim. et Biophysica Acta 9, 316–327 (1952).

    CAS  Google Scholar 

  • Sjoeberg, B.: Die Lichtabsorption einiger Schwefelverbindungen im ultravioletten Licht. Z. physik. Chem. B 52, 209–221 (1942).

    Google Scholar 

  • Smith, R. A., and I. C. Gunsalus: Isocitritase: enzyme properties and reaction equilibrium. J. of Biol. Chem. 229, 305–319 (1957).

    CAS  Google Scholar 

  • Smith, R. A., J. R. Stamer and I. C. Gunsalus: Citritase and isocitritase reactions: equilibria-energetics. Biochim. et Biophysica Acta 19, 567–568 (1956).

    CAS  Google Scholar 

  • Snell, E. E., G. M. Brown, V. J. Peters, J. A. Craig, E. L. Wittle, J. A. Moore, V. M. Mc Glohom, and O. D. Bird: Chemical nature and synthesis of the Lactobacillus bulgaricus factor. J. Amer. Chem. Soc. 72, 5349–5350 (1950).

    CAS  Google Scholar 

  • Sonderhoff, R., u. M. Deffner: Die aerobe Bildung der Citronensäure aus Essigsäure durch Hefe. Liebigs Ann. 536, 36–43 (1938).

    CAS  Google Scholar 

  • Sonderhoff, R., u. F. Thomas: Die enzymatische Dehydrierung der Trideutero-essigsäure. Liebigs Ann. 530, 195–213 (1937).

    CAS  Google Scholar 

  • Sonne, J. C., J. M. Buchanan and A. M. Delluva: Biological precursors of uric acid. I. The rôle of lactate, acetate, and formate in the synthesis of the ureide groups of uric acid. J. of Biol. Chem. 173, 69–79 (1948).

    CAS  Google Scholar 

  • Soodak, M., and F. Lipmann: Enzymatic condensation of acetate to acetoacetate in liver extracts. J. of Biol. Chem. 175, 999–1000 (1948).

    CAS  Google Scholar 

  • Srere, P. A., and F. Lipmann: An enzymatic reaction between citrate, adenosine triphosphate and coenzyme A. J. A.er. Chem. Soc. 75, 4874 (1953).

    CAS  Google Scholar 

  • Stadtman, E. R.: The purification and properties of phosphotrans-acetylase. J. of Biol. Chem. 196, 527–534 (1952 a).

    CAS  Google Scholar 

  • Stadtman, E. R.: The net enzymatic synthesis of acetyl-coenzyme A. J. of Biol. Chem. 196, 535–546 (1952b).

    CAS  Google Scholar 

  • Stadtman, E. R.: The coenzyme A transphorase system in Clostridium kluyveri. J. of Biol. Chem. 203, 501–512 (1953a).

    CAS  Google Scholar 

  • Stadtman, E. R.: The enzymatic synthesis of acyl-coenzyme A compounds. J. Cellul. a. Comp. Physiol. 41, Suppl. 1, 89–107 (1953b).

    CAS  Google Scholar 

  • Stadtman, E. R.: Diskussion im Rahmen des “Symposium on chemistry and function of coenzyme A”. Federat. Proc. 12, 692–693 (1953 c).

    CAS  Google Scholar 

  • Stadtman, E. R.: On the energy-rich nature of acetyl imidazole, an enzymatically active compound. In W. D. McElroy and B. Glass, The Mechanism of Enzyme Action, p. 581–598. Baltimore: John Hopkins Press 1954.

    Google Scholar 

  • Stadtman, E. R.: Fermentations de l’acide propionique. Bull. Soc. Chim. biol. Paris 37, 931–938 (1955).

    PubMed  CAS  Google Scholar 

  • Stadtman, E. R., and H.A. Barker: Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. I. Preparation of cell-free extracts that catalyze the conversion of ethanol and acetate to butyrate and caproate. J. of Biol. Chem. 180, 1085–1093 (1949 a).

    CAS  Google Scholar 

  • Stadtman, E. R., and H.A. Barker: Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. II. The aerobic oxidation of ethanol and butyrate with the formation of acetyl phosphate. J. of Biol. Chem. 180, 1095–1115 (1949b).

    CAS  Google Scholar 

  • Stadtman, E. R., and H.A. Barker: Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. III. The activation of molecular hydrogen and the conversion of acetyl-phosphate and acetate to butyrate. J. of Biol. Chem. 180, 1117–1124 (1949c).

    CAS  Google Scholar 

  • Stadtman, E. R., and H.A. Barker: Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. IV. The phosphoroclastic decomposition of acetoacetate to acetyl phosphate and acetate. J. of Biol. Chem. 180, 1169–1186 (1949d).

    CAS  Google Scholar 

  • Stadtman, E. R., and H.A. Barker: Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. V. A consideration of postulated 4-carbon intermediates in butyrate synthesis. J. of Biol. Chem. 181, 221–235 (1949e).

    CAS  Google Scholar 

  • Stadtman, E. R., and H.A. Barker: Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. VI. Reactions of acyl phosphates. J. of Biol. Chem. 184, 769–793 (1950).

    CAS  Google Scholar 

  • Stadtman, E. R., J. Katz and H. A. Barker: Cyanide-induced acetylation of amino acids by enzymes of Clostridium kluyveri. J. of Biol. Chem. 195, 779–785 (1952).

    CAS  Google Scholar 

  • Stadtman, E. R., G. D. Novelli and F. Lipmann: Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J. of Biol. Chem. 191, 365–376 (1951).

    CAS  Google Scholar 

  • Stadtman, E. R., and F. H. White: The enzymatic synthesis of N-acetylimidazole. J. Amer. Chem. Soc. 75, 2022 (1953).

    CAS  Google Scholar 

  • Stanley, R. G.: Terpene formation in pine from mevalonic acid. Nature (Lond.) 182,738–739 (1958).

    CAS  Google Scholar 

  • Stern, J. R., M. J. Coon, and A. Del Campdllo: Enzymatic break-down and synthesis of acetoacetate. Nature (Lond.) 171, 28–30 (1953a).

    CAS  Google Scholar 

  • Stern, J. R., M. J. Coon, and A. Del Campdllo: Acetoacetyl coenzyme A as intermediate in the enzymatic breakdown and synthesis of acetoacetate. J. Amer. Chem. Soc. 75, 1517–1518 (1953b).

    CAS  Google Scholar 

  • Stern, J. R., and S. Ochoa: Enzymatic synthesis of citric acid by condensation of acetate and oxalacetate. J. of Biol. Chem. 179, 491–492 (1949).

    CAS  Google Scholar 

  • Stern, J. R., and S. Ochoa: Enzymatic synthesis of citric acid. I. Synthesis with soluble enzymes. J. of Biol. Chem. 191, 161–172 (1951).

    CAS  Google Scholar 

  • Stern, J. R., S. Ochoa and F. Lynen: Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J. of Biol. Chem. 198, 313–321 (1952).

    CAS  Google Scholar 

  • Stern, J. R., B. Shapiro and S. Ochoa: Synthesis and breakdown of citric acid with cristalline condensing enzyme. Nature (Lond.) 166, 403–404 (1950).

    CAS  Google Scholar 

  • Stern, J. R., B. Shapiro, E.R. Stadtman and S. Ochoa: Enzymatic synthesis of citric acid. III. Reversibility and mechanism. J. of Biol. Chem. 193, 703–720 (1951).

    CAS  Google Scholar 

  • Strecker, H. J., and S. Ochoa: Pyruvate oxidation system and acetoin formation. J. of Biol. Chem. 209, 313–326 (1954).

    CAS  Google Scholar 

  • v. Szent-Györgyi, A.: Studies on biological oxidation and some of its catalysts. Leipzig: Johann Ambrosius Barth 1937.

    Google Scholar 

  • Szulmajster, J., B. Nisman et G.Cohen: Sur le mécanisme de la formation des acides gras inférieurs chez les Clostridies. I. Mise en évidence de la thiolase et de la β-cétohydrogénase. C. r. Acad. Sci. Paris 238, 164–166 (1954).

    PubMed  CAS  Google Scholar 

  • Tabor, H., A. H. Mehler and E. R. Stadtman: The enzymatic acetylation of amines. J. of Biol. Chem. 204, 127–138 (1953).

    CAS  Google Scholar 

  • Thunberg, T.: Zur Kenntnis des intermediären Stoffwechsels und der dabei wirksamen Enzyme. Skand. Arch. Physiol. (Berl. u. Lpz.) 40, 1–91 (1920).

    CAS  Google Scholar 

  • Vignais, P. V., u. I. Zabin: Réduction enzymatique du palmityl-coenyme A en aldéhyde palmitique. IV. Internat. Congr. Biochem., Abstr. 18–42, Wien 1958.

    Google Scholar 

  • Virtanen, A. I., u. I. Sundmann: Der Einfluβ der Metallionen auf die Bildung von Citronensäure beim Oxv-dieren von Acetaten durch Hefe. Biochem. Z. 313, 236–242 (1942/1943).

    CAS  Google Scholar 

  • Vogel, H. J.: Path of ornithine synthesis in Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 39, 578–583 (1953).

    CAS  Google Scholar 

  • Wagner- Jatjregg, T., and B. E. Hackley: Model reactions of phosphorus-containing enzyme inactivators. III. Interaction of imidazole, pyridine and some of their derivates with dialkyl halogenophosphates. J. Amer. Chem. Soc. 75, 2125–2130 (1953).

    Google Scholar 

  • Ward, G. B., G. M. Brown and E. E. Snell: Phosphorylation of pantothenic acid and pantetheine by an enzyme from Proteus morganii. J. of Biol. Chem. 206, 869–876 (1955).

    Google Scholar 

  • Weil, L., A. R. Buchert and J. Maher: Photooxidation of crystalline lysozyme in the presence of methylene blue and its relation to enzymatic activity. Arch. of Biochem. a. Biophysics 40, 245–252 (1952)

    CAS  Google Scholar 

  • Weinhouse, W., G. Medes, and N. F. Floyd: Fatty acid metabolism. The mechanism of ketone body synthesis from fatty acids, with isotopic carbon as tracer. J. of Biol. Chem. 155, 143–151 (1944).

    CAS  Google Scholar 

  • Weinhouse, W., G. Medes, and N. F. Floyd: Fatty acid metabolism. V. The conversion of fatty acid intermediates to citrate, studied with the acid of isotopic carbon. J. of Biol. Chem. 166, 691–703 (1946).

    CAS  Google Scholar 

  • Weinhouse, S., G. Medes, N.F. Floyd, M. Cammaroti, L. Noda and R. Wilson: Fatty acid metabolism. III. Reactions of carboxyl labeled AcOH in liver and kidney. J. of Biol. Chem. 158, 411–419 (1945).

    CAS  Google Scholar 

  • Weinhouse, S., G. Medes, N. F. Floyd and L. Noda: Intermediates of acetate oxidation in kidney. J. of Biol. Chem. 161, 745–746 (1945).

    CAS  Google Scholar 

  • Wieland, H.: Über den Mechanismus der Oxydations Vorgänge. Erg. Physiol. 20, 477–518 (1922).

    Google Scholar 

  • Wieland, H.: Über den Verlauf der biologischen Oxydation. Naturwiss. 34, 111–114 (1947).

    CAS  Google Scholar 

  • Wieland, H., u. O. B. Clären: Über den Mechanismus der Oxydationsvorgänge XXX. Über das dehydrierende Fermentsystem der Hefe. Liebigs Ann. 492, 183–212 (1932).

    CAS  Google Scholar 

  • Wieland, H., u. R. G. Jennen: Zum Abbau von Essigsäure, Acetaldehyd und Citronensäure im Gewebe. Über den Mechanismus der Oxydations Vorgänge. LH. Liebigs Ann. 548, 255–270 (1941).

    CAS  Google Scholar 

  • Wieland, H., O. Probst u. M. Crawford: Zur Wirkungsweise der dehydrierenden Enzyme der Hefe. Über den Mechanismus der Oxydationsvorgänge. L. Liebigs Ann. 536, 51–68 (1938).

    CAS  Google Scholar 

  • Wieland, H., u. C. Rosenthal: Über den Mechanismus der Oxydationsvorgänge. LIII. Weitere Versuche über den biologischen Abbau der Essigsäure. Liebigs Ann. 554, 241–260 (1943).

    CAS  Google Scholar 

  • Wieland, H., u. R. Sonderhoff: Über den Mechanismus der Oxydationsvorgänge. XXXII. Die enzymatische Oxydation von Essigsäure durch Hefe. Liebigs Ann. 499, 213–228 (1932).

    CAS  Google Scholar 

  • Wieland, H., u. R. Sonderhoff: Über den Mechanismus der Oxydations Vorgänge. XXXIV. Die anaerobe Vergärung der Citronensäure durch Hefe. Liebigs Ann. 503, 16–70 (1933).

    Google Scholar 

  • Wieland, O., D. Reinwein u. F. Lynen: Die Verteilung der Enzyme des Fettsäurecyclus im tierischen und menschlichen Organismus. In: Biochemical problems of lipids, Proc. II. Internat. Conference, Gent, Juli 1955. Edit. G. Popják and E. le Breton, p. 155–161. London: Butterworths Scientific Publications 1956.

    Google Scholar 

  • Wieland, T., W. Maul u. E. F. Moeller: Verfolgung des Schicksals radioaktiver Pantothensäure in Mikroorganismen mit Hilfe der Papierelektrophorese. Biochem. Z. 327, 85–92 (1955).

    PubMed  CAS  Google Scholar 

  • Wieland, T., u. L. Rtjeff: Synthese von S-β-Oxybutyryl- und S-Acetacetyl-Coenzym A. Angew. Chem. 65, 186–187 (1953).

    Google Scholar 

  • Wieland, T., u. G. Schneider: N-Acyl-Imidazole als energiereiche Acylverbin-dungen. Liebigs Ann. 580, 159–168 (1953).

    CAS  Google Scholar 

  • Williams, W. L., E. Joff-Jprgensen and E. E. Snell: Determination and properties of an unidentified growth factor required by Lactobacillus bulgaricus. J. of Biol. Chem. 177, 933–940 (1949).

    CAS  Google Scholar 

  • Wilson, I. B.: Preparation of acetyl coenzyme A. J. A.er. Chem. Soc. 74, 3205–3206 (1952).

    CAS  Google Scholar 

  • Wilson, I.B., and F. Bergmann: Acetylcholinesterase. VIII. Dissociation constants of the active groups. J. of Biol. Chem. 186, 683–692 (1950).

    CAS  Google Scholar 

  • Wong, D. T. O., and S. J. Ajl: Conversion of acetate and glyoxylate to malate. J. Amer. Chem. Soc. 78, 3230–3231 (1956).

    CAS  Google Scholar 

  • Ajl, S. J.: Terminal respiratory patterns in microorganisms. Bacter. Rev. 15, 211–244 (1951).

    CAS  Google Scholar 

  • Anderson, D. G., and B. Vennesland: The occurrence of di- and triphosphopyridine nucleotides in green leaves. J. of Biol. Chem. 207, 613–620 (1954).

    CAS  Google Scholar 

  • Annau, E., I. Banga, A. Blaszö, V. Bruckner, K. Laki, F. B. Straub u. A. Szent-Györgyi: Über die Bedeutung der Fumarsäure für die tierische Gewebsatmung. III. Z. physiol. Chem. 244, 105–152 (1936).

    CAS  Google Scholar 

  • Bandurski, R. S., and C. M. Greiner: The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide. J. of Biol. Chem. 204, 781–786 (1953).

    CAS  Google Scholar 

  • Barron, E.S.G., G.K.K. Link, R.M. Klein and B.E. Michel: The metabolism of potato slices. Arch. of Biochem. 28, 377–398 (1950).

    CAS  Google Scholar 

  • Beaudreau, G. S., and L. F. Remmert: Krebs cycle activity of particles from bean seedlings. Arch. of Biochem. a. Biophysics 55, 469–485 (1955).

    CAS  Google Scholar 

  • Beevers, H. A.: Incorporation of acetate-carbon into sucrose in bean tissues. Biochem. J. 66, 23P–24P (1957).

    Google Scholar 

  • Bennet-Clark, T. A., and D. Bexon: Water relations of plant cells. III. The respiration of plasmolysed tissues. New Phytologist 42, 65–92 (1943).

    CAS  Google Scholar 

  • Bhagvat, K., and R. Hill: Cytochrome oxidase in higher plants. New Phytologist 50, 112–120 (1951).

    CAS  Google Scholar 

  • Bonner, J.: Biochemical mechanisms in the respiration of the Avena coleoptile. Arch. of Biochem. 17, 311–326 (1948).

    CAS  Google Scholar 

  • Plant Biochemistry. New York: Academic Press 1950.

    Google Scholar 

  • Bonner, J., and S. G. Wildman: Enzymatic mechanisms in the respiration of spinach leaves. Arch. of Biochem. 10, 497–517 (1946).

    CAS  Google Scholar 

  • Brummond, D. O., and R. H. Burris: Transfer of C14 by lupine mitochondria through the reactions of the tricarboxylic acid cycle. Proc. Nat. Acad. Sci. U.S.A. 39, 754–759 (1953).

    CAS  Google Scholar 

  • Reactions of the tricarboxylic acid cycle in green leaves. J. of Biol. Chem. 209, 755–765 (1954).

    Google Scholar 

  • Bryant, F., and B. T. Overell: Quantitative chromatographic analysis of organic acids in plant tissue extracts. Biochim. et Biophysica Acta 10, 471–476 (1953).

    CAS  Google Scholar 

  • Buhler, D. R., E. Hansen, B. E. Christensen and C. H. Wang: The conversion of C14O2 and CH3C14OCOOH to citric and malic acids in the tomato fruits. Plant Physiol. 31, 192–195 (1956).

    PubMed  CAS  Google Scholar 

  • Burris, R. H.: Organic acids in plant metabolism. Annual Rev. Plant Physiol. 4, 91–114 (1953).

    Google Scholar 

  • Campbell, J. J. R.: Metabolism of microorganisms. Annual Rev. Microbiol. 8, 71–104 (1954).

    CAS  Google Scholar 

  • Campbell, J. J. R., R. A. Smith and B. A. Eagles: A deviation from the conventional tricarboxylic acid cycle in Pseudomonas aeruginosa. Biochim. biophys. Acta 11, 594 (1953).

    PubMed  CAS  Google Scholar 

  • Chain, E. B.: Biosynthetic mechanisms of the formation of organic acids in moulds. Proc. 3. Int. Congr. of Biochemistry, Brussels, 1955, p. 523–539. New York: Academic Press 1956.

    Google Scholar 

  • Ceithaml, J., and B. Vennesland: The synthesis of tricarboxylic acids by carbon dioxide fixation in parsley root preparations. J. of Biol. Chem. 178, 133–143 (1949).

    CAS  Google Scholar 

  • Chibnall, A. C.: Protein metabolism in the plant. New Haven: Yale University Press 1939.

    Google Scholar 

  • Dagley, S., and E. A. Dawes: Citridesmolase: its properties and mode of action. Biochim. et Biophysica Acta 17, 177–184 (1955).

    CAS  Google Scholar 

  • Damodaran, M., and T. R. Venkatesen: Amide synthesis in plants. I. The succinoxidase system in plants. Proc. Indian Acad. Sci., Sect. B 13, 345–359 (1941).

    Google Scholar 

  • Davies, D. D.: The Krebs cycle enzyme system of pea seedlings. J. of Exper. Bot. 4, 173–183 (1953).

    CAS  Google Scholar 

  • The oxidation of D-isoCitrate by pea-seedling mitochondria. J. of Exper. Bot. 6, 212–221 (1955).

    Google Scholar 

  • Delwiche, E. A.: Metabolism of microorganisms. Annual Rev. Microbiol. 9, 145–172 (1955).

    CAS  Google Scholar 

  • Elliott, D. C.: Detection of glycollic acid in etiolated barley shoots. J. of Exper. Bot. 5, 353–356 (1954).

    CAS  Google Scholar 

  • Goddard, D. R., and J. O. Meeuse: Respiration of higher plants. Annual Rev. Plant Physiol. 1, 207–232 (1950).

    Google Scholar 

  • Green, D. E.: Enzymes in metabolic sequences. In: Chemical Pathways of Metabolism, edit. D. M. Greenberg, vol. 1, p. 27–65. New York: Academic Press 1954.

    Google Scholar 

  • Green, D.E., W. F. Loomis and V.H. Auerbach: Studies on the cyclo-phorase system. I. The complete oxidation of pyruvic acid to carbon dioxide and water. J. of Biol. Chem. 172, 389–403 (1948).

    CAS  Google Scholar 

  • Gunsalus, I. C., B. L. Horecker and W. A. Wood: Pathways of carbohydrate metabolism in microorganisms. Bacter. Rev. 19, 79–128 (1955).

    CAS  Google Scholar 

  • Hackett, D. P.: Recent studies on plant mitochondria. International Review of Cytology. Vol. 4, p. 143–196. New York: Academic Press 1955.

    Google Scholar 

  • Hackett, D. P., and E. W. Simon: Oxidative activity of particles prepared from the spadix of Arum maculatum. Nature (Lond.) 173, 162–163 (1954).

    CAS  Google Scholar 

  • Hill, R., and K. Bhagvat: Cytochrome oxidase in flowering plants. Nature (Lond.) 143, 726 (1939).

    CAS  Google Scholar 

  • Hogeboom,G. H., and W. C. Schneider: The cytoplasm. In: The Nucleic Acids, edit. E. Chargaff and J. N. Davidson, vol. II, p. 199–246. New York: Academic Press 1955.

    Google Scholar 

  • Horecker, B. L., and A. H. Mehler: Carbohydrate metabolism. Annual Rev. Biochem. 24, 207–274 (1955).

    CAS  Google Scholar 

  • Jacobsohn, K. P., et Tapadinhas: Sur le diffusion de l’aconitase. C. r. Soc. Biol. Paris 131, 647–651 (1939).

    CAS  Google Scholar 

  • James, W. O.: Plant Respiration. Oxford: Clarendon Press 1953.

    Google Scholar 

  • James, W.O., and H. Beevers: The respiration of Arum spadix. A rapid respiration, resistant to cyanide. New Phytologist 49, 353–374 (1950).

    Google Scholar 

  • James, W. O., and D. C. Elliott Cyanide-resistant mitochondria from the spadix of Arum. Nature (Lond.) 175, 89 (1955).

    Google Scholar 

  • James, G. M., and W. O. James: The formation of pyruvic acid in barley respiration. New Phytologist 39, 266–270 (1940).

    CAS  Google Scholar 

  • Kaplan, N. O., and F. Lipmann: The assay and distribution of coenzyme A. J. of Biol. Chem. 174, 37–44 (1948).

    CAS  Google Scholar 

  • Kennedy, E. P., and A. L. Lehninger: Intracellular structures and the fatty acid oxidase system of rat liver. J. of Biol. Chem. 172, 847–848 (1948).

    CAS  Google Scholar 

  • Kmetec, E., and E. H. Newcomb: Characteristics of mitochondria isolated from homogenates of peanut cotyledons. Abstr. Amer. Soc. Plant Physiol. 1955, 31.

    Google Scholar 

  • Korn-berg, A., and W. E. Pricer: Di- and triphosphopyridine nucleotide isocitric dehydrogenase in yeast. J. of Biol. Chem. 189, 123–136 (1951).

    CAS  Google Scholar 

  • Kornberg, H. L., and H. Beevers: A mechanism of conversion of fat to carbohydrate in castor beans. Nature (Lond.) 180, 35–36 (1957).

    CAS  Google Scholar 

  • Kornberg, H. L., and H. A. Krebs: Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature (Lond.) 179, 988–990 (1957).

    CAS  Google Scholar 

  • Kornberg, H. L., and N. B. Madsen: Synthesis of C4-dicarboxylic acids from acetate by a “glyoxylate bypass” of the tricarboxylic acid cycle. Biochim. biophys. Acta 24, 651–653 (1957).

    PubMed  CAS  Google Scholar 

  • The metabolism of C2 compounds in micro-organisms. 3. Synthesis of malate from acetate via the glyoxylate cycle. Biochem. J. 68, 549–557 (1958).

    Google Scholar 

  • Kraemer, L. M., E. E. Conn and B. Vennesland: The β-carboxylases of plants. III. Oxaloacetic carboxylase of wheat germ. J. of Biol. Chem. 188, 583–591 (1953).

    Google Scholar 

  • Krebs, H. A.: The tricarboxylic acid cycle. Chemical Pathways of Metabolism, edit. D. M. Greenberg, vol. 1, p. 109–171. New York: Academic Press 1954.

    Google Scholar 

  • Krebs, H. A., and L. V. Eggleston: The oxidation of pyruvate in pigeon breast muscle. Biochemic. J. 34, 442–459 (1940).

    CAS  Google Scholar 

  • Krebs, H. A., and W. A. Johnson: The role of citric acid in intermediate metabolism in animal tissues. Enzymologia (Den Haag) 4, 148–156 (1937).

    CAS  Google Scholar 

  • Laties, G. G.: The role of pyruvate in the aerobic respiration of barley roots. Arch. of Biochem. 20, 284–299 (1949a).

    CAS  Google Scholar 

  • Laties, G. G.: The oxidative formation of succinate in higher plants. Arch. of Biochem. 22, 8–15 (1949b).

    CAS  Google Scholar 

  • Laties, G. G.: The physical environment and oxidative and phos-phorylative capacities of higher plant mitochondria. Plant Physiol. 28, 557–575 (1953a).

    PubMed  CAS  Google Scholar 

  • Laties, G. G.: Transphosphorylating systems as a controlling factor in mitochondrial respiration. Physiol. Plantarum (Copenh.) 6, 215–225 (1953b).

    CAS  Google Scholar 

  • The nature of the respiratory rise in sliced tuberous tissue. Abstr. Amer. Soc. Plant Physiol. 1954, 36–37.

    Google Scholar 

  • Lieberman, M., and J. B. Biale: Oxidative phosphorylation by sweet potato mitochondria. Abstr. Amer. Soc. Plant Physiol. 1955, 30.

    Google Scholar 

  • Link, G. K. K., R. M. Klein and E. S. G. Barron: Metabolism of slices of tomato stem. J. of Exper. Bot. 3, 216–236 (1952).

    CAS  Google Scholar 

  • Linnane, A. W., and J. L. Still: The isolation of respiring mitochondria from baker’s yeast. Arch. of Biochem. a. Biophysics 59, 383–392 (1955).

    CAS  Google Scholar 

  • Lugg, J. W. H., and B. T. Overell: “One-” and “Two-dimensional” partition chromatographic separations of organic acids on an inert sheet support. Austral. J. Sci. Res., Ser. A 1, 98–111 (1948).

    CAS  Google Scholar 

  • Martius, C.: Der intermediäre Stoffwechsel der Citronensäure. IL Z. physiol. Chem. 257, 29–42 (1939).

    Google Scholar 

  • Meves, F.: Über das Vorkommen von Mitochondrien bzw. Chondro-miten der Pflanzenzellen. Ber. dtsch. bot. Ges. 22, 264–286 (1904).

    Google Scholar 

  • Millerd, A.: Succin-oxidase of potato tuber. Proc. Linnean Soc. N. S. Wales 76, 123–132 (1951).

    CAS  Google Scholar 

  • Millerd, A.: Respiratory oxidation of pyruvate by plant mitochondria. Arch. of Biochem. a. Biophysics 42, 149–163 (1953).

    CAS  Google Scholar 

  • Millerd, A., J. Bonner, B. Axelrod and R. Bandurski: Oxidative and phos-phorylative activity of plant mitochondria. Proc. Nat. Acad. Sci. U.S.A. 37, 855–862 (1951).

    CAS  Google Scholar 

  • Millerd, A., J. Bonner and J. B. Biale: The climacteric rise in fruit respiration as controlled by phosphorylative coupling. Plant Physiol. 28, 521–531 (1953).

    PubMed  CAS  Google Scholar 

  • Morrison, J. F.: Enzymatic mechanisms in the respiration of rhubarb leaves. Part II. Austral. J. Exper. Biol. a. Med. Sci. 28, 311–320 (1950).

    CAS  Google Scholar 

  • Morrison, J. F., and J. L. Still: Aconitase in rhubarb leaf. Austral. J. Sci. 9, 150 (1947).

    CAS  Google Scholar 

  • Moyle, J., and M. Dixon: The identity of TPN-linked isocitric dehydrogenase and oxalosuccinic carboxylase. Biochim. et Bio-physica Acta 16, 434–435 (1955).

    CAS  Google Scholar 

  • Neilands, J. B., and P. K. Stumpf: Outlines of enzyme chemistry, p. 276–277. New York: John Wiley & Sons 1955.

    Google Scholar 

  • Ochoa, S.: Biosynthesis of tricarboxylic acids by carbon dioxide fixation. III. Enzymatic mechanisms. J. of Biol. Chem. 174, 133–157 (1948).

    CAS  Google Scholar 

  • Ohmura, T.: Oxidative phosphorylation by a particulate fraction from green leaves. Arch. of Biochem. a. Biophysics 57, 187–194 (1955).

    CAS  Google Scholar 

  • Okunuki, K.: Über den Gaswechsel der Pollen. III. Weitere Untersuchungen über die Dehydrasen aus den Pollenkörnern. Acta phytochim. (Tokyo) 11, 65–80 (1939).

    CAS  Google Scholar 

  • Olson, J. A.: The d-isocitric lyase system: the formation of glyoxylic and succinic acids from d-isocitric acid. Nature (Lond.) 174, 695–696 (1954).

    CAS  Google Scholar 

  • Pearson, J. A., and R. N. Robertson: The physiology of growth in apple fruits. VI. The control of respiration and synthesis. Austral. J. Biol. Sci. 7, 1–17 (1954).

    CAS  Google Scholar 

  • Plaut, G. W. E., and S. C. Sung: Diphosphopyridine nucleotide isocitric dehydrogenase from animal tissues. J. of Biol. Chem. 207, 305–314 (1954).

    CAS  Google Scholar 

  • Price, C. A.: Malonate inhibition of α-ketoglutaric oxidase. Arch. of Biochem. a. Biophysics 47, 314–324 (1953).

    CAS  Google Scholar 

  • Price, C. A., and K. V. Thimann: The estimation of dehydrogenases in plant tissue. Plant Physiol. 29, 113–124 (1954a).

    PubMed  CAS  Google Scholar 

  • Price, C. A., and K. V. Thimann: Dehydrogenase activity and respiration; a quantitative comparison. Plant Physiol. 29, 495–500 (1954b).

    PubMed  CAS  Google Scholar 

  • Robertson, R. N., M. J. Wilkins, A. B. Hope and L. Nestel: Studies in the metabolism of plant cells. X. Respiratory activity and ionic relations of plant mitochondria. Austral. J. Biol. Sci. 8, 164–185 (1955).

    CAS  Google Scholar 

  • Saz, H. J., and E. P. Hillary: The formation of glyoxylate and succinate from tricarboxylic acids by Pseudomonas aeruginosa. Biochem. J. 62, 563–569 (1956).

    PubMed  CAS  Google Scholar 

  • Schneider, W. C.: Intracellular distribution of enzymes. III. The oxidation of octanoic acid by rat liver fractions. J. of Biol. Chem. 176, 259–266 (1948).

    CAS  Google Scholar 

  • Seifter, E.: The occurrence of coenzyme A in plants. Plant Physiol. 29, 403–406 (1954).

    PubMed  CAS  Google Scholar 

  • Sharpensteen, H., and E. E. Conn: Preparation and properties of potato mitochondria. Abstr. Amer. Soc. Plant Physiol. 1954, 37.

    Google Scholar 

  • Smillie, R.M.: Enzymic activity of particles isolated from various tissues of the pea plant. Austral. J. Biol. Sci. 8, 186–195 (1955a).

    CAS  Google Scholar 

  • Smillie, R.M.: Mitochondria in green leaves. Austral. J. Sci. 17, 217–218 (1955b).

    CAS  Google Scholar 

  • Smith, R. A., and I. C. Gunsalus: Isocitritase: A new tricarboxylic acid cleavage system. J. Amer. chem. Soc. 76, 5002–5003 (1954).

    CAS  Google Scholar 

  • Smith, R. A., and I. C. Gunsalus: Distribution and formation of isocitritase. Nature (Lond.) 175, 774–775 (1955).

    CAS  Google Scholar 

  • Stafford, H. A.: Intracellular localization of enzymes in pea seedlings. Physiol. Plantarum (Copenh.) 4, 696–741 (1951).

    Google Scholar 

  • Stanley, R. G.: Krebs cycle activity in germinating seeds of sugar pine (Pinus lamhertiana). Abstr. Amer. Soc. Plant Physiol. 1955, 2.

    Google Scholar 

  • Stern, J. R., and S. Ochoa: Enzymatic synthesis of citric acid. I. Synthesis with soluble enzymes. J. of Biol. Chem. 191, 161–172 (1951).

    CAS  Google Scholar 

  • Stern, J. R., B. Shapiro and S. Ochoa: Synthesis and breakdown of citric acid with crystalline condensing enzyme. Nature (Lond.) 166, 403–404 (1950).

    CAS  Google Scholar 

  • Stumpf, P. K.: Fat metabolism in higher plants. III. Enzymic oxidation of glycerol. Plant Physiol. 30, 55–58 (1955).

    PubMed  CAS  Google Scholar 

  • Swim, H. E., and L. O. Krampitz: Acetic acid oxidation by Escherichia coli evidence for the occurrence of a tricarboxylic acid cycle. J. Bacter. 67, 419–425 (1954a).

    CAS  Google Scholar 

  • Swim, H. E., and L. O. Krampitz: Acetic acid oxidation by Escherichia coli quantitative significance of the tricarboxylic acid cycle J. Bacter. 67, 426–434 (1954 b).

    CAS  Google Scholar 

  • Switzer, C. M., F. G. Smith and W. E. Loomis: Factors affecting oxidation and phosphorylation of soybean mitochondria. Abstr. Amer. Soc. Plant Physiol. 1955, 31.

    Google Scholar 

  • Tager, J. M.: The oxidation of pyruvic acid by a particulate fraction from Avena seedlings. Physiol. Plantarum (Copenh.) 7, 625–636 (1954).

    CAS  Google Scholar 

  • Thimann, K. V., and W. D. Bonner: Organic acid metabolism. Annual Rev. Plant Physiol. 1, 75–108 (1950).

    Google Scholar 

  • Turner, J. S., and V. Hanly: Malonate and plant respiration. Nature (Lond.) 160, 296–297 (1947).

    CAS  Google Scholar 

  • Vennesland, B., and E. E. Conn: Carboxylating enzymes in plants. Annual Rev. Plant Physiol. 3, 307–322 (1952).

    Google Scholar 

  • Waygood, E. R.: Physiological and biochemical studies in plant metabolism. II. Respiratory enzymes in wheat. Canad. J. Res., Sect. C 28, 7–62 (1950).

    Google Scholar 

  • Whatley, F. R.: Coenzymes in plants. New Phytologist 50, 244–257 (1951).

    CAS  Google Scholar 

  • Wong, D. T. O., and S. J. Ajl: Isocitritase in Escherichia coli. Nature (Lond.) 176, 970–971 (1955).

    Google Scholar 

  • Wong, D. T. O., and S. J. Ajl: Conversion of acetate and glyoxylate to malate. J. Amer. chem. Soc. 78, 3230–3231 (1956).

    CAS  Google Scholar 

  • Zelitch, I.: The isolation and action of crystalline glyoxylic acid reductase from tobacco leaves. J. of Biol. Chem. 216, 553–575 (1955).

    CAS  Google Scholar 

  • Adams, E.C., E. Burkhart and A. H. Free: Specifity of a glucose oxidase test for urine glucose. Science (Lancaster, Pa.) 125, 1082–1083 (1957).

    CAS  Google Scholar 

  • Alsberg, C. L.: The formation of d-gluconic acid by Bacterium savastonoi Smith. J. of Biol. Chem. 9, 1–7 (1911).

    CAS  Google Scholar 

  • Altermatt, H. A., and A. C. Neish: The biosynthesis of cell wall carbohydrates. III. Further studies on formation of cellulose and xylan from labelled monosaccharides in wheat plants. Canad. J. Biochem. a. Physiol. 34, 405–413 (1956).

    CAS  Google Scholar 

  • Amelung, H.: Beiträge zur Säurebildung durch Aspergillus niger. Z. physiol. Chem. 166, 161–209 (1927).

    Google Scholar 

  • Angeletti, A.: Azione di alcuni funghi su soluzioni di aldosi. III. Formazione di acido d-gluconico per mezzo del Penicillium crustaceum. Ann. Chim. applic. 22, 59–62 (1932 a).

    CAS  Google Scholar 

  • Angeletti, A.: Azione di alcuni funghi susoluzioni di aldosi e di altre materie zuccherine. V. Congr. Nazion. Chim. Pura Applic. 4, 1–5 (1932 b).

    Google Scholar 

  • Angeletti, A.: Azione di alcuni funghi su soluzioni di aldosi e di altre materie zuccherine. VII. Formazione di acido d-gluconico dal maltosio. Ann. Chim. applic. 23, 84–87 (1933).

    CAS  Google Scholar 

  • Angeletti, A., e C. F. Cerutti: Sull’azione di alcuni funghi su soluzioni di aldosi. Ann. Chim. applic. 20, 424–433 (1930).

    CAS  Google Scholar 

  • Angeletti, A., e C. F. Cerutti: Azione di alcuni funghi su soluzione di aldosi. II. Ann. Chim. applic. 21, 491–496 (1931).

    CAS  Google Scholar 

  • Angeletti, A., e L. Merlo: Su l’influenza del ferro nella fermentazione gluconica del Penicillium luteum-purpurogenum. X. Sulla fermentazione gluco-nica. Ann. Chim. applic. 24, 468–472 (1934).

    CAS  Google Scholar 

  • Angeletti, A., e D. Ponte: Azione di alcuni funghi su soluzione di aldosi e di altre materie zuccherine. IX. Ann. Chim. applic. 24, 232–236 (1934).

    CAS  Google Scholar 

  • Arnstein, H. R. V., and R. Bentley: The biosynthesis of kojic acid. I. Production from (1-C14) and (3:4-C14) glucose and (2-C14)-1: 3 dihydroxyacetone. Biochemic. J. 54, 493–508 (1953).

    CAS  Google Scholar 

  • Arnstein, H. R. V., and R. Bentley: The biosynthesis of kojic acid. IV. Production from pentoses and methyl pentoses. Biochemic. J. 62, 403–411 (1956).

    CAS  Google Scholar 

  • Aubert, J. P., G. Milhaud et R. Gavard: Étude préliminaire d’un systeme bactérien oxydant le glucose en acide gluco-nique. C. r. Acad. Sci. Paris 235, 1165–1167 (1952).

    PubMed  CAS  Google Scholar 

  • Bean, R. C., and W. Z. Hassid: Glucose oxidase in Iridophycus flaccidum. Federat. Proc. 14, 179–180 (1955).

    Google Scholar 

  • Bean, R. C., and W. Z. Hassid: Enzymatic oxidation of glucose to glucosone in a red algae. Science (Lancaster, Pa.) 124, 171–172 (1956).

    CAS  Google Scholar 

  • Bean, R. C., and W. Z. Hassid: Carbohydrate oxidase from a red algae, Iridophycus flaccidum. J. of Biol. Chem. 218, 425–436 (1956).

    CAS  Google Scholar 

  • Becker, C. E.: Glucosone and yeast fermentation. Federat. Proc. 13, 180 (1954).

    Google Scholar 

  • Beijerinck, M. W.: Über Pigmentbildung bei Essigbakterien. Zbl. Bakter. II 29, 169–176 (1911).

    Google Scholar 

  • Bentley, R.: Specificity in chemical and enzymatic oxidations of glucose anomers. Nature (Lond.) 176, 870–873 (1955).

    CAS  Google Scholar 

  • Bentley, R., and A. Neuberger: The mechanism of the action of Notatin. Biochemie. J. 45, 584–590 (1949).

    CAS  Google Scholar 

  • Berkeley, C.: The oxidase and dehydrogenase systems of the crystalline style of mollusca. Biochemie. J. 27, 1357–1365 (1933).

    CAS  Google Scholar 

  • Bernaerts, M. J.: De microbiologische afbraak van malto- en lactobionzuur. Diss. Brüssel 1954.

    Google Scholar 

  • Bernaerts, M. J., and J. de Ley: Microbiological decomposition of malto- and lacto-bionate. Nature (Lond.) 170, 713 (1952).

    CAS  Google Scholar 

  • Bernhauer, K.: Über die Säurebildung durch Aspergillus niger. II. Die Bildung der Gluconsäure. Biochem. Z. 172, 313–323 (1926).

    CAS  Google Scholar 

  • Bernhauer, K.: Über die Charakterisierung der Stämme von Aspergillus niger auf Grund ihres biochemischen Verhaltens. Biochem. Z. 197, 278–286 (1928a).

    Google Scholar 

  • Bernhauer, K.: Beiträge zur Enzymchemie der durch Aspergillus niger bewirkten Säurebildungsvorgänge. Z. physiol. Chem. 177, 86–106 und 270–279 (1928b).

    CAS  Google Scholar 

  • Bernhauer, K.: Biochemie der Essigbakterien. Erg. Enzymforsch. 7, 246–280 (1938).

    CAS  Google Scholar 

  • Bernhauer, K., F. Duda u. H. Siebenäuger: Zur Charakterisierung der Aspergillus niger-Stämme. Biochem. Z. 230, 475–483 (1931).

    CAS  Google Scholar 

  • Bernhauer, K., u. B. Görlich: Über die Bildung von 2-Ketogluconsäure durch Bact. gluconicum. Biochem. Z. 280, 367–374 (1935).

    CAS  Google Scholar 

  • Bernhauer, K., A. Iglauer, H. Knobloch u. O. Zippelius: Über die Säurebildung aus Zucker durch Aspergillus niger. VIII. Biochem. Z. 303, 300–307 (1940).

    CAS  Google Scholar 

  • Bernhauer, K., u. K. Irrgang: Oxydationen mittels Essigbakterien. III. Über die Bildung einer reduzierenden Zuckercarbonsäure (Aldehydcarbonsäure) neben 5-Ketogluconsäure. Biochem. Z. 280, 360–366 (1935).

    CAS  Google Scholar 

  • Bernhauer, K., u. H. Knobloch: Der Abbau der Glucose durch Aceto-bacter suboxydans. Naturwiss. 26, 819 (1938).

    CAS  Google Scholar 

  • Bernhauer, K., u. H. Knobloch: Oxydationen mittels Essigbakterien. VI. Vergleichende Untersuchungen über die Bildung reduzierender Zuckercarbonsäuren und die Darstellung von 2-Ketogluconsäure. Biochem. Z. 303, 308–315 (1940).

    CAS  Google Scholar 

  • Bernhauer, K., u. E. Riedl-Tůmová: Oxydationen mittels Essigbakterien. VIII. Zur Methodik der bakteriellen Oxidationen in der Submerskultur. Biochem. Z. 320, 466–471 (1950 a).

    Google Scholar 

  • Bernhauer, K., u. H. Knobloch: Oxydationen mittels Essigbakterien. X. Notiz über die Oxydation der enantiomorphen Formen der Xylose und Arabinose. Biochem. Z. 321, 26–30 (1950b).

    PubMed  CAS  Google Scholar 

  • Bernhauer, K., u. K. Schön: Oxydationen mittels Bacterium xylinum. Über die Bildung von Glucon- und 5-Ketogluconsäure. Z. physiol. Chem. 180, 232–240 (1929).

    CAS  Google Scholar 

  • Bernhauer, K., H. Siebenäuger u. H. Tschinkel: Zum Chemismus der Citronensäurebildung durch Pilze. IV. Über die Umwandlung der Zuckersäure. Biochem. Z. 230, 466–474 (1931).

    CAS  Google Scholar 

  • Bertrand, G.: Action de la bactérie du sorbose sur le sucre de bois. C. r. Acad. Sci. Paris 127, 124–127 (1898a).

    CAS  Google Scholar 

  • Bertrand, G.: Action de la bactérie du sorbose sur les sucres aldéhydiques. C. r. Acad. Sci. Paris 127, 728–731 (1898 b).

    CAS  Google Scholar 

  • Bertrand, G.: Étude biochimique de la bactérie du sorbose. Ann. Chim. et Phys. 3, 181–288 (1904).

    CAS  Google Scholar 

  • Birkinshaw, J. H., and H. Raistrick: The products of glucose metabolism formed by various species of Fungi. Philosophic. Trans. Roy. Soc. Lond., Ser. B 220, 331–353 (1931).

    Google Scholar 

  • Birkinshaw, J. H., and H. Raistrick: Notatin: an antibacterial glucose aerodehydrogenase from Penicillium notatum Westling. J. of Biol. Chem. 148, 459–460 (1943).

    CAS  Google Scholar 

  • Blackwood, A. C., and E. R. Blakley: Carbohydrate metabolism by Leuconostoc mesenteroides. Canad. J. Microbiol. 2, 741–746 (1956).

    CAS  Google Scholar 

  • Bond, C. R., E. C. Knight and T. K. Walker: The production of glucosone from carbohydrates by enzymic action. Biochemie. J. 31, 1033–1040 (1937).

    CAS  Google Scholar 

  • Boutroux, L.: Sur une fermentation nouvelle du glucose. C. r. Acad. Sci. Paris 91, 236–238 (1880).

    Google Scholar 

  • Boutroux, L.: Sur une fermentation acide du glucose. C. r. Acad. Sci. Paris 102, 924–927 (1886).

    Google Scholar 

  • Boutroux, L.: Sur l’acide gluconique. C. r. Acad. Sci. Paris 104, 369–370 (1887).

    Google Scholar 

  • Boutroux, L.: Sur l’oxydation du glucose par des microbes. Ann. Inst. Pasteur 2, 308–317 (1888).

    Google Scholar 

  • Boutroux, L.: Sur l’acide oxygluconique. Ann. de Chim. 21, 565–574 (1890).

    Google Scholar 

  • Breusch, F. L.: Die zwei Hauptwege der Atmung im Warmblütergewebe. Enzymologia 10, 165–191 (1942).

    Google Scholar 

  • Breusch, F. L.: Über einige neue Zuckerdehydro-genasen in der Leber. Enzymologia 11, 87–91 (1943).

    CAS  Google Scholar 

  • Brink, N. G.: Beef liver glucose dehydrogenase. I. Purification and properties. Acta chem. scand. (Copenh.) 7, 1081–1089 (1953).

    CAS  Google Scholar 

  • Brodie, A. F., and F. Lipmann: Identification of a gluconolactonase. J. of Biol. Chem. 212, 677–685 (1955).

    CAS  Google Scholar 

  • Brown, A. J.: The chemical action of pure cultivations of Bacterium aceti. J. Chem. Soc. 49, 172–187 (1886).

    CAS  Google Scholar 

  • Bruchmann, E. E.: Nachweis von Zymohexase, Carboxylase und Glucosedehydrasen in den fettbildenden Mikroorganismen Candida reukaufii und Endomyces vernalis. Biochem. Z. 325, 24–30 (1953).

    PubMed  CAS  Google Scholar 

  • Bruggen, J. T. van, F. J. Raithel, C. K. Cain, P. A. Katzman, E. A. Doisy, R. D. Muir, E. C. Roberts, W. L. Gaby, D. M. Homan and L. R. Jones: Penicillin B: Preparation, purification and mode of action. J. of Biol. Chem. 148, 365–378 (1943).

    Google Scholar 

  • Butkewitsch, W. S.: Über die Bildung der Glucon- und Citronensäure in den Pilzkulturen auf Zucker. Biochem. Z. 154, 177–190 (1924).

    Google Scholar 

  • Butkewitsch, W. S.: Über die Chinasäure verwertenden Pilze und Bakterien. Biochem. Z. 159, 395–413 (1925).

    Google Scholar 

  • Butkewitsch, W. S.: Über die Säurebildung bei den Pilzen. Biochem. Z. 182, 99–109 (1927).

    Google Scholar 

  • Butkewitsch, W. S., E. W. Menzschinskaja u. E. I. Trofimova: Zur biochemischen Herkunft von Citronen- und Oxalsäure. I. Biochem. Z. 272, 290–307 (1934).

    Google Scholar 

  • Die reduzierenden Mycelsubstanzen und ihre Teilnahme an der Citronensäurebildung. Biochem. Z. 276, 446–452 (1935).

    Google Scholar 

  • Butkewitsch, W. S., u. A. G. Timofeewa: Einfluß einzelner mineralischer Elemente des Nährmediums auf die Säurebildung bei Aspergillus niger. Biochem. Z. 275, 405–415 (1935).

    Google Scholar 

  • Butlin, K. R.: Aerobic breakdown of glucose by Bact. suboxydans. Biochemic. J. 30, 1870–1877 (1936).

    CAS  Google Scholar 

  • Butlin, K. R.: The enzyme systems of Bact. suboxydans. I. Variation of aerobic activity with age of culture. Biochemic. J. 32, 508–512 (1938).

    CAS  Google Scholar 

  • Butlin, K. R., u. W. H. D. Wince: The biological production of gluconic acid. J. Soc. Chem. Industr. 58, 363–365 (1939).

    CAS  Google Scholar 

  • Campbell, J. J. R., A. G. Linnes and B. A. Eagles: Growth of Pseudomonas aeruginosa with glucose, gluconate or 2-ketogluconate as carbon source. Trans. Roy. Soc. Canada, Ser. III, Sect. V 48, 49–50 (1955).

    Google Scholar 

  • Campbell, J. J. R., and F. C. Norris: The intermediate metabolism of Pseudomonas aeruginosa. IV. The Absence of an Embden-Meyerhof system as evidenced by phosphorus distribution. Canad. J. Res., Sect. C 28, 203–212 (1950).

    Google Scholar 

  • Campbell, J., F. Norris and M. Norris: The intermediate metabolism of Pseudomonas aeruginosa. II. Limitations of simultaneous adaption as applied to the identification of acetic acid, an intermediate in glucose oxidation. Canad. J. Res. C 27, 165–171 (1949).

    CAS  Google Scholar 

  • Campbell, J. J. R., T. Ramakrishnan, A. G. Linnes and B. A. Eagles: Evaluation of the energy gained by Pseudomonas aeruginosa during the oxidation of glucose to 2-ketogluconate. Canad. J. Microbiol. 2, 304–309 (1956).

    CAS  Google Scholar 

  • Cecil, R., and A. G. Ogston: Sedimentation and diffusion of glucose oxidase (Notatin). Biochemic. J. 42, 229 (1948).

    CAS  Google Scholar 

  • Challenger, F., L. Klein and T. K. Walker: The production of kojic acid from pentoses by Aspergillus oryzae. J. Chem. Soc. (Lond.) 1929, 1498–1505.

    Google Scholar 

  • Chermonordik, A. B.: Some cultural and biochemical characteristics of Bacillus pyocyaneus. J. Microbiol., d’Epidemol. et d’Immuno-biol. 2–3, 86 (1939).

    Google Scholar 

  • Ciferri, O., and E. R. Blakley: The metabolism of 2-keto-D-gluco-nate by cellfree extracts of Leuconostoc mesenteroides. Canad. J. Microbiol. 5, 547–560 (1959a).

    CAS  Google Scholar 

  • Ciferri, O., E.R. Blakley and F. J. Simpson: Purification and properties of the 2-ketogluconokinase of Leuconostoc mesenteriodes. Canad. J. Microbiol. 5, 277–291 (1959 b).

    CAS  Google Scholar 

  • Claridge, C. A., and C. H. Werkman: Formation of 2-ketogluconate from glucose by a cell-free preparation of Pseudomonas aeruginosa. Arch. of Biochem. a. Biophysics 47, 99–106 (1953).

    CAS  Google Scholar 

  • Claridge, C. A., and C. H. Werkman: Intermediates of the aerobic dissimilation of 2-ketogluconate by Pseudomonas aeruginosa. Arch. of Biochem. a. Biophysics 51, 395–401 (1954).

    CAS  Google Scholar 

  • Cohen, S. S.: Adaptive enzyme formation in the study of uronic acid utilization by the K-12 strain of Escherichia coli. J. of Biol. Chem. 177, 607–619 (1949).

    CAS  Google Scholar 

  • Cohen, S. S.: Utilization of gluconate and glucose in growing and virusinfected Escherichia coli. Nature (Lond.) 168, 746 (1951 a).

    CAS  Google Scholar 

  • Cohen, S. S.: Gluconokinase and the oxidative path of glucose-6-phosphate utilization. J. of Biol. Chem. 189, 617–628 (1951 b).

    CAS  Google Scholar 

  • Cohen, S. S., and R. Raff: Adaptive enzvmes in the estimation of gluconate, D-ara-binose, and D-ribose. J. of Biol. Chem. 188, 501–508 (1951).

    CAS  Google Scholar 

  • Cohen, S. S., and D. B. McNair Scott: Gluconokinase and the oxidative path of glucose-6-phosphate utilization (E. coli) Nature (Lond.) 166, 781–782 (1950).

    CAS  Google Scholar 

  • Connors, W. M., and W. M. Cort: Lactose oxidase from cells of Pseud, omonas graveolens. 124. Meeting, Amer. Chem. Soc. Chicago, 53c, 1953.

    Google Scholar 

  • Cort, W. M., W. M. Connors, H. R. Roberts and W. Bucek: Evidence for the formation and utilization of lactobionic acid by Penicillium chrysogenum. Arch. of Biochem. a. Biophysics 63, 477–478 (1956).

    CAS  Google Scholar 

  • Coulthard, C. E., R. Michaelis, W. F. Short, G. Sykes, G. E. H. Skrimshire, A. F. B. Standfast, J. H. Birkinshaw and H. Raistrick: Notatin: an antibacterial glucose-aerodehydrogenase from Penicillium notatum Westling. Nature (Lond.) 150, 634–635 (1942).

    CAS  Google Scholar 

  • Coulthard, C. E., R. Michaelis, W. F. Short, G. Sykes, G. E. H. Skrimshire, A. F. B. Standfast, J. H. Birkinshaw and H. Raistrick: Notatin: an anti-bacterial glucose-aerodehydrogenase from Penicillium notatum Westling and Penicillium resticulosum sp. nov. Biochemic. J. 39, 24–36 (1945).

    CAS  Google Scholar 

  • Dalby, A., and A. C. Blackwood: Oxidation of sugars by an enzyme preparation from Aerobacter. Canad. J. Microbiol. 1, 733–742 (1955).

    CAS  Google Scholar 

  • Datta, A. G., and H. Katznelson: Oxidation of 2, 5-diketogluconate by cell-free enzyme preparation of Acetobacter melanogenum. Nature (Lond.) 179, 153–154 (1957).

    CAS  Google Scholar 

  • Dickens, F.: Oxidation of phospho-hexonate and pentose phosphoric acids by yeast enzymes. Biochemic. J. 32, 1626–1645 (1938).

    CAS  Google Scholar 

  • Dixon, M.: Oxidation mechanisms in animal tissues. Biol. Rev. 4, 352–397 (1929).

    CAS  Google Scholar 

  • Doudoroff, M., J. de Ley, N. J. Palleroni and R. Weimberg: New pathways in oxidation of D-galactose and D-arabinose. Federat. Proc. 15, 244 (1956b).

    Google Scholar 

  • Doudoroff, M., N. J. Palleroni, J. MacGee and M. Obara: Metabolism of carbohydrates by Pseudomonas saccharophila. I. Oxidation of fructose by intact cells and crude cell-free preparations. J. Bacter. 71, 196–201 (1956a).

    CAS  Google Scholar 

  • Eddy, B.: Bacterial oxidation of lactose and melibiose. Nature (Lond.) 181, 904–905 (1958).

    CAS  Google Scholar 

  • Entner, N., and M. Doudoroff: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. of Biol. Chem. 196, 853–862 (1952).

    CAS  Google Scholar 

  • Entner, N., and R. Y. Stanier: Studies on the oxidation of glucose by Pseudomonas fluorescens. J. Bacter. 62, 181–186 (1951).

    CAS  Google Scholar 

  • Fahmy, A. R., and E. O. F. Walsh: Evidence for the occurrence of glucose dehydrogenase in yeast. Nature (Lond.) 173, 872 (1954).

    CAS  Google Scholar 

  • Falck, R., u. S. N. Kapur: Über Glucon-säure-Bildung durch Fadenpilze. Ber. dtsch. chem. Ges. 57, 920–923 (1924).

    Google Scholar 

  • Foda, I. O., and R. H. Vaughn: Oxidation of maltose by Acetobacter melanogenum. J. Bacter. 65, 233–237 (1953).

    CAS  Google Scholar 

  • Franke, W.: Zur Kenntnis der sog. Glucose-oxydase. III. Liebigs Ann. 555, 111–132 (1944).

    CAS  Google Scholar 

  • Franke, W., u. M. Deffner: Zur Kenntnis der sog. Glucose-oxydase. II. Liebigs Ann. 541, 117–150 (1939).

    CAS  Google Scholar 

  • Franke, W., u. F. Lorenz: Zur Kenntnis der sog. Glucose-oxydase. I. Liebigs Ann. 532, 1–28 (1937).

    CAS  Google Scholar 

  • Franzl, R. E., and E. Chargaff: Bacterial enzyme preparation oxidizing inositol and their inhibition by colchicine. Nature (Lond.) 168. 955–957 (1951).

    CAS  Google Scholar 

  • Frateur, J.: Essai sur la systèmatique des Acetobacters. Cellule 53, 287–389 (1950).

    Google Scholar 

  • Frateur, J., P. Simonart et T. Coulon: Étude chromatographique de cultures d’Acetobacter. Leeuwenhoek 20, 111–128 (1954).

    CAS  Google Scholar 

  • Gauhe, A.: Über ein glucoseoxydierendes Enzym in der Pharynxdrüse der Honigbiene. Z. vergl. Physiol. 28, 211–253 (1941).

    CAS  Google Scholar 

  • Gentile, A.C.: Carbohydrate metabolism and oxalic acid synthesis by Botrytis cinerea. Plant Physiol. 29, 257–261 (1954).

    PubMed  CAS  Google Scholar 

  • Ghiretti, F., and E. S. G. Barron: The pathway of glucose oxidation in Corynebacterium creatinovorans. Biochim. et Biophysica Acta 15, 445–460 (1954).

    CAS  Google Scholar 

  • Godin, P.: Étude du métabolism ternaire de Penicillium brevi-compactum. Biochim. et Biophysica Acta 11, 114–121 (1953).

    CAS  Google Scholar 

  • Gottschalk, A.: Mechanism of enzyme specificity in the domain of carbohydrates. Nature (Lond.) 160, 113–115 (1947).

    CAS  Google Scholar 

  • Grüss, J.: Genetische und gärungsphysiologische Untersuchungen an Nektarhefen. Jb. wiss. Bot. 66, 109–182 (1926).

    Google Scholar 

  • Grüss, J.: Hochnordische Nektarhefen. Wschr. Brauerei 44, 233–235 (1927).

    Google Scholar 

  • Haba, G. de la, I. G. Leder et E. Racker: L’oxydation directe du glucose par les microorganismes. Bull. Assoc. Microbiol. Nancy 1952, Nr 46, 5–29.

    Google Scholar 

  • Haehn, H., u. M. Engel: Über die Bildung von Milchsäure durch Bacterium xylinum. Zbl. Bakter. II 79, 182–185 (1929).

    CAS  Google Scholar 

  • Harrison, D. C.: Glucose dehydrogenase: a new oxidizing enzyme from animal tissues. Biochemic. J. 25, 1016–1027 (1931).

    CAS  Google Scholar 

  • Hayasida, A.: Nachweis der Aero-pentose-dehydrase (Pentoseoxydase) und Katalase bei Fusarien. Biochem. Z. 298, 169–178 (1938).

    CAS  Google Scholar 

  • Heald, P. J.: The metabolism of glucuronic acid by xylose-fermenting coliform bacteria. Biochemic. J. 52, 378–384 (1952).

    CAS  Google Scholar 

  • Henneberg, W.: Handbuch der Gärungsbakteriologie, Bd.2. Paul Parey, Berlin: 1926.

    Google Scholar 

  • Hermann, S.: Über das sog. „Kombucha“. Biochem. Z. 192, 176–187, 188–199 (1928).

    CAS  Google Scholar 

  • Henneberg, W.: Bacterium gluconicum, ein in der sog. Kombucha (japanischer oder indischer Teepilz) vorkommende Spaltpilz. Biochem. Z. 205, 297 bis 305 (1929 a).

    Google Scholar 

  • Henneberg, W.: Bildung von Gluconsäure und Ketogluconsäure durch Bacterium gluconicum, Bacterium xylinum und Bacterium xylinoides. Biochem. Z. 214, 357–367 (1929 b).

    Google Scholar 

  • Hermann, S., u. P. Neuschul: Zur Biochemie der Essigbakterien, zugleich ein Vorschlag für eine neue Systematik. Biochem. Z. 233, 129–216 (1931).

    CAS  Google Scholar 

  • Hermann, S., u. P. Neuschul: Über einen charakteristischen Unterschied des Bact. gluconicum (Hermann) gegenüber anderen Essigbakterien bei der Einwirkung auf Galaktose. Biochem. Z. 270, 6–14 (1934).

    CAS  Google Scholar 

  • Hermann, S., u. P. Neuschul: Sur l’oxydation du mannose en acide mannonique par le Bacterium gluconicum (Hermann). Bull. Soc. Chim. biol. Paris 18, 390–394 (1936a).

    CAS  Google Scholar 

  • Hermann, S., u. P. Neuschul: Zur Oxydation von Glucose durch Bacterium gluconicum. Biochem. Z. 287, 400 bis 404 (1936b).

    CAS  Google Scholar 

  • Herrick, H. T., and O. E. May: The production of gluconic acid by the Penicillium-purpurogenum group. II. Some optimal conditions for acid formation. J. of Biol. Chem. 77, 185–195 (1928).

    CAS  Google Scholar 

  • Hestrin, S.: The specificity of mould maltase. Enzymologia 8, 193–203 (1940).

    CAS  Google Scholar 

  • Hirsch, J.: Die Sekretion eines Glukose-oxydierenden Enzyms mit bakteriostatischer Wirkung durch Penicillium notatum Fleming. Istanbul Seriyati Yill 25, No. 8, 3–20 (1943).

    Google Scholar 

  • Hirst, E. L.: Recent progress in the chemistry of the pectic materials and plant gums. J. Chem. Soc. (Lond.) 1942, 70–78.

    Google Scholar 

  • Hirst, E. L.: The occurrence and significance of the pentose sugars in nature and their relationship to the hexoses. J. Chem. Soc. (Lond.) 1949, 522–533.

    Google Scholar 

  • Hofmann, E.: Über die Bildung von Oxalsäure aus Uronsäuren durch Aspergillus niger. Biochem. Z. 243, 423–428 (1931).

    CAS  Google Scholar 

  • Hofmann-Ostenhof, O.: Enzymologie. Wien: Springer 1954.

    Google Scholar 

  • Hooft, F. Visser’t: Biochemische onderzoekingen over het geslacht Acetobacter. Diss. Delft 1925.

    Google Scholar 

  • Ikeda, Y.: Selection of new oxidative bacteria. J. Agricult. Chem. Soc. Jap. 24, 51–55 (1950a). Zit. nach Chem. Abstr. 45, 7189 (1951a).

    Google Scholar 

  • Ikeda, Y.: Production of 2-ketogluconic acid by Pseudomonas fluorescens and Serratia marcescens. J. Agricult. Chem. Soc. Jap. 24, 56–59 (1950b). Zit. nach Chem. Abstr. 45, 7189 (1951b).

    Google Scholar 

  • Ikeda, Y.: Glucose oxidase and gluconic acid oxidase of various oxidative bacteria. J. Agricult. Chem. Soc. Jap. 24, 147–150 (1950c). Zit. nach Chem. Abstr. 45, 7189 (1951c).

    Google Scholar 

  • Ikeda, Y.: A presumable pathway of kojic acid formation from fructose by Gluconobacter. J. Gen. Appl. Microbiol. 1, 152–163 (1955).

    CAS  Google Scholar 

  • Isherwood, F. A., Y. T. Chen and L. W. Mapson: Synthesis of L-ascorbic acid in plants and animals. Biochemic. J. 56, 1–15 (1954).

    CAS  Google Scholar 

  • Itto, G.: The fermentation products of Penicillin. J. Agricult. Chem. Soc. Jap. 9, 456 (1933).

    Google Scholar 

  • Jackson, R., H. Koepsell, L. Lockwood, G. Nelson and F. Stodola: Bacterial oxidations of sugars and metabolic intermediates. I. Internat. Congr. Biochem. Cambridge, p. 536 bis 537, 1949.

    Google Scholar 

  • Kardo-Ssyssojeva, E.: Über die Bildung von Gluconsäure durch Aspergillus niger. Biochem. Z. 266, 337–351 (1933).

    Google Scholar 

  • Kardo-Ssyssojewa, H.: Über Säurebildung und Säureresistenz des Aspergillus niger. Zbl. Bakter. II 93, 264–277 (1935).

    Google Scholar 

  • Katznelson, H., and S.W. Tanenbaum: Observations on maltose oxidation by Acetobacter melanogenum. J. Bacter. 68, 368–372 (1954).

    CAS  Google Scholar 

  • Katznelson, H., S. W. Tanenbaum and E. L. Tatum: Glucose, gluconate and 2-ketogluconate oxidation by Acetobacter melanogenum. J. of Biol. Chem. 204, 43–59 (1953).

    CAS  Google Scholar 

  • Keilin, D., and E. F. Hartree: Properties of catalase. Catalysis of coupled oxidation of alcohols. Biochemic. J. 39, 293–301 (1945).

    CAS  Google Scholar 

  • Keilin, D., and E. F. Hartree: Prosthetic group of glucose oxidase (Notatin). Nature (Lond.) 157, 801 (1946).

    CAS  Google Scholar 

  • Keilin, D., and E. F. Hartree: Properties of glucose oxidase (Notatin). Biochemic. J. 42, 221–229 (1948a).

    CAS  Google Scholar 

  • Keilin, D., and E. F. Hartree: The use of glucose oxidase (Notatin) for the determination of glucose in biological material and for the study of glucoseproducing systems by manometric methods. Biochemic. J. 42, 230–237 (1948b).

    CAS  Google Scholar 

  • Keilin, D., and E. F. Hartree: Specificity of glucose oxidase (Notatin). Biochemic. J. 50, 331–340 (1952a).

    CAS  Google Scholar 

  • Keilin, D., and E. F. Hartree: Biological catalysis of mutarotation of glucose. Biochemic. J. 50, 341–348 (1952b).

    CAS  Google Scholar 

  • Kendall, A. J., and C. E. Gross: The utilization of certain substituted carbohydrates by bacteria. J. Inf. Dis. 47, 249–260 (1930).

    CAS  Google Scholar 

  • Keston, A. S.: Occurrence of mutarotase in animals: Its proposed relationship to transport and reabsorption of sugars and insulin. Science (Lancaster, Pa.) 120, 355–356 (1954).

    CAS  Google Scholar 

  • Khesghi, S., H. R. Roberts and W. Bucek: Studies on the production of 5-ketogluconic acid by Acetobacter suboxydans. Appl. Microbiol. 2, 183–190 (1954).

    CAS  Google Scholar 

  • King, T. E. and V. H. Cheldelin: Oxidation in Acetobacter suboxydans. Biochim. et Bio-physica Acta 14, 108–116 (1954). Multiple pathways of glucose oxidation in Acetobacter suboxydans. Biochemic. J. 68, 31P-32P (1958).

    Google Scholar 

  • Kitawin, G. S.: Die Wirkung der Quecksilbersalze auf die Bildung der Säuren und des Vitamins B2 bei Aspergillus niger. Biokhimiia 4, 283–294 (1939) [Russisch]. Zit. nach Zbl. Bakter II 102, 273 (1940).

    Google Scholar 

  • Kluyver, A. J., and A. G. J. Boezaardt: On the oxidation of glucose by Acetobacter suboxydans. Rec. Trav. chim. néerl. 57, 609–615 (1938).

    CAS  Google Scholar 

  • Kluyver, A. J., and F. J. G. de Leeuw: Acetobacter suboxydans, een merkwaardige azijnbacterie. Tijdschr. vergl. G. neesk. 10, 170–182 (1924). Zit. nach Zbl. Bakter II 64, 253–254 (1925).

    CAS  Google Scholar 

  • Kluyver, A. J., J. de Ley and A. Rijven: The formation and consumption of lactobionic and maltobionic acid by Pseudomonas species. Leeuwenhoek 17, 1–14 (1951).

    CAS  Google Scholar 

  • Kluyver, A. J., u. L. H. C. Perquin: Über die Bedingungen der Kojisäurebildung durch Aspergillus flavus. Biochem. Z. 266, 82–95 (1933).

    CAS  Google Scholar 

  • Knobloch, H., u. H. Mayer: Über die Büdung von D-Glucon-, D-Mannon- und D-Galaktonsäure durch Aspergillus niger in Schüttelkultur. Biochem. Z. 307, 285–297 (1941).

    CAS  Google Scholar 

  • Knobloch, H., u. H. Tietze: Über die Bildung reduzierender Zuckercarbonsäuren durch Essigbakterien. Biochem. Z. 309, 399–414 (1941).

    CAS  Google Scholar 

  • Kocholaty, W.: Purification and properties of Penatin, the second antibacterial substance produced by Penicillium notatum Westling. Arch. of Biochem. 2, 73–86 (1943).

    CAS  Google Scholar 

  • Koepsell, H. J.: Gluconate oxidation by Pseudomonas fluorescens. J. of Biol. Chem. 186, 743–751 (1950).

    CAS  Google Scholar 

  • Kulka, D., A. N. Hall and T. K. Walker: Formation of 2-keto-D-gluconic acid, 5-keto-D-gluconic acid and tartronic acid by Acetobacter species. Nature (Lond.) 167, 905–906 (1951).

    CAS  Google Scholar 

  • Kulka, D., and T. K. Walker: The ketogenic activities of Acetobacter species in a glucose medium. Arch. of Biochem. a. Biophysics 50, 169–179 (1954).

    CAS  Google Scholar 

  • Laser, H.: The effect of low oxygen tension on the activity of aerobic dehydrogenases. Proc. Roy. Soc. Lond., Ser. B 140, 230–243 (1952).

    CAS  Google Scholar 

  • Lembke, A.: Die Gruppe der Fluorescenten, B. pyocyaneus, B. fluorescens, B. putidum, B. syncyaneum. Vorratspfl. u. Lebensmittelforsch. 5, 265–281 (1942).

    CAS  Google Scholar 

  • Lemoigne, M., H. Blachére et J. P. Aubert: Oxydation du glucose par des bactéries du genre Pseudomonas. C. r. Acad. Sci. Paris 236, 2188–2191 (1953).

    PubMed  CAS  Google Scholar 

  • Levy, G. B., and E. S. Cook: A rotographic study of mutarotase. Biochemic. J. 57, 50–55 (1954).

    CAS  Google Scholar 

  • Ley, J. de: The oxidation of some carbohydrates by Aerobacter cloacae and their connection with the direct oxidation scheme. Enzymologia 16, 14–22 (1953).

    Google Scholar 

  • Ley, J. de: 2-Keto-D-gluconate-6-phosphate, a new intermediate in the carbohydrate metabolism of Aerobacter cloacae. Enzymologia 17, 55–68 (1954).

    Google Scholar 

  • Ley, J. de: Phospho-2-keto-d-gluconate, an intermediate in carbohydrate metabolism of Aerobacter cloacae. Biochim. et Biophysica Acta 13, 302 (1954b).

    Google Scholar 

  • Ley, J. de, and S. Cornut: Direct oxidation of glucose by Aerobacter sp. Nature (Lond.) 168, 515–516 (1951).

    Google Scholar 

  • Ley, J. de, and J. Vandamme: The metabolism of sodium 2-keto-D-gluconate by micro-organisms. J. Gen. Microbiol. 12, 162–171 (1955).

    Google Scholar 

  • Ley, J. de, and S. Verhofstede: The metabolism of 2-keto-D-gluconate-6-phospnate. Naturwiss. 42, 584 (1955).

    Google Scholar 

  • Lockwood, L. B., and G.E.N. Nelson: The oxidation of pentoses by Pseudomonas. J. Bacter. 52, 581–586 (1946).

    CAS  Google Scholar 

  • Lockwood, L. B., and F. Stodola: Preliminary studies on the production of a-ketoglutaric acid by Pseudomonas fluoresces. J. of Biol. Chem. 164, 81–83 (1946).

    CAS  Google Scholar 

  • Lockwood, L. B., B. Tabenkin and G. E. Ward: The production of gluconic acid and 2-ketogluconic acid from glucose by species of Pseudomonas and Phytomonas. J. Bacter. 42, 51–61 (1941).

    CAS  Google Scholar 

  • Lowe, H. J., and W. M. Clark: Studies on oxidation-reduction. XXIV. Oxidation-reduction potentials of flavin adenine dinucleotide. J. of Biol. Chem. 221, 983–992 (1956).

    CAS  Google Scholar 

  • Lvoff, S., et G. Toupizina: Effect of NaF on the formation of citric and gluconic acids of the fungus Aspergillus niger. C. r. Acad. Sci. USSR. 21, 307–311 (1938).

    Google Scholar 

  • Lyr, H.: Über die an der Ligninbildung beteiligten Fermentsysteme. Naturwiss. 44, 235 (1957).

    CAS  Google Scholar 

  • Mapson, L. W., and F. A. Isherwood: Biological synthesis of ascorbic acid: The conversion of derivatives of D-galacturonic acid into L-ascorbic acid by plant extracts. Biochemic. J. 59, IX–X (1955).

    Google Scholar 

  • Mapson, L. W., F. A. Isherwood u. Y. T. Chen: Biological synthesis of L-ascorbic acid: The conversion of L-galactono-γ-lactone into L-ascorbic acid by plant mitochondria. Biochemic. J. 56, 21–28 (1954).

    CAS  Google Scholar 

  • Martin, S. B., and R. Steel: Effect of phosphate on production of organic acids by Aspergillus niger. Canad. J. Microbiol. 1, 470–472 (1955).

    CAS  Google Scholar 

  • May, O. E., H. T. Herrick, A. J. Moyer and R. Hellbach: Semi-plant scale production of gluconic acid by mold fermentation. Industr. Engin. Chem. 21. 1198–1203 (1929).

    CAS  Google Scholar 

  • May, O. E., H. T. Herrick, C. Thom and M. B. Church: The production of gluconic acid by the Penicillium luteum-purpurogenum group. I. J. of Biol. Chem. 75, 417–422 (1927).

    CAS  Google Scholar 

  • Mayenburg, O. H. v.: Lösungskonzentration und Turgorregulation bei den Schimmelpilzen. Jb. wiss. Bot. 36, 1–40 (1901).

    Google Scholar 

  • Molliard, M.: Sur une nouvelle fermentation acide produite par le Sterigmatocystis nigra. C. r. Acad. Sci. Paris 174, 881–883 (1922).

    CAS  Google Scholar 

  • Molliard, M.: Nouvelles recherches sur la formation d’acides organiques par le Sterigmatocystis nigra en milieux désequilibrèes. C. r. Acad. Sci. Paris 178, 41–45 (1924a).

    CAS  Google Scholar 

  • Molliard, M.: Manière dont se comporte le Sterigmatocystis nigra vis-à-vis des diverses substances sucrées dans des milieux faiblement minéralisées. C. r. Acad. Sci. Paris 178, 161–163 (1924b).

    CAS  Google Scholar 

  • Moore, W. B., A. C. Blackwood and A. C. Neish: The metabolism of seven-carbon sugars, acids and alcohols by bacteria and yeasts. Canad. J. Microbiol. 1, 198–205 (1954).

    CAS  Google Scholar 

  • Moyer, A. J., O. E. May u. H. T. Herrick: The production of gluconic acid by Penicillium chrysogenum. Zbl. Bakter. II. 95, 311–324 (1936).

    CAS  Google Scholar 

  • Müller, D.: Studien über ein neues Enzym Glykose-oxydase. I. Biochem. Z. 199, 136–143 (1928).

    Google Scholar 

  • Müller, D.: Studien über ein neues Enzym Glykose-oxydase. II. Biochem. Z. 205, 111–143 (1929 a).

    Google Scholar 

  • Müller, D.: Das Verhalten der Glykoseoxydase gegenüber Dialyse, HCN, CO und Methylenblau. Biochem. Z. 213, 211–219 (1929b).

    Google Scholar 

  • Müller, D.: Glykoseoxydase. 4. Mitteilung: Glykoseoxydase aus Aspergillus niger. Verhalten gegen Disaccharide (Maltoseoxydase), Glukuronsäure und Äthylalkohol; Versuche mit Methylenblau und Monojodessigsäure. Biochem. Z. 232, 422–434 (1931).

    Google Scholar 

  • Müller, D.: Die Oxydationsenzyme und die biologischen Oxydationen. Kopenhagen: Gjellerup 1934. 29 S.

    Google Scholar 

  • Müller, D.: Die Glykoseoxydase. Erg. Enzymforsch. 5, 259–272 (1936).

    Google Scholar 

  • Müller, D.: Glykuronat und Glykonat als Donatoren für Hefe. Skand. Arch. Physiol. (Berl. u. Lpz.) 80, 328–333 (1938).

    Google Scholar 

  • Müller, D.: Über die Glucosedehydrasen. Enzvmologia 10, 40–47 (1941).

    Google Scholar 

  • Müller, D.: Die Glucosedehydrasen. Fermentforsch. 17, 395–416 (1944).

    Google Scholar 

  • Najjar, V. A.: The rôle of metal ions in enzyme systems. In W. D. McElroy and B. Glass (edit.), Phosphorus metabolism, Bd. 1, S. 500–516. Baltimore: Hopkins Press. 1951.

    Google Scholar 

  • Nakamura, M.: Studies on glucose dehydrogenase. II. J. Biochem. (Tokyo) 41, 67–80 (1954).

    CAS  Google Scholar 

  • Narrod, S.A., and W. A. Wood: Gluconate and 2-ketogluconate phosphorylation by extracts of Pseudomonas fluorescens. Bacter. Proc. 1954, 108–109.

    Google Scholar 

  • Narrod, S.A., and W. A. Wood: Carbohydrate oxidation by Pseudomonas fluorescens. V. Evidence for gluconokinase and 2-ketogluconokinase. J. of Biol. Chem. 220, 45–55 (1956).

    CAS  Google Scholar 

  • Nielsen, A.M.: Reduktion von Pyocyanin durch Glucoseoxydase. Naturwiss. 45, 85 (1958).

    CAS  Google Scholar 

  • Nord, F. F.: Enzymatische Umsetzungen durch Fusarien: Beitrag zum Mechanismus der alkoholischen Gärung. Erg. Enzymforsch. 8, 149–184 (1939).

    CAS  Google Scholar 

  • Nord, F. F., u. W. Engel: Beobachtungen bei der Vergärung von Biosen durch Fusarium lini Bolley. Biochem. Z. 296, 153–170 (1938).

    CAS  Google Scholar 

  • Norris, F. C., and J. J. R. Campbell: The intermediate metabolism of Pseudomonas aeruginosa. III. The application of paper chromatography to the identification of gluconic and 2-ketogluconic acids, intermediates in glucose oxidation. Canad. J. Res., Sect. C., 27, 253–261 (1949).

    Google Scholar 

  • Ogura, Y.: Über eine anoxytrope Glucosedehydrase aus Aspergillus oryzae. Acta phytochim (Tokyo) 11, 127–144 (1939).

    CAS  Google Scholar 

  • Ogura, Y.: Studies on glucose dehydrogenase of Aspergillus oryzae. J. of Biochem. 38, 75–84 (1951).

    CAS  Google Scholar 

  • Ogura, Y.: Kinetic studies on the action of glucose dehydrogenase. I. J. of Biochem. 39, 31–43 (1952a).

    CAS  Google Scholar 

  • Ogura, Y.: Kinetic studies on the action of glucose dehydrogenase. II. Some thermodynamical and kinetical quantities of the intermediate reactions. J. of Biochem. 39, 287–297 (1952b).

    CAS  Google Scholar 

  • Ogura, Y.: Kinetic studies on the action of glucose dehydrogenase. III. Competitive interaction between two substrates in their reaction with the enzyme molecule. J. of Biochem. 39, 311–320 (1952 c).

    CAS  Google Scholar 

  • Ogura, Y.: Kinetic studies on the action of glucose dehydrogenase. IV. Quantitative analysis of the inhibitory action of urethane. J. of Biochem. 41, 351–357 (1954).

    CAS  Google Scholar 

  • Oppenheimer, C.: Die Fermente, Suppl. Bd. 2. Den Haag: Junk 1939.

    Google Scholar 

  • Palleroni, N. J., R. Contopoulou and M. Doudoroff: Metabolism of carbohydrates by Pseudomonas saccharophila. II. Nature of the kinase reaction involving fructose. J. Bacter. 71, 202–207 (1956b).

    CAS  Google Scholar 

  • Palleroni, N. J., and M. Doudoroff: Mannose isomerase of Pseudomonas saccharophila. J. of Biol. Chem. 218, 535–548 (1956a).

    CAS  Google Scholar 

  • Perquin, L. H. C.: Bijdrage to de kermis der oxydatieve dissimilatie van Aspergillus niger. Diss. Delft 1938.

    Google Scholar 

  • Perwozwansky, V. V.: Über das Verhalten von Hefepüzen und einige Hyphomyces-Arten zu Chinasäure. Zbl. Bakter. II 81, 372–392 (1930).

    Google Scholar 

  • Perwozwansky, V. V.: Formation of gluconic acid during the oxidation of glucose by bacteria. Mikrobiologija 8, 149–159 (1939 a).

    Google Scholar 

  • Perwozwansky, V. V.: The formation of D-mannonic acid in the course of the oxidation of fructose by certain strains of Bact. fluoresceins L. et N. Mikrobiologija 8, 915–937 (1939b).

    Google Scholar 

  • Perwozwansky, V. V., u. M. A. Iwaschkewitsch: Formation of gluconic acid by Bacterium putidum. Mikrobiologija 8, 339–352 (1939 a).

    Google Scholar 

  • Perwozwansky, V. V., u. M. A. Iwaschkewitsch: The production of gluconic acid by fluorescent bacteria. Mikrobiologija 8, 663–672 (1939b).

    Google Scholar 

  • Porges, N., T. F. Clark and E. A. Gastrock: Gluconic acid production. Repeated use of submerged Aspergillus niger for semicontinuous production. Industr. Engin. Chem. 32, 107–111 (1940).

    CAS  Google Scholar 

  • Preiss, S.: Über Ensilage mittels biologische Zusätze. Diss. Breslau 1939.

    Google Scholar 

  • Racker, E.: Alternative pathways of glucose and fructose metabolism. Adv. Enzymol. 15, 141–182 (1954).

    CAS  Google Scholar 

  • Ramakrishnan, T., and J. J. R. Campbell: Gluconic dehydrogenase of Pseudomonas aeruginosa. Biochim. et Biophysica Acta 17, 122–127 (1955).

    CAS  Google Scholar 

  • Reeves, R. E.: Cuprammonium-glycoside complexes. Adv. Carbohydrate Chem. 6, 107–134 (1951).

    CAS  Google Scholar 

  • Riedl-Tůmová, E., u. K. Bernhauer: Zur Bildung von Oxogluconsäure durch Acetobacter melanogenum. Biochem. Z. 320, 472–476 (1950).

    PubMed  Google Scholar 

  • Ritter, W.: Die beweglichen Kurzstäbchen im Magenlab. Milchwirtsch. Forsch. 15, 4–21 (1933).

    Google Scholar 

  • Roberts, E. C., C. K. Cain, R. D. Muir, F. J. Reithel, W. L. Gaby, J. T. van Bruggen, D. M. Homan, P. A. Katzman, L. R. Jones and E. A. Doisy: Penicillin B, an antibacterial substance from Penicillium notatum. J. of Biol. Chem. 147, 47–58 (1943).

    CAS  Google Scholar 

  • Roseman, S., J. Ludowieg, F. Moses and A. Dorfman: The biosynthesis of the glucuronic acid moiety of hyaluronic acid. Arch. of Biochem. a. Biophysics. 42, 472–473 (1953).

    CAS  Google Scholar 

  • Roy, R. H. le, and B. C. Hendricks: A thermochemical study of D-gluconic acid and its modifications. J. Amer. Chem. Soc. 56, 2243–2245 (1934).

    Google Scholar 

  • Rudra, M. N.: Hexose dehydrogenase. Nature (Lond.) 151, 641–642 (1943).

    CAS  Google Scholar 

  • Sable, H. Z., and A. J. Guarino: Phosphorylation of gluconate in yeast extracts. J. of Biol. Chem. 196, 395–402 (1952).

    CAS  Google Scholar 

  • Sakagushi, K.: The production of acids and ethyl alcohol by Aspergillus oryzae and its associates. IV. The formation of d-gluconic acid. J. Agricult. Chem. Soc. Jap. 8, 264 (1932).

    Google Scholar 

  • Salkowski, E., u. C. Neuberg: Die Verwandlung von d-Glucuronsäure in 1-Xylose. Z. physiol. Chem. 36, 261–267 (1902).

    CAS  Google Scholar 

  • Santer, M., and S. Ajl: Metabolic reactions of Pasteurella pestis. III. The hexose monophosphate shunt in the growth. J. Bacter. 69, 713–718 (1955).

    CAS  Google Scholar 

  • Sastry, K. S., and P. S. Sarma: Glucuronic acid, a precursor of ascorbic acid in Aspergillus niger. Nature (Lond.) 179, 44–45 (1957).

    CAS  Google Scholar 

  • Schreyer, R.: Vergleichende Untersuchungen über die Bildung von Gluconsäure durch Schimmelpilze. Biochem. Z. 240, 295–325 (1931).

    CAS  Google Scholar 

  • Seifert, W.: Beiträge zur Physiologie und Morphologie der Essigsäurebakterien. Zbl. Bakter. II 3, 337–349, 385–399 (1897).

    Google Scholar 

  • Simonart, P., et P. Godin: Production de pentoses, d’acide 2-cètogluconique et d’acide glucuronique par Penicillium brevi-compactum. Bull. Soc. chim. Belg. 60, 446–448 (1951).

    CAS  Google Scholar 

  • Slater, W. G., and H. Beevers: Decarboxylation of glucuronic acid. Plant Physiol. 31, Suppl., 39 (1956).

    Google Scholar 

  • Slater, W. G., and H. Beevers: Utilization of D-glucuronate by corn coleoptiles. Plant Physiol. 32, 146–151 (1958).

    Google Scholar 

  • Sokatch, J. T., and J. C. Gunsalus: The enzymes of an adaptive gluconate fermentation pathway in Streptococcus faecalis. Bacter. Proc. 1954, 109–110.

    Google Scholar 

  • Sols, A., and G. LaFuente: On the substrate specifity of glucose oxidase. Biochim. et Biophysica Acta 24, 206–207 (1957).

    CAS  Google Scholar 

  • Starr, M., J. de Ley and W. Kilgore: Catabolism of hexuronic acids by Erwinia and Aerobacter. Science (Lancaster, Pa.) 125, 929 (1957).

    CAS  Google Scholar 

  • Sternfeld, L., and F. Saunders: The utilization of various sugars and their derivatives by bacteria. J. Amer. Chem. Soc. 59, 2653–2658 (1937).

    CAS  Google Scholar 

  • Stetten, M. R., and de Witt Stetten jr.: The metabolism of gluconic acid. J. of Biol. Chem. 187, 241–252 (1950).

    CAS  Google Scholar 

  • Stetter, H.: Enzymatische Analyse. Weinheim: Verlag Chemie 1951.

    Google Scholar 

  • Stodola, F. H., and L. B. Lockwood: The oxidation of lactose and maltose to bionic acids by Pseudomonas. J. of Biol. Chem. 171, 213–221 (1947).

    CAS  Google Scholar 

  • Stockes, F. N., and J. J. R. Campbell: The oxidation of glucose and gluconic acid by dried cells of Pseudomonas aeruginosa. Arch. of Biochem. 30, 121–125 (1951).

    Google Scholar 

  • Strecker, H. J., and S. Korkes: Glucose dehydrogenase. J. of Biol. Chem. 196, 769–784 (1952).

    CAS  Google Scholar 

  • Strominger, J. L., H. M. Kalckar, J. Axelrod and E. S. Maxwell: Enzymatic oxidation of uridine diphosphate glucose to uridine diphosphate glucuronic acid. J. Amer. Chem. Soc. 76, 6411–6412 (1954).

    CAS  Google Scholar 

  • Stubbs, J. J., L. B. Lockwood, E. T. Roe, B. Tabeistkin and G. E. Ward: Ketogluconic acids from glucose. Bacterial production. Industr. Engin. Chem. 32, 1626–1631 (1940).

    CAS  Google Scholar 

  • Sumiki, Y. and Y. Hatsuda: The metabolic products of acetic acid bacteria. I. Formation of 5-ketogluconic. J. Agricult. Chem. Soc. Jap. 23, 87–89 (1949). Zit. nach Chem. Abstr. 44, 3079 (1950).

    CAS  Google Scholar 

  • Takahashi, T., u. T. Asai: On gluconic acid fermentation. I. On Bact. Hoshigaki var. rosea nov. spec. Zbl. Bakter. II 82, 390–405 (1930).

    Google Scholar 

  • Takahashi, T., u. T. Asai: On glucuronic acid fermentation. Zbl. Bakter. II 84, 193–195 (1931).

    CAS  Google Scholar 

  • Takahashi, T., u. T. Asai: On glucuronic acid fermentation. III. On Bacterium Hoshigaki var. glucuronicum I, II a. III nov. spec. Zbl. Bakter. II 87, 385–412 (1933).

    CAS  Google Scholar 

  • Takahashi, T., u. T. Asai: On the fermentation products of acetic bacteria attached to the fruite. The formation of galactonic- and komenic acid from galactose. Zbl. Bakter. II 93, 248–252 (1936).

    Google Scholar 

  • Tamiya, H., u. T. Hida: Vergleichende Studien über die Säurebildung, die Atmung, die Oxydasereak-tion und das Dehydrierungsvermögen von Aspergillusarten. Acta phytochim. (Tokyo) 4, 343–361 (1929).

    CAS  Google Scholar 

  • Tanaka, K.: Über die Gluconsäuregärung der Essigbakterien. Acta phytochim. (Tokyo) 7, 265–297 (1933).

    CAS  Google Scholar 

  • Thies, W.: Untersuchungen über den Einfluß der Bedingungen auf die Säurebildung des Schimmelpilzes Aspergillus fumaricus. Zbl. Bakter. II 82, 321–347 (1930).

    CAS  Google Scholar 

  • Thies, W.: Über den Abbau der Salze organischer Säuren durch den Schimmelpilz Aspergillus fumaricus. Ber. dtsch. chem. Ges. 64, 214–218 (1931). Zit. nach Zbl. Bakter. II 84, 272 (1931).

    Google Scholar 

  • Thunberg, T.: Der jetzige Stand der Lehre vom biologischen Oxydationsmechanismus. In Oppenheimers Handbuch der Biochemie, 2. Aufl. Erg.-Bd. S. 245–281. Jena: Gustav Fischer 1930.

    Google Scholar 

  • Tollens-Elsner: Kurzes Handbuch der Kohlenhydrate, 4. Aufl. Leipzig: Johann Ambrosius Barth 1935.

    Google Scholar 

  • Utkin, L. A.: On a new species of acetic bacteria. Mikrobiologija 6, 421–434 (1937).

    CAS  Google Scholar 

  • Vandemark, P. J., and G. M. Fukui: An enzymatic study of the utilization of gluconic acid by Propionibacterium pentosaceum. J. Bacter. 72, 610–614 (1956).

    CAS  Google Scholar 

  • Vermeulen, A., and J. de Ley: Oxidation and phosphorylation of D-galactonate by Aerobacter cloacae. Enzymologia 16, 105–112 (1953).

    PubMed  CAS  Google Scholar 

  • Wainio, W. W.: The oxidation of phosphorylated and non-phosphorylated sugars by mammalian liver. J. of Biol. Chem. 168, 569–582 (1947).

    CAS  Google Scholar 

  • Walker, T. K.: A biological conversion of glucose to glucosone. Nature (Lond.) 130, 582 (1932).

    CAS  Google Scholar 

  • Warburton, R., B. Eagles and J. Campbell: The intermediate metabolism of Pseudomonas aeruginosa. V. The identification of pyruvate as an intermediate in glucose oxidation. Canad. J. Bot. 29, 143–146 (1951).

    CAS  Google Scholar 

  • Wasserman, A. E., W. Hopkins and T. S. Seibles: Glucose oxidation by Serratia marcescens. Canad. J. Microbiol. 2, 447–452 (1956).

    CAS  Google Scholar 

  • Weimberg, R., and M. Doudoroff: Oxidation of L-arabinose by Pseudomonas saccharophila. J. of Biol. Chem. 217, 607–624 (1955).

    CAS  Google Scholar 

  • Wieland, H., u. H. J. Pistor: Über das dehydrierende Enzymsystem von Acetobacter peroxydans. I. Über den Mechanismus der Oxydationsvorgänge. Liebigs Ann. 522, 116–137 (1936).

    CAS  Google Scholar 

  • Wood, W. A.: Pathways of carbohydrate degradation in Pseudomonas fluorescens. Bacter. Rev. 19, 222–233 (1955).

    CAS  Google Scholar 

  • Wood, W. A., and R. F. Schwerdt: Carbohydrate oxidation by Pseudomonas fluorescens. L The mechanism of glucose and gluconate oxidation. J. of Biol. Chem. 201, 501–511 (1953 a).

    CAS  Google Scholar 

  • Wood, W. A., and R. F. Schwerdt: Alternate pathways of hexose oxidation in Pseudomonas fluorescens. J. Cellul. a. Comp. Physiol. 41, Suppl., 165–182 (1953b).

    CAS  Google Scholar 

  • Wood, W. A., and R. F. Schwerdt: Carbohydrate oxidation by Pseudomonas fluorescens. II. Mechanism of hexose phosphate oxidation. J. of Biol. Chem. 206, 625–635 (1954).

    CAS  Google Scholar 

  • Wünschendorff, et Kilian: Observations sur le metabolism de l’Ustulina vulgaris. C. r. Acad. Sci. Paris 187, 572–574 (1928).

    Google Scholar 

  • Yoshiie, Y., and K. Kameyama: The oxidation of glucose and gluconic acid in Acetobacter suboxydans. Bot. Mag. (Tokyo) 70, 19–28 (1957).

    Google Scholar 

  • Young, E. G., and F. A. H. Rice: 2-Keto-D-gluconic acid in the polysaccharide of Irish moss. J. of Biol. Chem. 164, 35–43 (1946).

    CAS  Google Scholar 

  • Yudkin, J.: The dehydrogenases of Bacterium coli. I. The effect of dilution. With a note on the existence of a co-enzyme of glucose dehydrogenase. Biochemic. J. 27, 1849–1858 (1933).

    CAS  Google Scholar 

  • Yudkin, J.: Cell structure and enzvmic activity. Biochemic. J. 31, 1065–1068 (1937).

    CAS  Google Scholar 

  • Agulhon, H., et R. Sazerac: Activation de certains procédés d’oxydation microbiens par les sels d’urane. C. r. Acad. Sci. Paris 155, 1186–1188 (1912).

    Google Scholar 

  • Aida, K.: Studies on oxidative fermentation. II. On the new j-pyrone compound, Rubiginol, produced by Gluconoacetobacter liquefaciens. J. Gen. Appl. Microbiol. (Tokyo) 1, 30–37 (1955).

    Google Scholar 

  • Aida, K., T. Kojima and T. Asai: Studies on oxidative fermentation. I. On the formation of new substances of positive ferric chloride reaction by Gluconoacetobacter liquefaciens from glucose. J. Gen. Appl. Microbiol. (Tokyo) 1, 18–29 (1955).

    Google Scholar 

  • Allgeier, R. J., R. T. Wisthoff and F. M. Hjldebrandt: Operation of pilot plant vinegar generators. Industr. Engin. Chem. 44, 669–672 (1952).

    CAS  Google Scholar 

  • Allgeier, R. J., R. T. Wisthoff and F. M. Hjldebrandt: Operation of vinegar generators. Industr. Engin. Chem. 45, 489–494 (1953).

    CAS  Google Scholar 

  • Anderson, L., and H.A. Lardy: The synthesis of d-fructomethylose by biochemical oxidation. J. Amer. Chem. Soc. 70, 594–597 (1948).

    CAS  Google Scholar 

  • Anderson, L., R. Takeda, S. J. Angyal and D. J. McHugh: Cyclitol oxidation by Aceto-bacter suboxydans. II. Additional cyclitols and the “Third specifity rule“. Arch. of Bio-chem. a. Biophysics 78, 518–531 (1958).

    CAS  Google Scholar 

  • Anderson, L., K. Tomita, P. Kussi and S. Kirkwood: On the cyclitol oxidizing system of Acetobacter suboxydans. J. of Biol. Chem. 204, 769–780 (1953).

    CAS  Google Scholar 

  • Antoniani, C., L. Federico e A. Artom: Bioossidazione della riboflavina. Acta vitaminol(Milano) 5, 145–146 (1951).

    CAS  Google Scholar 

  • Antoniani, C., L. Federico, A. Artom e A. Monzini: Ricerche sul chimismo delie fermentazioni ossidative. Nota IV. Comportamento della riboflavina di fronte atte attivita ossidative in vivo dell’Acetobacter aceti. Ann. Chim. (Roma) 40, 597–603 (1950).

    CAS  Google Scholar 

  • Antoniani, C., L. Federico e L. Gobis: Ricerche sulle bioossidazioni. Nota III. Influenza dell’acido piruvico, dell’acido glicerico e dell’acido glutammico sulla ossidazione dell’acido acetico per opera dell’Acetobacter aceti. Boll. Soc. ital. Biol. sper. 25, 524–526 (1949).

    CAS  Google Scholar 

  • Antoniani, C., L. Federico e L. Gobis: Ricerche sul chimismo delle fermentazioni ossidative. Nota II. Le attività iperossidative dell’Acetobacter aceti e i vari fattori d’influenza. Ann. Chim. (Roma) 40, 80–82 (1950a).

    CAS  Google Scholar 

  • Antoniani, C., L. Federico e L. Gobis: Ricerche sul chimismo delle fermentazioni ossidative. Nota III. Correlazioni tra l’ossidazione dell’acido acetico e la formazione di acido citrico da parte dell’Acetobacter aceti. Ann. Chim. (Roma) 40, 83–87 (1950b).

    CAS  Google Scholar 

  • Arcus, A.C., and N. L. Edson: Polyol dehydrogenases. II. The polyol dehydrogenases of Acetobacter suboxydans and Candida utilis. Biochemic. J. 64, 385–394 (1956).

    CAS  Google Scholar 

  • Arnold, B. H., and A. N. Hall: Effect of streptomycin on Acetobacter capsulatum and its associated dextran-dextrinase enzyme-system. Nature (Lond.) 177, 44 (1956).

    CAS  Google Scholar 

  • Asai, T.: A systematic study of alcohol and carbohydrate oxidizing bacteria isolated from fruits and a new classification of the oxidizing bacteria. J. Agricult. Chem. Soc. Japan 10, 621–629, 731–744, 932–941, 1124–1136 (1934);

    CAS  Google Scholar 

  • Asai, T.: A systematic study of alcohol and carbohydrate oxidizing bacteria isolated from fruits and a new classification of the oxidizing bacteria. J. Agricult. Chem. Soc. Japan 11, 50–60, 331–340, 377–390, 499–513, 610–620, 674–708 (1935).

    CAS  Google Scholar 

  • Asai, T., and K. Shoda: The taxonomy of Acetobacter and allied oxidative bacteria. J. Gen. Appl. Microbiol. (Tokyo) 4, 289–311 (1958).

    Google Scholar 

  • Aschner, M., and S. Hestrin: Fibrillar structure of cellulose of bacterial and animal origin. Nature (Lond.) 157, 659 (1946).

    CAS  Google Scholar 

  • Atkinson, D.E.: Hydrogen metabolism in Acetobacter peroxydans. J. Bacter. 72, 189–194 (1956a).

    CAS  Google Scholar 

  • Atkinson, D.E.: The oxidation of ethanol and tricarboxylic acid cycle intermediates by Acetobacter peroxydans. J. Bacter. 72, 195–198 (1956b).

    CAS  Google Scholar 

  • Badddley, J., and A. P. Mathias: Coenzyme A. Part IX. The synthesis of pantothenyl-cysteine, its 4′-phosphat, and related compounds as possible precursors of the coenzyme A. J. Chem. Soc. (Lond.) 1954, 2803–2812.

    Google Scholar 

  • Baddiley, J., E. M. Thain, G. D. Novelli and F. Lipmann: Structure of coenzyme A. Nature (Lond.) 171, 76 (1953).

    CAS  Google Scholar 

  • Baetsle, R.: Quelques observations sur l’alimentation des acetobacters. Bull. Techn. Vinaigr. 7, 208–209 (1951a).

    Google Scholar 

  • Baetsle, R.: Les recherches sur la fermentation acétique industrielle. Bull. Techn. Vinaigr. 7, 210–216 (1951b).

    Google Scholar 

  • Baetsle, R.: Recherches sur la fermentation acétique industrielle. Bull. Techn. Vinaigr. 8, 248–253 (1952/53).

    Google Scholar 

  • Baetsle, R.: Fermentatio 5, 190 (1953).

    Google Scholar 

  • Baker, J. L., F. E. Day and H. F. E. Hulton: A study of the organisms causing ropiness in beer and wort. J. Inst. Brew. 18, 651–665 (1912).

    Google Scholar 

  • Banning, F.: Zur Kenntnis der Oxalsäurebildung durch Bakterien. Zbl. Bakter. II 8, 395–398, 425–431, 453–456, 520–525, 556–567 (1902).

    CAS  Google Scholar 

  • Barcley, K. S., E. J. Bourne, M. Stacey and M. Webb: Structural studies of the cellulose synthesized by Acetobacter acetigenum. J. Chem. Soc. (Lond.) 1954, 1501–1505.

    Google Scholar 

  • Barsha, J., and H. Hibbert: Reactions relating to carbohydrates and polysaccharides. XLVI. Structure of the cellulose synthesized by the action of Acetobacter xylinum on fructose and glycerol. Canad. J. Res. 10, 170–179 (1934).

    CAS  Google Scholar 

  • Batschinski, A. A.: Russischer Tee-Essig. Über den sog. mandschurisch-japanischen Pilz und Teekwaß. Dtsch. Essigindustr. 18, 330–331 (1914).

    Google Scholar 

  • Beijerinck, M. W.: Über die Arten der Essigbakterien. Zbl. Bakter. II 4, 209–216 (1898).

    Google Scholar 

  • Beijerinck, M. W.: Über Pigmentbildung bei Essigbakterien. Zbl. Bakter. II 29, 169–176 (1911).

    Google Scholar 

  • Bernhauer, K.: Die oxydativen Gärungen. Berlin: Springer 1932.

    Google Scholar 

  • Bernhauer, K.: Biochemie der Essigbakterien. Erg. Enzymforsch. 7, 246–280 (1938).

    CAS  Google Scholar 

  • Bernhauer, K.: Gärungschemisches Praktikum, 2. Aufl. Berlin: Springer 1939.

    Google Scholar 

  • Bernhauer, K.: Oxydative Gärungen. In Nord-Weidenhagen, Handbuch der Enzymologie, Bd. 2, S. 1034–1120. Leipzig: Becker & Erler K.G. 1940.

    Google Scholar 

  • Bernhatjer, K., u. B. Görlich: Oxydationen mittels Essigbakterien. IV. Über die Bildung von 2-Ketoglukonsäure durch Bact gluconicum. Biochem. Z. 280, 367–374 (1935 a).

    Google Scholar 

  • Bernhatjer, K., u. B. Görlich: Oxydationen mittels Essigbakterien. V. Vergleichende Versuche über die Darstellung von l-Sorbose mittels verschiedener Bakterien. Biochem. Z. 280, 375–378 (1935b).

    Google Scholar 

  • Bernhatjer, K., u. B. Görlich: Über die Umwandlung aromatischer und hydroaromatischer Verbindungen durch Mikroorganismen. II. Notiz über die Umwandlung von Chinasäure und Inosit. Biochem. Z. 280, 394–395 (1935c).

    Google Scholar 

  • Bernhauer, K., u. K. Irrgang: Oxydationen mittels Essigbakterien. III. Über die Bildung einer red. Zuckercarbonsäure (Aldehydgluconsäure) neben 5-Keto-glukonsäure. Biochem. Z. 280, 360–366 (1935).

    CAS  Google Scholar 

  • Bernhauer, K., u. H. Knobloch: Der Abbau der Glucose durch Acetobacter suboxydans. Naturwiss. 26, 819 (1938).

    CAS  Google Scholar 

  • Bernhauer, K., u. H. Knobloch: Oxydationen mittels Essigbakterien. VI. Mitt. Vergleichende Untersuchungen über die Bildung reduzierender Zuckercarbonsäuren und die Darstellung von 2-Ketogluconsäure. Biochem. Z. 303, 308–315 (1939).

    Google Scholar 

  • Bernhauer, K., u. H. Knobloch: Oxydative Gärungen. In Bamann-Myrbäck, Die Methoden der Fermentforschung, S. 2456–2475. Leipzig: Georg Thieme 1940.

    Google Scholar 

  • Bernhauer, K., u. E. Bjedl-Tůmová: Oxydationen mittels Essigbakterien. 8. Mitt. Zur Methodik der bakteriellen Oxydationen in der Submerskultur. Biochem. Z. 320, 466–471 (1950a).

    PubMed  CAS  Google Scholar 

  • Bernhauer, K., u. E. Bjedl-Tůmová: Oxydationen mittels Essigbakterien. 10. Mitt. Notiz über die Oxydation der enantiomorphen Formen der Xylose und Arabinose. Biochem. Z. 321, 26–30 (1950b).

    PubMed  CAS  Google Scholar 

  • Bernhauer, K., u. K. Schön: Oxydationen mittels Bacterium xylinum. Z. physiol. Chem. 177, 107–124 (1928).

    CAS  Google Scholar 

  • Bertho, A.: Zur Kenntnis des Essigfermentes. Liebigs Ann. 474, 1–64 (1929).

    CAS  Google Scholar 

  • Bertho, A.: Die Essiggärung. Erg. Enzymforsch. 1, 231–266 (1932).

    CAS  Google Scholar 

  • Bertho, A., u. K. P. Basu: Die Bedeutung der Aldehyddismutation für die Essiggärung. Liebigs Ann. 485, 26–42 (1931).

    CAS  Google Scholar 

  • Bertrand, G.: Préparation biochimique du sorbose. C. r. Acad. Sci. Paris 122, 900–903 (1896).

    CAS  Google Scholar 

  • Bertrand, G.: Action de la bactérie du sorbose sur les alcools plurivalents. C. r. Acad. Sci. Paris 126, 762–765 (1898a).

    CAS  Google Scholar 

  • Bertrand, G.: Sur le produit d’oxydation de la glycérine par la bactérie du sorbose. C. r. Acad. Sci. Paris 126, 842–844 (1898b).

    CAS  Google Scholar 

  • Bertrand, G.: Préparation biochimique de la dioxyacétone cristallisée. C. r. Acad. Sci. Paris 126, 984–986 (1898c).

    CAS  Google Scholar 

  • Bertrand, G.: Action de la bactérie du sorbose sur le sucre de bois. C. r. Acad. Sci. Paris 127, 124–127 (1898d).

    CAS  Google Scholar 

  • Bertrand, G.: Action de la bactérie du sorbose sur les sucres aldéhydiques. C. r. Acad. Sci. Paris 127, 728–731 (1898e).

    CAS  Google Scholar 

  • Bertrand, G.: Sur l’oxydation de l’érythrite par la bactérie du sorbose; production d’un nouveau sucre: l’érythrulose. C. r. Acad. Sci. Paris 130, 1330–1333, vgl. auch 1472–1475 (1900).

    CAS  Google Scholar 

  • Bertrand, G.: Étude biochimique de la bactérie du sorbose. Ann. Chim. Phys., Sér. VIII 3, 181, 195, 227 (1904).

    CAS  Google Scholar 

  • Bertrand, G.: Sur la constitution du perséulose. C. r. Acad. Sci. Paris 149, 225–227 (1909).

    CAS  Google Scholar 

  • Bertrand, G., et G. Nitzberg: Préparation par la bactérie du sorbose, d’un nouveau sucre réducteur à 7 atomes de carbone. C. r. Acad. Sci. Paris 186, 925–928 (1928).

    CAS  Google Scholar 

  • Bertrand, G., et G. Nitzberg: La fonction cétonique de l’a-glucoheptulose. C. r. Acad. Sci. Paris 186, 1172–1175 (1928).

    CAS  Google Scholar 

  • Binder-Kotrba, G.: Über die Dismutation des Acetaldols durch Bact. ascendens. Biochem. Z. 174, 448–451 (1926).

    CAS  Google Scholar 

  • Bionda, G.: Sorbosio delia sorbite per via biologica. Ann. Chim. Appl. (Roma) 33, 148–158 (1943).

    CAS  Google Scholar 

  • Black, S.: Yeast aldehyde dehydrogenase. Arch. of Biochem. a. Biophysics 34, 86–97 (1951).

    CAS  Google Scholar 

  • Blum, H. B., and F. W. Fabian: Spice oils and their components for controling microbial surface growth. Fruit Prod. 22, 326–329, 347 (1943).

    CAS  Google Scholar 

  • Böeseken, J., et J. L. Leefers: La préparation de sorbitol pur et de sorbose et l’influence de ce cétose sur le pouvoir conducteur de l’acide borique. Rec. Trav. chim. Pays-Bas 54, 861–865 (1935).

    Google Scholar 

  • Bokorny, Th.: Einige Beobachtungen über Essigbildung. Wettend. Z. Spir. Ind. 15. II. 1904.

    Google Scholar 

  • Bokorny, Th.: Zbl. Bakter. II 12, 484–486 (1904).

    Google Scholar 

  • Bollenback, G. N., and L. A. Underkofler: The action of Acetobacter suboxydans upon ω-desoxy sugar alcohols. J. Amer. Chem. Soc. 72, 741–745 (1950).

    CAS  Google Scholar 

  • Bourne, E. J., and A. Weigel: 14C-cellulose from Acetobacter acetigenum. Chem. a. Ind. 1954, 132.

    Google Scholar 

  • Bousfield, E. G., G. G. H. Wright and T. K. Walker: Oxidation of glycerol by Acetobacter species. J. Inst. Brew. 53, 258–262 (1947).

    CAS  Google Scholar 

  • Bousfield, E. G., G. G. H. Wright and T. K. Walker: British Vinegars Limited, London (Erfinder: J. L. Shimwell): Manufacture of vinegar. Brit. Pat. 781, 584 vom 28. VI. 1954, veröff. am 21. VIII. 1957.

    Google Scholar 

  • Brossa, G. A.: La fermentazioni dell’Acetobacter xylinum e la sintesi della cellulosa. Ann. Microbiol. 2, 77–92, 150–168 (1942).

    CAS  Google Scholar 

  • Brown, A. J.: The chemical action of pure cultivations of Bacterium aceti. J. Chem. Soc. (Lond.), Transact. 1886, 172, 182, 435, 439.

    Google Scholar 

  • Brown, A. J.: Further notes on the chemical action of Bacterium aceti. J. Chem. Soc. (Lond.), Transact. 1887, 638–642.

    Google Scholar 

  • Brown, G. D., and C. Rainbow: Nutritional patterns in acetic acid bacteria. J. Gen. Microbiol. 15, 61–69 (1956).

    PubMed  CAS  Google Scholar 

  • Brown, G. M., M. Ikawa and E. E. Snell: Synthesis and microbiological activity of some pantothenic acid conjugates. J. of Biol. Chem. 213, 855–867 (1955).

    CAS  Google Scholar 

  • Brown, G. M., and E. E. Snell: Pantothenic acid conjugates and growth of Acetobacter suboxydans. J. Bacter. 67, 465–471 (1954);

    CAS  Google Scholar 

  • Brown, G. M., and E. E. Snell: Pantothenic acid conjugates and growth of Acetobacter suboxydans J. Amer. Chem. Soc. 75, 2782–2783 (1953).

    CAS  Google Scholar 

  • Buchner, E., u. R. Gaunt: Über die Essiggärung. Liebigs Ann. 349, 140–184 (1906).

    CAS  Google Scholar 

  • Butlin, K. R.: Survey of the biochemical activities of the acetic acid bacteria. Departm. of scientific and industrial Research. Chemistry Research. Special Report Nr. 2. London: His Majesty’s Stationery Office 1936 a.

    Google Scholar 

  • Butlin, K. R.: Aerobic breakdown of glucose by Bact. suboxydans. Biochemic. J. 30, 1870–1877 (1936b).

    CAS  Google Scholar 

  • Butlin, K. R.: The enzyme system of Bact. suboxydans. I. Variation of aerobic activity with age of culture. Biochemic. J. 32, 508–512 (1938a).

    CAS  Google Scholar 

  • Butlin, K. R.: The enzyme system of Bact. suboxydans. II. Effect of acids and pH. Biochemic. J. 32, 1185–1190 (1938b).

    CAS  Google Scholar 

  • Butlin, K. R.: The biological production of dihydroacetone. J. Soc. Chem. Ind. 57, 463–464 (1938c).

    CAS  Google Scholar 

  • Butlin, K. R., and W.H.D. Wince: The biological production of gluconic acid. J. Soc. Chem. Ind. 58, 363–365 (1939a).

    CAS  Google Scholar 

  • Butlin, K. R., and W.H.D. Wince: The formation of acetol from α-β-propylene glycol. J. Soc. Chem. Ind. 58, 365–366 (1939b).

    CAS  Google Scholar 

  • Carr, J.G. : Acetobacter estunense nov. spec. An addition to Frateur’s ten basic species. Antonie van Leeuwenhoek 24, 157–160 (1958).

    PubMed  CAS  Google Scholar 

  • Carter, H. E., C. Belinsky, R. K. Clark Jr., E. H. Flynn, B. Lytle, G. E. McCasland and M. Bobbins: Oxidation of inositol by A. suboxydans. J. of Biol. Chem. 174, 415–426 (1948).

    CAS  Google Scholar 

  • Carter, H. E., R. K. Clark Jr., E. H. Flynn, B. Lytle and M. Robbins: Oxidation of meso-inositol by Acetobacter suboxydans. Federat. Proc. 6, 243 (1947).

    Google Scholar 

  • Castor, L. R. N., and B. Chance: Photochemical action spectra of carbon monoxide-inhibited respiration. J. of Biol. Chem. 217, 453–465 (1955).

    CAS  Google Scholar 

  • Chance, B.: The carbon monoxide compounds of the cytochrom oxidases.

    Google Scholar 

  • Chance, B.: I. Difference spectra. J. of Biol. Chem. 202, 383–396 (1953a).

    CAS  Google Scholar 

  • Chance, B.: II Photodissociation spectra. J. of Biol. Chem. 202, 397–406 (1953b).

    CAS  Google Scholar 

  • Chance, B.: III. Molecular extinction coefficients. J. of Biol. Chem. 202, 407–416 (1953c).

    CAS  Google Scholar 

  • Chargaff, E., and B. Magasanik: Oxidation of stereoisomeres of the inositol group by Acetobacter suboxydans. J. of Biol. Chem. 165, 379–380 (1946).

    CAS  Google Scholar 

  • Chauvet, J.: Étude de la respiration de Mycoderma vini. Enzymologia (Den Haag) 11, 57–69 (1943/45).

    CAS  Google Scholar 

  • Cheldelin, V.H., and M. J. Bennett: Modification in the Acetobacter suboxydans assay for p-aminobenzoic acid. J. of Biol. Chem. 161, 751 (1945).

    CAS  Google Scholar 

  • Cheldelin, V. H., J. G. Hauge and T. E. King: Oxidative dissimilation in pantothenate-deficient Acetobacter suboxydans cells. Proc. Soc. Exper. Biol. a. Med. 82, 144–147 (1953).

    CAS  Google Scholar 

  • Chin, C. H.: The cytochrome system of Acetobacter peroxydans with reference to other Acetobacter species. 2e Congr. internat. Biochim., Rés. des Comm. 277. Paris 1952.

    Google Scholar 

  • Colvin, J. R.: Formation of cellulose microfibrils in a homogenate of Acetobacter xylinum. J. of Biol. Chem. 70, 294–295 (1957).

    CAS  Google Scholar 

  • Colvin, J. R., S. T. Bayley and M. Beer: The growth of cellulose microfibrils from Acetobacter xylinum. Biochim. et Biophysica Acta 23, 652–653 (1957).

    CAS  Google Scholar 

  • Copet, A., P. Fierens-Snoeck et H. van Risseghem: Contribution à l’étude de l’action des bactéries oxydantes sur les glycols α—CH2OH—CHOH—R en C3, C4, C5, C6. Bull. Soc. chim. France 1951, 902–908.

    Google Scholar 

  • Cozic, M.: Étude biochimique de Bact. xylinum. Thesis. Nemours: André Lesot 1933a.

    Google Scholar 

  • Cozic, M.: Oxydations et réductions déterminées par Acetobacter xylinum. C. r. Acad. Sci. Paris 196, 1740–1741 (1933b).

    CAS  Google Scholar 

  • Cozic, M.: Culture de Bacillus xylinum sur l’acide lactique. C. r. Soc. Biol. Paris 117, 371–372 (1934a).

    CAS  Google Scholar 

  • Cozic, M.: Étude biochimique de Bacterium xylinum. Rev. gén. Bot. 46, 1–32 (1934b).

    Google Scholar 

  • Cozic, M.: Contribution à la connaissance des potentiels d’oxydo-réduction provoqués par le métabolisme des bactéries acétiques. Rev. gén. Bot. 48, 141–155 (1936a).

    CAS  Google Scholar 

  • Cozic, M.: Croissance de diverses bactéries acétiques en anaérobiose. Rev. gén. Bot. 48, 209–211 (1936 b).

    CAS  Google Scholar 

  • Cozic, M.: Influence du cyanure de potassium sur la respiration de quelques bactéries acétiques. Rev. gén. Bot. 48, 212–214 (1936 c).

    CAS  Google Scholar 

  • Creedy, A. E., P. Jowett and T. K. Walker: Formation of D-cellobiose from starch and from other substrates by an Acetobacter species. Chem. a. Ind. 1954, 1297–1298.

    Google Scholar 

  • Cummins, J. T., V. H. Cheldelin and T. E. King: Sorbitol dehydrogenases in Acetobacter suboxydans. J. of Biol. Chem. 226, 301–306 (1957).

    CAS  Google Scholar 

  • Cummins, J. T., T.E. King and V. H. Cheldelin: The biological oxidation of sorbitol. J. of Biol. Chem. 224, 323–329 (1957).

    CAS  Google Scholar 

  • Currie, J. N., and R. H. Carter (übertr. an Ch. Pfitzer & Co.): Production of gluconic acid. US P. 1, 896.811 v. 3. 2. 1930, ausg. 7. 2. 1933.

    Google Scholar 

  • Currie, J. N., and A. Finlay (übertr. an Ch. Pfitzer & Co.): Process of fermentation. US P. 1, 908.225 v. 5. 2. 1931, ausg. 9. 5. 1933.

    Google Scholar 

  • Czoklich, Ch.: Untersuchungen über die Essiggärung. Diss. philos. Fakult. Univ. Wien 1951.

    Google Scholar 

  • Datta, A. G., and H. Katznelson: The oxidation of 2-ketogluconate by a partially purified enzyme from Acetobacter melanogenum. Arch. of Biochem. a. Biophysics 65, 576–578 (1956).

    CAS  Google Scholar 

  • Datta, A. G., and H. Katznelson: Oxidation of 2, 5-diketogluconate by a cell-free enzyme preparation from Acetobacter melanogenum. Nature (Lond.) 179, 153–154 (1957).

    CAS  Google Scholar 

  • De Ley, J.: Studies on the metabolism of Acetobacter peroxydans. Part I. General properties and taxonomic position of the species. Antonie van Leeuwenhoek 24, 281–297 (1958).

    Google Scholar 

  • De Ley, J. and J. Schell: Oxidation of several substrates by Acetobacter aceti. J. Bacter. 77, 445–451 (1959).

    Google Scholar 

  • Dixon, M.: On the question of the identity of the Schardinger enzyme with xanthine oxydase and aldehyde mutase. Enzymologia (Den Haag) 5, 198–225 (1938/39).

    CAS  Google Scholar 

  • Dixon, M.: Aldehyde mutase. Erg. Enzymforsch. 8, 217–246 (1939).

    CAS  Google Scholar 

  • Dixon, M., and C. Lutwak-Mann: Aldehyde mutase. Biochemic. J. 31, 1347–1365 (1937).

    CAS  Google Scholar 

  • Dratwina, T. W.: Oxydation von Alkohol und Essigsäure mit Essigbakterien in Abhängigkeit vom pH und anderen Bedingungen des Mediums. Mikrobiologija 6, 468–480 (1937) [Russisch].

    Google Scholar 

  • Dunn, M. S., S. Shankman, M. N. Camien and H. Block: The amino acid requirements of twenty-three lactic acid bacteria. J. of Biol. Chem. 168, 1–22 (1947).

    CAS  Google Scholar 

  • Dunning, J. W., E. I. Fulmer, J. F. Guymon and L. A. Underkofler: Growth and chemical action of Acetobacter sub-oxydans upon inactive inositol. Science (Lancaster, Pa.), N. S. 87, 72 (1938).

    Google Scholar 

  • Dunning, J. W., E. I. Fulmer and L. A. Underkofler: The oxydation of i-inositol by the action of Acetobacter suboxydans. Iowa State CollJ. Sci. 15, 39–46 (1940).

    CAS  Google Scholar 

  • Elmer, L. S.: Vinegar generator system. US P. Nr. 2, 156.428 v. 14.1.1937, ausg. 2.5. 1939.

    Google Scholar 

  • Entner, N., and M. Doudoroff: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. of Biol. Chem. 196, 853–862 (1952).

    CAS  Google Scholar 

  • Espil, L., L. Genevois, E. Peynaud et J. Ribéreau-Gayon: Sur la formation des esters de l’alcool éthylique. Enzymologia (Den Haag) 4, 88–93 (1937).

    CAS  Google Scholar 

  • Ettel, V., J. Liebster and M. Tatra: Biochemische Zubereitung von 2-Keto-D-galactonsäure. Chem. Listy 46, 45–48 (1952) [Tschechisch].

    CAS  Google Scholar 

  • Ettel, V., J. Liebster, M. Tatra and M. Kulhanek: Biochemische Oxydation von Volemit. II. Chem. Listy 46, 448–450 (1952) [Tschechisch].

    CAS  Google Scholar 

  • Federico, L.: Sull’origine dell’acetilmetilcarbinolo degli aceti di fermentazione. Ann. Chim. Appl. (Roma) 38, 619–624 (1948).

    CAS  Google Scholar 

  • Federico, L.: Ricerche sulle bio-ossidazioni. L’influenza dell’acido malico e dell’acido succinico sull’ossidazione dell’acido acetico per opera del-l’Acetobacter aceti. Boll. Soc. ital. Biol. sper. 25, 10–12 (1949).

    CAS  Google Scholar 

  • Federico, L., e C. Antoniani: Ricerche sul chimismo delle fermentazioni ossidative. Nota I. Le attività iperossi-dative dell’Acetobacter aceti e i vari fattori di influenza. Ann. Chim. Appl. (Roma) 39, 321–330 (1949).

    CAS  Google Scholar 

  • Federico, L., e L. Gobis: Sull’origine dell’acetilmetilcarbinolo degli aceti di fermentazione. Nota II. Ann. Chim. Appl. (Roma) 39, 278–282 (1949a).

    CAS  Google Scholar 

  • Federico, L., e L. Gobis: Ricerche sulle bioossidazioni. II. Influenza dell’acido fumarico, dell’acido ossalacetico e dell’acido citrico sulla ossidazione dell’acido acetico per opera dell’Acetobacter aceti. Boll. Soc. ital. Biol. sper. 25, 236–238 (1949b).

    CAS  Google Scholar 

  • Federico, L., e L. Gobis: Sulle sostanze generatrici di acetilmetilcarbinolo per azione dell’ Acetobacter aceti. Boll. Soc. ital. Biol. sper. 25, 238–239 (1949 c).

    CAS  Google Scholar 

  • Fewster, J. A.: The oxidation of glucose by Acetobacter suboxydans. Biochemic. J. 63, 26P–27P (1956).

    Google Scholar 

  • Fewster, J. A.: Oxidation by ultra-sonic extracts of Acetobacter suboxydans. Biochemic. J. 65, 14P (1957 a).

    Google Scholar 

  • Fewster, J. A.: Kinase activity of ultra-sonic extracts of Acetobacter suboxydans. Biochemic. J. 66, 9P (1957 b).

    Google Scholar 

  • Fewster, J. A.: Growth of Acetobacter suboxydans and the oxidation of aldoses, related carboxylic acids, and aldehydes. Biochemic. J. 69, 582–595 (1958).

    CAS  Google Scholar 

  • Foda, I. O., and R.H. Vaughn: The nutritional requirements of Acetobacter melanogenum and related species. J. Bacter. 65, 79–82 (1953a).

    CAS  Google Scholar 

  • Foda, I. O., and R.H. Vaughn: Oxidation of maltose by Acetobacter melanogenum. J. Bacter. 65, 233–237 (1953b).

    CAS  Google Scholar 

  • Fowler, G. J., and V. Subramaniam: Studies in intensive bacterial oxidation. 1. The oxidation of alcohol to acetic acid. J. Indian Inst. Sci. 6, 147–172 (1923).

    CAS  Google Scholar 

  • Franke, W.: Neuere Erkenntnisse zum Stoffwechsel der Mikroorganismen. Chemie 56, 55–60 (1943).

    CAS  Google Scholar 

  • Franz, E., u. E. Schiebold: Beiträge zur Struktur der Bakterienzellulose. J. makromol. Chem. 1, 4–16 (1943).

    CAS  Google Scholar 

  • Franzl, R. E., and E. Chargaff: (1) Enzyme preparations from Acetobacter suboxydans oxidizing inositol. Federat. Proc. 9, 173 (1950).

    Google Scholar 

  • Franzl, R. E., and E. Chargaff: Bacterial enzyme preparations oxidizing inositol and their inhibition by colchicine. Nature (Lond.) 168, 955–957 (1951).

    CAS  Google Scholar 

  • Frateur, J.: Essai sur la systématique des Acetobacters. Cellule 53, 287–392 (1950).

    Google Scholar 

  • Frateur, J., P. Simonart et T. Coulon: Contribution à l’étude du pouvoir acétifiant de cultures pures d’Acetobacter. Bull. techn. de vinaig(Dijou) 6, 143 (1950).

    Google Scholar 

  • Frateur, J., P. Simonart et T. Coulon: Étude chromatographique de cultures d’Acetobacter. Bull. Tech. Vinaigr. 8, 235–242 (1952/53).

    Google Scholar 

  • Frateur, J., P. Simonart et T. Coulon: Antonie van Leeuwenhoek 20, 111–128 (1954).

    PubMed  CAS  Google Scholar 

  • Fred, E. B., W. H. Peterson and J. A. Anderson: The fermentation of arabinose and xylose by certain aerobic bacteria. J. Bacter. 8, 277–286 (1923).

    CAS  Google Scholar 

  • French, D., R. J. Suhaldonik and L. A. Underkofler: Oxidation of disaccharid alcohols by Acetobacter suboxydans. Science (Lancaster, Pa.) 117, 100 (1953).

    CAS  Google Scholar 

  • Frey-Wyssling, A., and K. Mühlethaler: Sub-microscopic structure of cellulose gels. J. Polymer Sci. 3, 172–174 (1946).

    Google Scholar 

  • Frings, H.: Vorrichtung zur Essigfabrikation. D.R.P. Nr. 528670 Kl. 6e v. 7. 5. 1930, ausg. 2. 7. 1931.

    Google Scholar 

  • Frings, H.: Vorrichtung zur Herstellung von Gärungsessig. D.R.P. Nr. 694117 v. 23. 11. 1935, ausg. 28. 7. 1940.

    Google Scholar 

  • Frush, H. L., and H. S. Isbell: Determination of carbon14 in the terminal positions of sugars. Preparation of D-arabinose-5-C14 from D-fructose 1, 6-C14 [prepared from D-mannitol-1-C14]. J. Res. Nat. Bur. Stand. 51, 167–170 (1953).

    CAS  Google Scholar 

  • Fujita, A., u. T. Kodama: Über Cytochrom und das Sauerstoffübertragende Ferment sowie die Atmungshemmung der pathogenen Bakterien durch CO und HCN. Biochem. Z. 273, 186–197 (1934).

    CAS  Google Scholar 

  • Fulmer, E. I., A. C. Bantz and L. A. Underkofler: The use of alfalfa extract to supply nutrients for the growth and chemical activities of Acetobacter suboxydans. Iowa State Coll. J. Sci. 18, 369–376 (1944).

    CAS  Google Scholar 

  • Fulmer, E. I., J. W. Dunning, J. F. Guymon and L. A. Underkofler: The effect of the concentration of sorbitol upon the production of sorbose by the action of Acetobacter suboxydans. J. Amer. Chem. Soc. 58, 1012–1013 (1936).

    CAS  Google Scholar 

  • Fulmer, E. I., J. W. Dunning and L. A. Underkofler: The effect of the concentration of mannitol upon the production of levulose by the action of Acetobacter suboxydans. . Iowa State CollJ. Sci. 13, 279–281 (1939).

    CAS  Google Scholar 

  • Fulmer, E. I., and L. A. Underkofler: Oxidation of polyhydric alcohols by Acetobacter suboxydans. . Iowa State Coll. Sci. 21, 251–269 (1947).

    CAS  Google Scholar 

  • Fulmer, E. I., L. A. Underkofler and A.C. Bantz: The production of acetylmethylcarbinol by the action of Acetobacter suboxydans upon 2, 3-butylene glycol. J. Amer. Chem. Soc. 65, 1425–1427 (1943).

    CAS  Google Scholar 

  • Glaser, L.: The enzymic synthesis of cellulose by Acetobacter xylinum. Biochim. et Biophysica Acta 25, 436 (1957).

    CAS  Google Scholar 

  • Glaser, L.: The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J. of Biol. Chem. 232, 627–636 (1958).

    CAS  Google Scholar 

  • Görlich, B.: Die Einwirkung von Sorbinsäure auf die Sorbitoyxdation mit Acetobacter suboxydans. Z. Naturforsch, 11b, 223–225 (1956).

    Google Scholar 

  • Goldman, C. L., W. Litsky, M. Mandel and H. N. Little: An assay procedure and partial characterization of a factor in yeast autolysate essential for the growth of Acetobacter gluconicum strain 2 G. Canad. J. Microbiol. 4, 463–468 (1958).

    CAS  Google Scholar 

  • Goldschmidt, E., and L. O. Krampitz: Diphosphopyridine-nucleotide-linked propylene glycol dehydrogenase from Acetobacter suboxydans. Bacter. Proc. (Soc. Amer. Bacteriologists 54th Gen. Meeting) 1954, 96.

    Google Scholar 

  • Golysheva, M. G., e I. M. Khokhlov: Sublimations-Trocknung an Mikroorganismen, die in der Vitamin-Industrie zur Gewinnung von Ascorbin-säure und Riboflavin benutzt werden. Trudy Vsesoyuz. Nauch.-Issledovatel Vitamin Inst. 4, 73–79 (1953) [Russisch].

    CAS  Google Scholar 

  • Gorr, G., u. G. Perlmann: Weitere Untersuchungen über die Bildung von Milchsäure aus Methylglyoxal durch Ketonaldehydmutase tierischer und pflanzlicher Herkunft. Biochem. Z. 174, 433–439 (1926).

    CAS  Google Scholar 

  • Grandel, F.: Pentone acids and their salts. US P. 2, 356.581 v. 22.8.1944.

    Google Scholar 

  • Gray, B.E.: Preparation of 2-ketogulonic acid and its salts. US P. Nr. 2, 421.612 v. 4. 5.1945, ausg. 3.6.1947.

    Google Scholar 

  • Gray, C.H., and E.L. Tatum: X-ray induced growth factor requirements in bacteria. Proc. Nat. Acad. Sci. U.S.A. 30, 404–410 (1944).

    CAS  Google Scholar 

  • Greathouse, G. A.: Isolation of cell-free enzyme system from Acetobacter xylinum capable of cellulose synthesis. J. Amer. Chem. Soc. 79, 4503–4504 (1957a).

    CAS  Google Scholar 

  • Greathouse, G. A.: Biosvnthesis of C14 labeled cellulose by Acetobacter xylinum. IV. From d-glucose-1-C14, d-glu-cose-VC14 and glycerol-1, 3-C14. J. Amer. Chem. Soc. 79, 4505–4507 (1957b).

    CAS  Google Scholar 

  • Greathouse, G. A., H. G. Shirk and F. W. Minor: Cellulose production by Acetobacter xylinum from unlabeled glucose and C14-acetate and C14-ethanol. J. Amer. Chem. Soc. 76, 5157–5158 (1954).

    CAS  Google Scholar 

  • Grivsky, E.: Oxydation des deux formes diastéréoisomères du butanediol-2, 3 par la bactérie du sorbose et le Mycoderma aceti. Bull. Soc. chim. Belg. 51, 63–112 (1942).

    CAS  Google Scholar 

  • Gruber, Th.: Untersuchung über die Essiggärung. Diss. philos. Fakult. Univ. Wien 1954.

    Google Scholar 

  • Gsur, J.: Untersuchungen über die Essiggärung. Diss. philos. Fakult. Univ. Wien 1953.

    Google Scholar 

  • Haehn, M.: Über die Bildung von Milchsäure durch Bacterium xylinum. Dtsch. Essigindustr. 33, 385 (1929).

    CAS  Google Scholar 

  • Haehn, H., u. M. Engel: Über die Bildung von Milchsäure durch Bacterium xylinum. Milchsäuregärung durch Kombucha. Zbl. Bakter. II 79, 182–185 (1929).

    CAS  Google Scholar 

  • Haeseler, G.: Neues Essiggärungsverfahren (Moderator-System). Branntweinwirtschaft 75, 17–22 (1953).

    Google Scholar 

  • Haeseler, G.: Essig (durch Gärung). In Ullmanns Enzyklopädie der technischen Chemie, 3. Aufl. Hrsg. v. W. Foerst, Bd. 6, S. 761–777. München u. Berlin: Urban & Schwarzenberg 1955.

    Google Scholar 

  • Hall, A. N., D. Kulka and T. K. Walker: Formation of arabinose, ribulose and tartronic acid from 2-keto-d-gluconic acid. Biochemic. J. 60, 271–274 (1955).

    CAS  Google Scholar 

  • Hall, A. N., C. Russell and K. S. Tiwari: The response of certain Acetobacter species to the lactone moiety of pantothenic acid. J. Bacter. 68, 279–281 (1954).

    CAS  Google Scholar 

  • Hall, A. N., G. A. Thomas, K. S. Tiwari and T. K. Walker: Nutrition of Acetobacter species. Arch. of Biochem. aBiophysics 46, 485–487 (1953).

    CAS  Google Scholar 

  • Hall, A. N., K. S. Tiwari and T. K. Walker: The influence of pH value and of carbon source on the nutritional requirements of Acetobacter suboxydans. Biochemic. J. 51, Proc. Biochem. Soc. xxxvi (1952).

    Google Scholar 

  • Ham, J.: Engl. Pat. v. 7. X. 1824; ref. Dinglers J. 19, 578 (1826).

    Google Scholar 

  • Hampshire, P.: Study of the causation of “ropiness“ in worts and beers. Bull. Bureau Bio-Technol. Murphy & Son (London) 1, 179–187, 199–214 (1922).

    Google Scholar 

  • Hann, R. M., E. B. Tilden and C. S. Hudson: The oxidation of sugar alcohols by Acetobacter suboxydans. J. Amer. Chem. Soc. 60, 1201–1203 (1938).

    CAS  Google Scholar 

  • Hauge, J. G., T.E. King and V. H. Cheldelin: Alternate conversions of glycerol to dihydroxy acetone in Acetobacter suboxydans. J. of Biol. Chem. 214, 1–9 (1955a);

    CAS  Google Scholar 

  • Hauge, J. G., T.E. King and V. H. Cheldelin: Alternate conversions of glycerol to dihydroxy acetone in Acetobacter suboxydans. Nature (Lond.) 174, 1104–1105 (1954).

    CAS  Google Scholar 

  • Hauge, J. G., T.E. King and V. H. Cheldelin: Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter suboxydans. J. of Biol. Chem. 214, 11–26 (1955b).

    CAS  Google Scholar 

  • Hehre, E. J.: The biological synthesis of dextran from dextrins. J. of Biol. Chem. 192, 161–174 (1951).

    CAS  Google Scholar 

  • Hehre, E. J., and D. M. Hamilton: Bacterial conversion of dextrin into a polysaccharide with the serological properties of dextran. Proc. Soc. Exper. Biol. a. Med. 71, 336–339 (1949).

    CAS  Google Scholar 

  • Hehre, E. J., and D. M. Hamilton: The biological synthesis of dextran from dextrins. J. of Biol. Chem. 192, 161–174 (1951).

    CAS  Google Scholar 

  • Henneberg, W.: Weitere Untersuchungen über Essigbakterien. Zbl. Bakter. II 4, 14–20, 67–73, 138–147 (1898a).

    Google Scholar 

  • Henneberg, W.: Bacterium industrium und Bacterium ascendens und Ergänzungen zu den bisherigen Untersuchungen über Essigbakterien. Dtsch. Essigindustr. 2, 145–148, 153–155, 161–164, 169–172, 177–179 (1898b).

    Google Scholar 

  • Henneberg, W.: Einfluß von zwölf Säurearten, von Alkohol, Formaldehyd und Natronlauge auf infizierte Brennerei- und Preßhefe. Wschr. Brauerei 23, 527–530, 546–549, 568–571, 580–584, 597–602 (1906a).

    Google Scholar 

  • Henneberg, W.: Zur Kenntnis der Schnellessig-und Weinessigbakterien. Dtsch. Essigindustr. 10, 89–93, 98–99, 106–108, 113–116, 121–124, 129–132, 137–140, 146–148 (1906b).

    Google Scholar 

  • Henneberg, W.: Gärungsbakteriologisches Praktikum, Betriebsuntersuchungen und Pilzkunde. Berlin: Paul Parey 1909.

    Google Scholar 

  • Henri, V., et J. Schnitzler: Action des rayons ultra-violets sur la fermentation acétique du vin. C. r. Acad. Sci. Paris 149, 312–314 (1909).

    Google Scholar 

  • Hermann, S.: Über die sogenannte „Kombucha“. I. Biochem. Z. 192, 176–187;

    Google Scholar 

  • Hermann, S.: Über die sogenannte „Kombucha“. Biochem. Z. II. 192, 188–199 (1928).

    CAS  Google Scholar 

  • Hermann, S.: Bacterium gluconicum, ein in der so-genannten Kombucha (japanischer oder indischer Teepilz) vorkommender Spaltpilz. Biochem. Z. 205, 297–305 (1929).

    CAS  Google Scholar 

  • Hermann, S., u. P. Neuschul: Zur Biochemie der Essigbakterien, zugleich ein Vorschlag für eine neue Systematik. Biochem. Z. 233, 129–216 (1931).

    CAS  Google Scholar 

  • Hermann, S., u. P. Neuschul: Milchsäure- und Brenztraubensäureabbau durch Essigbakterien. Biochem. Z. 246, 446–459 (1932).

    CAS  Google Scholar 

  • Hermann, S., u. P. Neuschul: Zur Biochemie der Essigbakterien. Über einen charakteristischen Unterschied des Bact. gluconicum (Hermann) gegenüber anderen Essigbakterien bei der Einwirkung auf Galaktose. Biochem. Z. 270, 6–14 (1934).

    CAS  Google Scholar 

  • Hermann, S., u. P. Neuschul: Kontinuierliche Glukonsäure-darstellung mittels des Bact. gluconicum (Hermann). Zbl. Bakter. II 93, 25–31 (1935a).

    Google Scholar 

  • Hermann, S., u. P. Neuschul: Sur l’oxydation du mannose en acide mannonique par le Bact. gluconicum (Hermann). Bull. Soc. Chim. biol. Paris 18, 390–394 (1935b).

    Google Scholar 

  • Herrick, H. T., R. Hellbach and O. E. May: Apparatus for the application of submerged mold fermentations under pressure. Industr. Engin. Chem. 27, 681–683 (1935).

    CAS  Google Scholar 

  • Hestrin, S.: Mechanism of degradation and synthesis and some biological activities of intercellular bacterial polysaccharides. Symp. Microbiol. Metabolism. VI. Congr. Intern. Microbiol. (Roma): Proc. 63–70, 1953.

    Google Scholar 

  • Hestrin, S., M. Aschner and J. Mager: Synthesis of cellulose by resting cells of Acetobacter xylinum. Nature (Lond.) 159, 64–65 (1947).

    CAS  Google Scholar 

  • Hestrin, S.. and M. Schramm: Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemic. J. 58, 345–352 (1954).

    CAS  Google Scholar 

  • Hibbert, H., and J. Barsha: Synthetic cellulose and textile fibers from glucose. Canad. J. Res. 5, 580 (1931).

    CAS  Google Scholar 

  • Hildebrandt, F. M.: Experimental generator helps to control vinegar manufacture. Food Industries 12, 62–64 (1941).

    Google Scholar 

  • Hoffmann-Ostenhof, O.: Enzymologie. Wien: Springer 1954.

    Google Scholar 

  • Horecker, B. L.: A new pathway for the oxidation of carbohydrates. Brewers Digest 28, 214 (1953).

    Google Scholar 

  • Hoyer, D. P.: Bijdrage tot de Kennis van de Azijnbakteriën. Leidener Diss., Delft 1898.

    Google Scholar 

  • Hromatka, O.: Über die submerse Essiggärung. Chemiker-Ztg 76, 776–779, 815–817 (1952).

    CAS  Google Scholar 

  • Hromatka, O., u. H. Ebner: Untersuchungen über die Essiggärung. I. Fesselgärung und Durchlüftungsverfahren. Enzymologia (Den Haag) 13, 369–386 (1949).

    CAS  Google Scholar 

  • Hromatka, O., u. H. Ebner: Untersuchungen über die Essiggärung. II. Sauerstoffmangel der Fesselgärung. Enzymologia (Den Haag) 14, 96–106 (1950).

    CAS  Google Scholar 

  • Hromatka, O., u. H. Ebner: Untersuchungen über die Essiggärung. III. Über den Einfluß der Belüftung auf die submerse Gärung. Enzymologia (Den Haag) 15, 57–69 (1951).

    CAS  Google Scholar 

  • Hromatka, O., H. Ebner u. Ch. Csoklich: Untersuchungen über die Essiggärung. IV. Über den Einfluß einer vollständigen Unterbrechung der Belüftung auf die submerse Gärung. Enzymologia (Den Haag) 15, 134–153 (1951).

    CAS  Google Scholar 

  • Hromatka, O., G. Kastner u. H. Ebner: Untersuchungen über die Essiggärung. V. Über den Einfluß von Temperatur und Gesamtkonzentration auf die submerse Gärung. Enzymologia (Den Haag) 15, 337–350 (1955).

    Google Scholar 

  • Ikeda, Y.: A presumable pathway of kojic acid formation from fructose by Gluconobacter. J. Gen. Appl. Microbiol. (Tokyo) 1, 152–163 (1955).

    CAS  Google Scholar 

  • Imschenetzki, A. A., e L. A. Kusjurina: Die Sorbitoxydation durch faltige Rassen der Essigbakterien. Mikrobiologija 23, 159–165 (1954) [Russisch],

    Google Scholar 

  • Isbell, H. S., and J. V. Karabinos: Preparations of D-manni-tol-14C and its conversion to D-fructose-1 (and 6)-14C by Acetobacter suboxydans. J. Res. Nat. Bur. Stand. 48, 438–440 (1952).

    CAS  Google Scholar 

  • Iselin, B.: Oxidations by Acetobacter suboxydans. J. of Biol. Chem. 175, 997–998 (1948).

    CAS  Google Scholar 

  • Iwatsuru, R.: Über die Vergärung der α-Ketoglutarsäure durch das Bacterium xylinum. Biochem. Z. 168, 34–35 (1925).

    Google Scholar 

  • Jackson, R. W., H. J. Koepsell, L. B. Lockwood, G. E. N. Nelson and F. H. Stodola: Bacterial oxidations of sugars and metabolic intermediates. Intern. Congr. Biochem., Abstr. Commun. 1. Congr., Cambridge (England) 1949, p. 536.

    Google Scholar 

  • Janke, A.: Studien über die Essigsäurebakterien-Flora von Lagerbieren des Wiener Handels. Zbl. Bakter. II 45, 1–50 (1916a).

    CAS  Google Scholar 

  • Janke, A.: Die Säuerung des Äthylalkohols durch Essigsäurebakterien. Zbl. Bakter. II 45, 534–584 (1916b).

    CAS  Google Scholar 

  • Janke, A.: Der Aminosäureabbau durch Mikroben. Arch. Mikrobiol. 1, 304–332 (1930).

    CAS  Google Scholar 

  • Janke, A.: Über den Sauerstoff verbrauch und das Redoxpotential der Essigsäurebakterien. Arch. Mikrobiol. 8, 348–353 (1937).

    CAS  Google Scholar 

  • Janke, A.: Acetobacter Lafarianum nov. nom. Arch. Mikrobiol. 15, 116–118 (1950).

    Google Scholar 

  • Janke, A.: Der mikrobielle Abbau der Aminosäuren. Arch. Mikrobiol. 15, 472–499 (1951).

    Google Scholar 

  • Janke, A.: Die Wattehaube. Ein Verschluß für Kulturgefäße zur Züchtung streng aerober Mikroorganismen. Arch. Mikrobiol. 17, 155–159 (1952).

    Google Scholar 

  • Janke, A.: Zur Systematik der Essigbakterien. Zbl. Bakter., II. Abt. 110, 728–739 (1957).

    Google Scholar 

  • Janke, A., u. St. Kropacsy: Über ein Reaktionsgefäß zur Durchführung mikrobieller Umsetzungen mit Gasstoffwechsel. Biochem. Z. 277, 268–272 (1935a).

    CAS  Google Scholar 

  • Janke, A., u. St. Kropacsy: Über die Bestimmung des Äthylalkohols und seiner Oxydationsprodukte in biologischen Substraten. Biochem. Z. 278, 30–36 (1935b).

    CAS  Google Scholar 

  • Janke, A., u. St. Kropacsy: Beiträge zur Kenntnis des Mechanismus der Essigsäuregärung. Biochem. Z. 278, 37–59 (1935c).

    CAS  Google Scholar 

  • Janke, A., u. M. Röhr: Über den Einfluß der Ernährung auf die Protein-Zusammensetzung von Essigbakterien. Arch. Mikrobiol. 31, 106–113 (1958).

    Google Scholar 

  • Jensen, O.: Die Hauptlinien des natürlichen Bakteriensystems. Zbl. Bakter. II 22, 305–346; (1909).

    Google Scholar 

  • Jensen, O.: Die Hauptlinien des natürlichen Bakteriensystems. Zbl. Bakter. II 24, 477–480 (1909).

    Google Scholar 

  • Kandler, O., u. C. Zehender: Papierchromatographische Untersuchung der Aminosäurezusammensetzung verschiedener Bakterienhydrolysate. Arch. Mikrobiol. 24, 41–48 (1956).

    PubMed  CAS  Google Scholar 

  • Katznelson, H.: Hexose phosphate metabolism by Acetobacter melanogenum. Canad. J. Microbiol. 4, 25–34 (1958).

    CAS  Google Scholar 

  • Katznelson, H., and S. W. Tanenbaum: Observations on maltose oxidation by Acetobacter melanogenum. J. of Bacter. 68, 368–372 (1954).

    CAS  Google Scholar 

  • Katznelson, H., S. W. Tanenbaum and E. L. Tatum: Glucose, gluconate, and 2-ketogluconate oxidation by Acetobacter melanogenum. J. of Biol. Chem. 204, 43–59 (1953).

    CAS  Google Scholar 

  • Kaushal, R., P. Jowett and T. K. Walker: Formation of glycolaldehyde by enzymatic scission of pentoses. Nature (Lond.) 167, 949 (1951).

    CAS  Google Scholar 

  • Kaushal, R., and T.K. Walker: Formation of cellulose by Acetobacter acetigenum. Nature (Lond.) 160, 572–573 (1947).

    CAS  Google Scholar 

  • Kaushal, R., and T.K. Walker: Formation of cellulose by certain species of Acetobacter. Biochemic. J. 48, 618–621 (1951).

    CAS  Google Scholar 

  • Kaushal, R., T.K. Walker and D. G. Drummond: Observations on the formation and structure of bacterial cellulose. Biochemic. J. 50, 128–132 (1951).

    CAS  Google Scholar 

  • Kayser, E.: Gärungsessig und Essigessenz. Z. öffentlChem. 6, 493–506 (1900).

    Google Scholar 

  • Khesghi, S., H. R. Roberts and W. Bucek: The production of 5-ketogluconic acid by Acetobacter suboxydans. Appl. Microbiol. 2, 183–190 (1954).

    CAS  Google Scholar 

  • Khouvine, Y.: Synthèse de la cellulose par Y Acetobacter xylinum à partir de la mannite et de la sorbite. C. r. Acad. Sci. Paris 196, 1144–1146 (1933).

    CAS  Google Scholar 

  • Khouvine, Y.: Synthèse de la cellulose par l’Acetobacter xylinum à partir de polyalcools en C3, C4, C5, C6 et C7. C. r. Acad. Sci. Paris 198, 1544–1546 (1934).

    CAS  Google Scholar 

  • Khouvine, Y., G. Champetier et R. Sutra: Étude aux rayons X de la cellulose d’Acetobacter xylinum. C. r. Acad. Sci. Paris 194, 208–209 (1932).

    CAS  Google Scholar 

  • Khouvine, Y., et G. Nitzberg: Identification et oxydation biochimique de l’α-glucoheptulite. C. r. Acad. Sci. Paris 196, 218–220 (1933).

    CAS  Google Scholar 

  • King, T. E., and V. H. Cheldelin: Oxidative dissimilation of non-nitrogenous compounds in Acetobacter suboxydans. Science (Lancaster, Pa.) 115, 14–15 (1952 a).

    CAS  Google Scholar 

  • King, T. E., and V. H. Cheldelin: Oxidative dissimilation in Acetobacter suboxydans. J. of Biol. Chem. 198, 127–133 (1952b).

    CAS  Google Scholar 

  • King, T. E., and V. H. Cheldelin: Phosphorylative and non-phosphorylative oxidation in Acetobacter suboxydans. J. of Biol. Chem. 198, 135–141 (1952c).

    CAS  Google Scholar 

  • King, T. E., and V. H. Cheldelin: Sources of energy and the dinitrophenol-effect in the growth of Acetobacter suboxydans. J. Bacter. 66, 581–584 (1953a).

    CAS  Google Scholar 

  • King, T. E., and V. H. Cheldelin: Pantetheine and Acetobacter suboxydans stimulatory factors. Bacter. Proc. 1953, 76–77 (1953b).

    Google Scholar 

  • King, T. E., and V. H. Cheldelin: Pantothenic acid derivatives and growth of Acetobacter suboxydans. Proc. Soc. Exper. Biol. a. Med. 84, 591 (1953 c).

    CAS  Google Scholar 

  • King, T. E., and V. H. Cheldelin: Oxidations in Acetobacter suboxydans. Biochim. et Biophysica Acta 14, 108–116 (1954a).

    CAS  Google Scholar 

  • King, T. E., and V. H. Cheldelin: Pyruvic carboxylase of Acetobacter suboxydans. J. of Biol. Chem. 208, 821–831 (1954 b).

    CAS  Google Scholar 

  • King, T. E., and V. H. Cheldelin: Oxidation of acetaldehyde by Acetobacter suboxydans. J. of Biol. Chem. 220, 177–191 (1956a).

    CAS  Google Scholar 

  • King, T. E., and V. H. Cheldelin: Solubilization and cytochrome(s) of the particulates from Acetobacter suboxydans. Federat. Proc. 15, 288–289 (1956b).

    Google Scholar 

  • King, T. E., and V. H. Cheldelin: Glucose oxidation and cytochromes in solubilized particulate fractions of Acetobacter suboxydans. J. of Biol. Chem. 224, 579–590 (1957).

    CAS  Google Scholar 

  • King, T. E., I. G. Fels and V. H. Cheldelin: Pantothenic acid studies. VI. A biologically active conjugate of pantothenic acid. J. Amer. Chem. Soc. 71, 131–135 (1949).

    CAS  Google Scholar 

  • King, T. E., E.H. Kawasaki and V. H. Cheldelin: Tricarboxylic acid cycle activity in Acetobacter pasteurianum. J. Bacter. 72, 418–421 (1956).

    CAS  Google Scholar 

  • King, T. E., L. M. Locher and V. H. Cheldelin: Pantothenic acid studies. III. A pantothenic acid conjugate active for Acetobacter suboxydans. Arch of Biochem. 17, 483–485 (1948).

    CAS  Google Scholar 

  • Kitasato, T.: Acyloin-aufbau mittels Enzyme der Essigbakterien. Biochem. Z. 195, 118–127 (1928).

    CAS  Google Scholar 

  • Kitos, P.A.: Terminal oxidation pathways in Acetobacter suboxydans. Ph. D. Thesis, Oregon State College 1956.

    Google Scholar 

  • Kitos, P.A., T.E. King, J.A. Ambrose and V. H. Cheldelin: Acetate activation in Acetobacter suboxydans. Federat. Proc. 14, 236–237 (1955).

    Google Scholar 

  • Kitos, P. A., T. E. King and V. H. Cheldelin: Carbohydrate metabolic pathways in Acetobacter suboxydans. Federat. Proc. 15, 289–290 (1956).

    Google Scholar 

  • Kitos, P. A., T. E. King and V. H. Cheldelin: Metabolism of fructose-1, 6-diphosphate and acetate in Acetobacter suboxydans. J. Bacter. 74, 565–571 (1957).

    CAS  Google Scholar 

  • Klungsöyr, L., T.E. King and V. H. Cheldelin: Oxidative phosphorylation in Acetobacter suboxydans J. of Biol. Chem. 227, 135–149 (1957).

    Google Scholar 

  • Kluyver, A. J., and A. G. J. Boezaardt: On the oxidation of glucose by Acetobacter suboxydans. Rec. Trav. chim. Pays-Bas 57, 609–615 (1938).

    CAS  Google Scholar 

  • Kluyver, A. J., and A. G. J. Boezaardt: Note on the biochemical preparation of inosose. Rec. Trav. chim. Pays-Bas 58, 956–958 (1939).

    CAS  Google Scholar 

  • Kluyver, A. J., H. J. L. Donker u. F. Visser’t Hooft: Über die Bildung von Acetylmethylcarbinol und 2, 3-Butylenglykol im Stoffwechsel der Hefe. Biochem. Z. 161, 361–378 (1925).

    CAS  Google Scholar 

  • Kluyver, A. J., u. J. C. Hoogerheide: Über die Beziehungen zwischen den Stoffwechselvorgängen der Mikroorganismen und dem Oxydoreduktionspotential im Medium. II. Mitt. Versuche mit Hefearten. Biochem. Z. 272, 197–214 (1934).

    CAS  Google Scholar 

  • Kluyver, A. J., en F. J. G. de Leeuw: Acetobacter suboxydans, een merkwaardige azijnbacterie. Tijdschr. Verg. Geneesk. 10, 170–182 (1924).

    CAS  Google Scholar 

  • Knebel, J. B.: Verfahren und Vorrichtung zur Herstellung von Gärungsessig. D.R.P. Nr. 745.495 Kl. 6e v. 20. 8. 1941, ausg. 5. 5. 1944.

    Google Scholar 

  • Knobloch, H., u. H. Tietze: Über die Bildung reduzierender Zuckercarbonsäuren durch Essigbakterien. Biochem. Z. 309, 399–414 (1941).

    CAS  Google Scholar 

  • Kocwowa, E.: Wirkung von Penicillin und Aureomycin auf Saccharomyces cerevisiae, Thermobacterium cereale und Acetobacter rancens. Acta Microbiol. Polon. 4, 11–26 (1955) [Polnisch].

    CAS  Google Scholar 

  • Koester, H., L. Mamoli and A. Vercellone: Ketosteroids. U.S.P. Nr. 2, 236.574 v. 1. 4. 1941.

    Google Scholar 

  • Koft, B. W., and J. H. Morrison: A biosynthetic product capable of replacing FA and PABA. Bacter. Proc. (Soc. Amer. Bacteriologists, 54. Gen. Meeting) 1954, 99.

    Google Scholar 

  • Kondo, K., M. Ameyama and T. Yamaguchi: Studies on the oxidative metabolism of glucose by Acetobacter melanogenum. J. Agric. Chem. Soc. Jap. 30, 419–426 (1956).

    CAS  Google Scholar 

  • Kovachevich, R., and W. A. Wood: Carbohydrate metabolism by Pseudomonas fluorescens. J. of Biol. Chem. 213, 757–767 (1955).

    CAS  Google Scholar 

  • Krehan, M.: Beiträge zur Physiologie und Systematik der Essigbakterien. I. Teil. Arch. Mikrobiol. 1, 493–536 (1930).

    Google Scholar 

  • Krehan, M.: Beiträge zur Physiologie und Systematik der Essigbakterien. II. Teil. Arch. Mikrobiol. 3, 277–321 (1932).

    CAS  Google Scholar 

  • Kreipe, H.: Über die Entkeimung des Spritessigs mittels des Katadynverfahrens. Dtsch. Essigindustr. 37, 57–60 (1933).

    CAS  Google Scholar 

  • Kressling, E. K.: Oxydation von Sorbit mittels Mikroorganismen. Mikrobiologija 6, 898–901 (1937) [Russisch].

    Google Scholar 

  • Kubowitz, F., u. E. Haas: Ausbau der photochemischen Methoden zur Untersuchung des Sauerstoff übertragenden Ferments (Anwendung auf Essigbakterien und Hefezellen). Biochem. Z. 255, 247–277 (1932).

    CAS  Google Scholar 

  • Kudaka, M., H. Aida and K. Miyamoto: Preparation of the intermediate of vitamin C from the reduction products of 5-keto-gluconate by oxidizing bacteria. Ferment. Assoc. (Hakko Kyokaishi) 11, 251–256 (1953).

    CAS  Google Scholar 

  • Kulka, D., A. N. Hall and T. K. Walker: Formation of 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and tartronic acid by Acetobacter species. Nature (Lond.) 167, 905–906 (1951).

    CAS  Google Scholar 

  • Kulka, D., J. M. Preston and T. K. Walker: Giant colonies of Acetobacter as an aid to identification. J. Inst. Brew. 55, 141–146 (1949).

    Google Scholar 

  • Kulka, D., J. M. Preston and T. K. Walker: The photographic examination of giant colonies. J. Gen. Microbiol. 5, 18–21 (1951).

    PubMed  CAS  Google Scholar 

  • Kulka, D., and T.K. Walker: Capsula formation by Acetobacter species. J. Inst. Brew. 52, 129–131 (1946).

    Google Scholar 

  • Kulka, D., and T.K. Walker: Capsules of Acetobacter turbidans demonstrated by positive staining. J. Inst. Brew. 54, 148–150 (1948).

    Google Scholar 

  • Kulka, D., and T.K. Walker: The ketogenic activities of Acetobacter species in a glucose medium. Arch. of Biochem. a. Biophysics 50, 169–179 (1954).

    CAS  Google Scholar 

  • Kusjurina, L. A.: Die Charakteristik faltiger Rassen ketogener Essigbakterien. Mikrobiologija 23, 265–270 (1954) [Russisch].

    Google Scholar 

  • Laborde, J., et M. Leulier: Influence des substances radioactives sur la fermentation acétique. Bull. Soc. Chim. biol. Paris 4, 415–418 (1922).

    Google Scholar 

  • Lafar, F.: Physiologische Studien über die Essiggärung und Schnellessigfabrikat ion. II. Die Säuerungskraft von B. aceti Hansen und B. Pasteurianum Hansen in ihrer Abhängigkeit Von der Temperatur. Zbl. Bakter. II 1, 129–150 (1895).

    Google Scholar 

  • Lafar, F.: Die Essigsäure-Gärung. Sonderabdr. aus Handbuch Technische Mykologie, Bd. V. Jena: Gustav Fischer 1913.

    Google Scholar 

  • Lambion, R., et J. M. Wiame: Cultures pures d’Acetobacter dans les conditions d’acétification rapide. Rev. Fermentat. Industr. aliment. 6, 25–27 (1951).

    Google Scholar 

  • Lampen, J. O., L. A. Underkofler and W. H. Peterson: P-aminobenzoic acid, a growth factor for Acetobacter suboxydans. J. of Biol. Chem. 146, 277–278 (1942).

    CAS  Google Scholar 

  • Landy, M., and D.M. Dicken: A microbiological method for the determination of p-aminobenzoic acid. J. of Biol. Chem. 146, 109–114 (1942).

    CAS  Google Scholar 

  • Landy, M., and F. Streightoff: Effect of purines on sensitivity of the Acetobacter suboxydans assay for p-aminobenzoic acid. Proc. Soc. Exper. Biol. a. Med. 52, 127–128 (1943).

    CAS  Google Scholar 

  • Lardon, A., u. T. Reichstein: Bestandteile der Nebennierenrinde und verwandte Stoffe. 84. Mitt. Allopregnan-tetrol-(3β, 17, 20α, 21). Helvet. chim. Acta 34, 756–767 (1951).

    CAS  Google Scholar 

  • La Rivière, J. W. M.: The production of surface active compounds by micro-organisms and its possible significance in oil recovery. I. Some general observations on the change of surface tension in microbial cultures. Antonie van Leeuwenhoek 21, 1–8 (1955).

    Google Scholar 

  • Le Gallic, P.: Recherche sur l’arrêt spontané de la fermentation acétique. Rôle de l’acide non-dissocié. C. r. Soc. Biol. Paris 142, 275–278 (1948).

    Google Scholar 

  • Leifson, E.: Staining, shape and arrangement of bacterial flagella. J. Bacter. 62, 377–389 (1951).

    CAS  Google Scholar 

  • Leifson, E.: The flagellation and taxonomy of species of Acetobacter. Antonie van Leeuwenhoek 20, 102–110 (1954).

    PubMed  CAS  Google Scholar 

  • Liebster, J., M. Kulhánek u. M. Tadra: Biochemische Dehydrierung von D-Arabon-und α-D-Glucoheptonsäure. Chem. Listy 47, 1075–1080 (1953) [Tschechisch].

    CAS  Google Scholar 

  • Liebster, J., B. Luksik, G. Färber u. V. Svoboda: Eine neue Methode zur Isolierung von Dioxyaceton und L-Sorbose aus Gärungssubstraten. Chem. Listy 50, 395–397 (1956) [Tschechisch].

    CAS  Google Scholar 

  • Lirmann, F., N. O. Kaplan, G. D. Novelli, L. C. Tuttle and B. M. Guirard: Coenzyme for acetylation, a pantothenic acid derivative. J. of Biol. Chem. 167, 869–870 (1947).

    Google Scholar 

  • Litsky, Wm., W.R. Esselen Jr., B. S. Tepper and G. Miller: Nutritive requirements of Acetobacter. I. Vitamin requirements of Acetobacter xylinum. Food Res. 18, 250–252 (1953).

    CAS  Google Scholar 

  • Lockwood, L. B.: Ketogenic fermentation processes. In: L. A. Underkofler and R. J. Hickey, Industrial fermentations, Bd. II. New York: Chem. Publish. Co., Inc. 1954.

    Google Scholar 

  • Loizjanskaja, M. S.: Die Variabilität der Essigbakterien. Mikrobiologija 22, 511–516 (1953) [Russisch].

    Google Scholar 

  • Loizjanskaja, M. S.: Die Verwertung der Glucose durch die Bakterien des Schnellessigverfahrens. Mikrobiologija 24, 598–607 (1955) [Russisch].

    Google Scholar 

  • Lowy, J.: Automatic control improves vinegar manufacture. Food Industries 13, 47–48 (1941).

    CAS  Google Scholar 

  • MacKin, J. J.: Process for producing vinegar. U.S. Patent 2, 423, 897 v. 15. 7. 1947.

    Google Scholar 

  • Magasanik, B., and E. Chargaff: The stereochemistry of an enzymatic reaction: The oxidation of 1-, d- and epi-inositol by Acetobacter suboxydans. J. of Biol. Chem. 174, 173–188 (1948a).

    CAS  Google Scholar 

  • Magasanik, B., and E. Chargaff: The structure of a new cyclohexose produced from d-inositol by biological oxidation. J. of Biol. Chem. 175, 929–937 (1948b).

    CAS  Google Scholar 

  • Magasanik, B., and E. Chargaff: The oxidation of d-quercitol by Acetobacter suboxydans. J. of Biol. Chem. 175, 939–943 (1948c).

    CAS  Google Scholar 

  • Magasanik, B., R. E. Franzland, E. Chargaff: The stereochemical specifity of the oxidation of cyclitols by Acetobacter suboxydans. J. Amer. Chem. Soc. 74, 2618–2621 (1952).

    CAS  Google Scholar 

  • Mark, H., u. G. v. Susich: Über den Bau des kristallisierten Anteils der Cellulose. III. Z. physik. Chem. B 4, 431–439 (1929).

    CAS  Google Scholar 

  • Marshall, J. H., and J. R. Postage: Variants of Acetobacter suboxydans621 not requiring p-aminobenzoic acid and resistant to sulfonamides. Internat. Congr. Biochem. Cambridge, Abstr. of Commun. 1949, 338–339.

    Google Scholar 

  • Masson, C. R., R. F. Menzies, J. Cruickshank and H. W. Melville: Bacterial cellulose for osmometer membranes. Nature (Lond.) 157, 74 (1946).

    CAS  Google Scholar 

  • Masuo, E., T. Arimoto, E. Kondo, Y. Wakisaka and K. Yoshida: Oxidation of carbohydrates by bacteria. VI. Ann. Rept. Shionogi Res. Lab. 1954, 57–61.

    Google Scholar 

  • Maurer, K., u. B. Schiedt: Zur Darstellung der l-Sorbose. Biochem. Z. 271, 61–63 (1934f).

    CAS  Google Scholar 

  • Mayer, P.: Zur Biochemie des Asymmetrieproblems. Biochem. Z. 174, 420–424 (1926).

    CAS  Google Scholar 

  • McClung, L. S., and E. McCoy: Studies on anaerobic bacteria. I. A cornliver medium for the detection and dilution counts of various anaerobes. J. Bacter. 28, 267–277 (1934).

    CAS  Google Scholar 

  • Mikhlin, E. D., i M. G. Golysheva: Wirkung der Katalase auf die Oxydation von Sorbit durch ketogene Mikroorganismen. Biochimija 17, 91–96 (1952 a) [Russisch].

    CAS  Google Scholar 

  • Mikhlin, E. D., i M. G. Golysheva: Wirkung von Histidin auf die Oxydation von Sorbit durch Acetobacter melano-genum. Dokl. Akad. Nauk SSSR. 82, 439–441 (1952b) [Russisch].

    PubMed  CAS  Google Scholar 

  • Mikhlin, E. D., i M. G. Golysheva: Der Einfluß von Methylenblau auf die Oxydation des Sorbits in Sorbose durch Acetobacter melanogenum. Biochimija 19, 549–556 (1954) [Russisch].

    CAS  Google Scholar 

  • Mikhlin, E., i J. Rozenberg: Wirkung des Sauerstoff-Partialdruckes auf die Oxydation von Sorbit zu Sorbose durch Acetobacter melanogenum. Biochimija 15, 444–447 (1950) [Russisch].

    CAS  Google Scholar 

  • Minor, F. W., G. A. Greathouse and H. G. Shirk: Biosynthesis of carbon- 14-specifically labeled cellulose by Acetobacter xylinum. III. From D-glucose-2-C14. J. Amer. Chem. Soc. 77, 1244–1245 (1955).

    CAS  Google Scholar 

  • Minor, F. W., G. A. Greathouse, H. G. Shirk, A.M. Schwartz and M. Harris: Biosynthesis of C14 specifically labeled cellulose by Acetobacter xylinum. I. From D-glucose 1-C14 with and without ethanol. J. Amer. Chem. Soc. 76, 1658–1661 (1954a).

    CAS  Google Scholar 

  • Minor, F. W., G. A. Greathouse, H. G. Shirk, A.M. Schwartz and M. Harris: Biosynthesis of C14-specifically labeled cellulose by Acetobacter xylinum. II. From D-mannitol-1-C14 with and without ethanol. J. Amer. Chem. Soc. 76, 5052–5054 (1954b).

    CAS  Google Scholar 

  • Mitjuschowa, N. M.: Zum Gasstoffwechsel der Essigbakterien bei der Oxydation des Sorbits zu Sorbose. Mikrobiologija 23, 400–409 (1954) [Russisch].

    Google Scholar 

  • Miyaji, K.: The decomposition products of amino acids by acetic acid bacilli. J. Chem. Soc. Japan 45, 391–450 (1924).

    Google Scholar 

  • Molinari, E.: Über die biochemische Dismutation nebst Untersuchungen über die Essiggärung. Biochem. Z. 216, 187–215 (1929).

    CAS  Google Scholar 

  • Moore, W. B., A. C. Blackwood and A. C. Neish: Metabolism of seven-carbon sugars, acids and alcohols by bacteria and yeasts. Canad. J. Microbiol. 1, 198–205 (1954).

    CAS  Google Scholar 

  • Mosel, H.: Untersuchungen über Essiggärung und Oxydation höherer Alkohole in zuckerfreier Nährlösung. Zbl. Bakter. II 87, 193–229 (1932).

    CAS  Google Scholar 

  • Mühlethaler, K.: Elektronenoptische Untersuchungen über den Feinbau von Gelen. Makromolekulare Chem. 2, 143–171 (1948).

    Google Scholar 

  • Mühlethaler, K.: The structure of bacterial cellulose. Biochim. et Biophysica Acta 3, 527–535 (1949).

    Google Scholar 

  • Müller, D.: Untersuchungen über Oxydasen in getöteten Essigbakterien. I. Biochem. Z. 238, 253–267 (1931).

    Google Scholar 

  • Müller, D.: Der Abbau von Methylalkohol, Formaldehyd und Ameisensäure durch lebende und getötete Essigbakterien. Biochem. Z. 254, 97–101 (1932a).

    Google Scholar 

  • Müller, D.: Das Verhalten getöteter Essigbakterien gegenüber Sauerstoff und Chinon als Wasserstoffakzeptoren. Untersuchungen über Oxydasen in getöteten Essigbakterien. III. Biochem. Z. 254, 102–111 (1932b).

    Google Scholar 

  • Müller, D.: Die Mannitdehydrase. Enzy-mologia (Den Haag) 3, 26–28 (1937).

    Google Scholar 

  • Müller, H., C. Montigel u. T. Reichstein: Reine l-Erythrulose (1–2-keto-tetrose). Helvet. chimActa 20, 1468–1473 (1937).

    Google Scholar 

  • Mulder, E. G.: Über die Bedeutung des Kupfers für das Wachstum von Mikroorganismen und über eine mikrobiologische Methode zur Bestimmung des pflanzenverfügbaren Boden-kupfers. Arch. Mikrobiol. 10, 72–86 (1939).

    CAS  Google Scholar 

  • Myrbäck, K., H. v. Euler u. E. Sandberg: Über die Aldehydmutation von Essigbakterien. Z. physiol. Chem. 175, 316–320 (1928).

    Google Scholar 

  • Neuberg, C., u. E. Hofmann: Notiz über einfache Gewinnung von kristallisiertem Dioxyaceton auf biochemischem Wege. Biochem. Z. 279, 318–320 (1935).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Molinari: Über den Verlauf der Essiggärung. Naturwiss. 14, 758–759 (1926).

    CAS  Google Scholar 

  • Neuberg, C., u. F. F. Nord: Anwendungen der Abfangmethode auf die Bakteriengärungen. II. Festlegung der Aldehydstufe bei der Essiggärung. Biochem. Z. 96, 158–174 (1919).

    CAS  Google Scholar 

  • Neuberg, C., u. Cl. Ostendorf: Dismutation des p-Tolylglyoxals. Biochem. Z. 279, 459–462 (1935).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Simon: Über die Dismutation des Methyläthylacetaldehyds. Biochem. Z. 174, 452–456; (1926).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Simon: Über die Dismutation des Methyläthylacetaldehyds. Biochem. Z. 179, 443–450 (1926).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Simon: Alkoholische Gärung durch Essigbakterien. Biochem. Z. 197, 259–260 (1928 a).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Simon: Über Verschiedenheiten der Vorgänge bei der alkoholischen Zuckerspaltung und der Acetaldehyddismutation. Biochem. Z. 199, 232–247 (1928b).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Simon: Über isoliertes Vorkommen von Carboxylase und über enzymatische Wirkungen des Essigbakteriums Bordeaux. Biochem. Z. 253, 225–230 (1932).

    CAS  Google Scholar 

  • Neuberg, C., u. F. Windisch: Vom Wesen der Essiggärung und von verwandten Erscheinungen. Naturwiss. 13, 993–996 (1925a).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Simon: Über die Essiggärung und die chemischen Leistungen der Essigbakterien. Biochem. Z. 166, 454–481 (1925b).

    CAS  Google Scholar 

  • Neuberg, I. St.: Untersuchungen in der 3-Kohlenstoffreihe. Biochem. Z. 255, 1–26 (1932).

    CAS  Google Scholar 

  • Noldin, F.: Eintauchverfahren für die Essigherstellung. D.R.Pat. Nr. 486282 Kl. 6e v. 7. 5. 1925.

    Google Scholar 

  • Nomoto, M., M. Namiki and K. Namiki: The mechanism of antimicrobial action of dehydroacetic acid. I. The mode of growth inhibition of dehydroacetic acid and the influence of pH, thiol compounds, and metallic ions on its activity. J. Agric. Chem. Soc. Jap. 28, 727–732 (1954 a).

    CAS  Google Scholar 

  • Nomoto, M., M. Namiki and K. Namiki: II. The effect of dehydroacetic acid on the respiration and fermentation of microorganisms. J. Agric. Chem. Soc. Jap. 28, 732–736 (1954b).

    CAS  Google Scholar 

  • Novelli, G. D., R. M. Flynn and F. Lipmann: Coenzyme A as a growth stimulant for Acetobacter suboxydans. J. of Biol. Chem. 177, 493–494 (1949).

    CAS  Google Scholar 

  • Oppenheimer, W.: Stoffwechselbilanz der Essigsäure. Dtsch. Essigindustr. 38, 137–140 (1934).

    CAS  Google Scholar 

  • Pasteur, L.: Suite à une précédente communication sur les mycodermes. Nouveau procédé industriel de fabrication du vinaigre. C.r. Acad. Sci. Paris 55, 28–32 (1862).

    Google Scholar 

  • Pasteur, L.: Mémoire sur la fermentation acétique. Ann. sci. École norm. sup. Paris 1, 113 (1864).

    Google Scholar 

  • Pitcher, W. H.: Properties of compounds produced by the action of Acetobacter suboxydans upon i-inositol. Iowa State Coll. J. Sci. 16, 120–121 (1941).

    CAS  Google Scholar 

  • Pitman, G. A., and W. V. Cruess: Hydrolysis of pectin by various microorganisms. A comparative study. Industr. Engin. Chem. 21, 1292–1295 (1929).

    CAS  Google Scholar 

  • Polesofsky, W.: Untersuchungen über die Bildung von Carbonsäuren durch submerse Vergärung primärer Alkohole. Diss. philos. Fakult. Univ. Wien 1951.

    Google Scholar 

  • Posternak, T.: Recherches dans la série des cyclites. V. Sur un inosose préparé par voie biochimique. Helvet. chim. Acta 24, 1045–1058 (1941).

    CAS  Google Scholar 

  • Posternak, T.: Recherches dans la série des cyclites. VI. Sur la configuration de la méso-inosite, de la scyllite et d’un inosose obtenu par voie biochimique (scyllo-ms-inosose). Helvet. chim. Acta 25, 746–752 (1942).

    CAS  Google Scholar 

  • Posternak, T.: Recherches dans la série des cyclites. VIII. Sur la configuration du dl-epi-ms-inosose et de sa forme lévogyre obtenue par la voie biochimique. Helvet. chim. Acta 29, 1991–1998 (1946).

    Google Scholar 

  • Posternak, T.: Recherches dans la série des cyclitols. XII. Sur la configuration du viburnitol. Helvet. chim. Acta 33, 350–355 (1950a).

    CAS  Google Scholar 

  • Posternak, T.: XIII. Préparation et oxydation biochimique du D-viburnitol. Helvet. chim. Acta 33, 1594–1597 (1950b).

    CAS  Google Scholar 

  • Posternak, Th., A. Rapin et A.-L. Haenni: Recherches dans la série des cyclitols. XXIV. Sur les règles d’oxydation de cyclitols par Acetobacter suboxydans. Helv. chim. Acta 40, 1594–1603 (1957).

    CAS  Google Scholar 

  • Posternak, T., et F. Ravenna: Recherches dans la série des cyclites. IX. Sur les cyclohexane-triols-1, 2, 3 et leur oxydation biochimique. Helvet. chim. Acta 30, 441 (1947).

    PubMed  Google Scholar 

  • Posternak, T., et D. Reymond: Recherches dans la série des cyclitols. XVII. Sur l’oxydation de divers cyclitols par Acetobacter suboxydans. Helvet. chim. Acta 36, 260–268 (1953).

    CAS  Google Scholar 

  • Prescott, S. C., and C. G. Dunn: Industrial microbiology. New York-Toronto-London: McGraw-Hill Book Comp., Inc. 1959.

    Google Scholar 

  • Prieur, P.: Présence de deux systèmes d’oxydation de l’éthanol dans Acetobacter xylinum. C. R. Acad. Sci. (Paris) 244, 253–255 (1957).

    CAS  Google Scholar 

  • Quéré, H.: L’oxydation des alcools par les ferments acétiques, considerée comme une forme de la respiration cellulaire. C. r. Acad. Sci. Paris 193, 445–446 (1931).

    Google Scholar 

  • Quéré, H.: Croissance et métabolisme d’une bactérie acétique. Thèse. Bordeaux 1935.

    Google Scholar 

  • Racker, E.: Aldehyde dehydrogenase, a diphosphopyridine nucleotide-linked enzyme. J. of Biol. Chem. 177, 883–892 (1949).

    CAS  Google Scholar 

  • Racker, E.: Crystalline alcohol dehydrogenase from baker’s yeast. J. of Biol. Chem. 184, 313–319 (1950).

    CAS  Google Scholar 

  • Rainbow, C., and G. W. Mitson: Nutritional requirements of acetic acid bacteria. J. Gen. Microbiol. 9, 371–375 (1953).

    PubMed  CAS  Google Scholar 

  • Rånby, B. G.: Physicochemical investigations on bacterial cellulose. Ark. Kemi (Stockh.) 4, 249–255 (1952).

    Google Scholar 

  • Rao, M. R. R.: Pyruvate and acetate metabolism in Acetobacter aceti and Acetobacter suboxydans. Doct. thesis, Univ. of Illinois, Urbana 1955.

    Google Scholar 

  • Rao, M. R. R.: Acetic acid bacteria. Annual Rev. Microbiol. 11, 317–338 (1957).

    Google Scholar 

  • Rao, M. R. R., and I. C. Gunsalus: Mechanism of pyruvate metabolism: Acetobacter aceti and Acetobacter suboxydans. Federat. Proc. 14, 267 (1955).

    Google Scholar 

  • Rao, M. R. R., and J. L. Stokes: Nutrition of the acetic acid bacteria. J. Bacter. 65, 405–412 (1953a).

    CAS  Google Scholar 

  • Rao, M. R. R., and J. L. Stokes: Utilization of ethanol by acetic acid bacteria. J. Bacter. 66, 634–638 (1953b).

    CAS  Google Scholar 

  • Rasumofskaja, S. G., i T. S. Bjelousowa: Das Verhalten der Essigbakterien des Schnellessigverfahrens zur Kohlensäure. Mikrobiologija 21, 403–407 (1952) [Russisch].

    Google Scholar 

  • Rasumofskaja, S. G., i N. M. Mitjuschowa: Der Einfluß der Durchlüftung auf die Vermehrung und die Oxydations tat igkeit des A. suboxydans. Mikrobiologija 24, 265–270 (1955) [Russisch].

    Google Scholar 

  • Rasumofskaja, S. G., i S. M. Shdan-Puschkina: Über den Einfluß der Beimpfung auf die Oxydation des Sorbits durch Acetobacter suboxydans. Mikrobiologija 25, 16–24 (1956) [Russisch].

    Google Scholar 

  • Rasumofskaja, S. G., i O. A. Vasil’eva: Wirkung von Glucose auf die Oxydation von Sorbit durch Essigbakterien. Mikrobiologija 19, 121–126 (1950) [Russisch].

    Google Scholar 

  • Regna, P. P.: 5-Desoxy-l-sorbose. J. Amer. Chem. Soc. 69, 246–249 (1947).

    CAS  Google Scholar 

  • Reichstein, T.: L-Adonose (l-Erythro-2-keto-pentose). Helvet. chim. Acta 17, 996–1002 (1934).

    CAS  Google Scholar 

  • Reid, A.: Manometrische Messung der sauerstofflosen Atmung. (Versuche mit Essigbakterien.). Biochem. Z. 242, 159–169 (1931).

    CAS  Google Scholar 

  • Reusser, F., J. F. T. Spencer and H. R. Sallans: Essential amino acids in microorganisms. Canad. J. Microbiol. 3, 721–728 (1957).

    CAS  Google Scholar 

  • Richtmyer, N. K., L. C. Stewart and C. S. Hudson: L-Fuco-4-ketose, a new sugar produced by the action of A. suboxydans on L-fucitol. J. Amer. Chem. Soc. 72, 4934–4937 (1950).

    CAS  Google Scholar 

  • Riedl-Tůmová, E., u. K. Bernhauer: Oxydationen mit Essigbakterien. 9. Mitt. Zur Bildung von Oxogluconsäuren durch Acetobacter melanogenum. Biochem. Z. 320, 472–476 (1950).

    PubMed  Google Scholar 

  • Rippel-Baldes, A., G. Busch u. F. Radler: Über die Zusammensetzung von Involutionsformen der Mikroorganismen. Arch. Mikrobiol. 23, 423–430 (1956).

    PubMed  CAS  Google Scholar 

  • Romegialli, A.: Contributo alla teoria della fermentazione acetica e alla tecnologia dell’ acetificazione. II. Gazz. chim. ital. 16, 73–103 (1886).

    Google Scholar 

  • Rosenblatt, M., u. N. Mordkowitsch: Über den Einfluß gewisser Elemente auf die Essiggärung. Ukrain. chem. J. 4, Techn. Teil 1–10 (1929). Vgl. auch Biochem. Z. 209, 83–89 (1929).

    Google Scholar 

  • Sarett, H. P., and V. H. Cheldelin: The use of Acetobacter suboxydans for assay of the lactone moiety of pantothenic acid. J. of Biol. Chem. 159, 311–319 (1945).

    CAS  Google Scholar 

  • Schainskaja, I. M.: Isolierung und Auslese aktiver Essigbakterien-Kulturen für die Spritessigerzeugung. Mikrobiologija 22, 72–78 (1953) [Russisch].

    Google Scholar 

  • Schlubach, H. H., u. J. Vorwerk: Untersuchungen über l-Sorbose. (I. Mitt.) Ber. dtsch. chem. Ges. 66, 1251–1253 (1933).

    Google Scholar 

  • Schramm, M., Z. Gromet and S. Hestrin: Role of hexose phosphate in synthesis of cellulose by Acetobacter xylinum. Nature (Lond.) 179, 28–29 (1957).

    CAS  Google Scholar 

  • Schramm, M., and S. Hestrin: Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 11, 123–129 (1954a).

    PubMed  CAS  Google Scholar 

  • Schramm, M., and S. Hestrin: Synthesis of cellulose by Acetobacter xylinum. I. Micromethod for determination of celluloses. Biochemic. J. 56, 163–166 (1954b).

    CAS  Google Scholar 

  • Seegmiller, J. E.: Triphosphopyridine nucleotide-linked aldehyde dehydrogenase from yeast. J. of Biol. Chem. 201, 629–637 (1953).

    CAS  Google Scholar 

  • Seifert, W.: Beiträge zur Physiologie und Morphologie der Essigbakterien. Zbl. Bak-ter. II 3, 337–349, 385–399 (1897).

    CAS  Google Scholar 

  • Seifert, W.: Über freie und acetaldehydschweflige Säure und deren Wirkung auf verschiedene Organismen des Weines. Z. landw. Versuchswes. Österr. 9, 1019–1059 (1906).

    Google Scholar 

  • Shdan-Puschkina, S. M.: Die Vermehrungsdynamik des Acetobacter suboxydans in aus Hefewasser bereiteten Nahrmedien. Mikrobiologija 24, 447–454 (1955a) [Russisch].

    Google Scholar 

  • Shdan-Puschkina, S. M.: Die Vermehrungsdynamik des A. suboxydans und seine Oxydation des Sorbits auf Substraten mit Vitamin B-Komplexen. Mikrobiologija 24, 545–549 (1955b) [Russisch].

    Google Scholar 

  • Shibata, K.: Cytochrom und Zellatmung. Erg. Enzymforsch. 4, 348–364 (1935).

    CAS  Google Scholar 

  • Shibata, K., and H. Tamiya: Untersuchungen über die Bedeutung des Cytochroms in der Physiologie der Zellatmung. Acta phytochim. (Tokyo) 5, 23–97 (1930).

    CAS  Google Scholar 

  • Shimwell, J. L.: Study of a new species of Acetobacter (A. capsulatum) producing ropiness in beer and beer-wort. J. Inst. Brew. 42, 585–595 (1936).

    CAS  Google Scholar 

  • Shimwell, J. L.: Brewing bacteriology. IV. The acetic acid bacteria (family Acetobacteriaceae; genus Acetobacter). Wallerstein Lab. Communie. 11, 27–39 (1948).

    Google Scholar 

  • Shimwell, J. L.: Pure culture vinegar production. J. Inst. Brew. 60, 136–141 (1954).

    Google Scholar 

  • Shimwell, J. L.: Transmutation of species in the genus Acetobacter. J. Inst. Brew. 62 (N. S. 53), 339–343 (1956).

    Google Scholar 

  • Shimwell, J. L.: The true significance of Hoyers medium in the differentiation of Acetobacter species. J. Inst. Brew. 63 (N. S. 54), 44–45 (1957 a).

    Google Scholar 

  • Shimwell, J. L.: A pattern of evolution in the genus Acetobacter. J. Inst. Brew. 63 (N. S. 54), 45–56 (1957b).

    Google Scholar 

  • Shimwell, J. L.: The mechanism of loss of starch-production by Acetobacter pasteurianum. Antonie van Leeuwenhoek 23, 235–239 (1957 c).

    PubMed  CAS  Google Scholar 

  • Shimwell, J. L.: Flagellation and taxonomy of Acetobacter and Acetomonas. Antonie van Leeuwenhoek 24, 187–192 (1958).

    PubMed  CAS  Google Scholar 

  • Shimwell, J. L., and J. G. Carr: Old and new cellulose-producing Acetobacter species. J. Inst. Brew. 64 (N. S. 55), 477–484 (1958).

    Google Scholar 

  • Shirk, H. G., and G. A. Greathouse: Infrared spectra of bacterial cellulose. Analyt. Chemistrv 24, 1774–1775 (1952).

    CAS  Google Scholar 

  • Simon, E.: Über das zymatische System und die Wirkung der Essigbakterien. Biochem. Z. 224, 253–291 (1930).

    CAS  Google Scholar 

  • Simon, E.: Aldehyd-dismutation und Essiggärung. Biochem. Z. 243, 401–405 (1931).

    CAS  Google Scholar 

  • Simon, E.: Verfahren zur Herstellung von Essig aus Kohlenhydraten. D.R.P. Nr. 589429, Kl. 6e v. 15. 7.1930, ausg. 7. 12. 1933.

    Google Scholar 

  • Singer, T. P., and E. B. Kearney: The non-enzymatic reduction of cytochrome c by pyridine nucleotides and its catalysis by various flavins. J. of Biol. Chem. 183, 409–429 (1950).

    CAS  Google Scholar 

  • Sisson, W. A.: X-ray studies of crystallite orientation in cellulose fibers. II. Synthetic fibers from bacterial cellulose membranes. J. Physic. Chem. 40, 343–359 (1936).

    CAS  Google Scholar 

  • Sjolander, N., and W. Eisenman: Process for production of 3-hydroxy-2-butanone. U.S.P. Nr. 2, 401.778 v. 11. 6. 1946.

    Google Scholar 

  • Smith, L.: Bacterial cytochromes. Difference spectra. Arch. of Biochem. a. Biophysics 50, 299–314 (1954a).

    CAS  Google Scholar 

  • Smith, L.: Bacterial cytochromes. Bacter. Rev. 18, 106–130 (1954b).

    CAS  Google Scholar 

  • Smith, L.: An investigation of cytochrom c oxidase activity in bacteria. Arch. of Biochem. a. Biophysics 50, 315–321 (1954c).

    CAS  Google Scholar 

  • Smith, R. A., and I. C. Gunsalus: Distribution and formation of isocitritase. Nature (Lond.) 175, 774–775 (1955).

    CAS  Google Scholar 

  • Söhngen, N. L.: Über reduzierende Eigenschaften der Essigbakterien. Folia Microbiol. 3, 151–155 (1914).

    Google Scholar 

  • Steel, R., and T. K. Walker: Celluloseless mutants of certain Acetobacter species. J. Gen. Microbiol. 17, 12–18 (1957 a).

    PubMed  CAS  Google Scholar 

  • Steel, R., and T. K. Walker: A comparative study of cellulose-producing cultures and celluloseless mutants of certain Acetobacter spp. J. Gen. Microbiol. 17, 445–452 (1957b).

    PubMed  CAS  Google Scholar 

  • Steel, R., and T. K. Walker: A highly specific growth-inhibitory factor produced by certain Acetobacter species. Nature (Lond.) 180, 811–812 (1957c).

    CAS  Google Scholar 

  • Steel, R., and T. K. Walker: Studies on the antibacterial activity of certain strains of Acetobacter. J. Gen. Microbiol. 18, 369–376 (1958).

    PubMed  CAS  Google Scholar 

  • Steiger, M., u. T. Reichstein: L-Psicose (2-Keto-L-ribo-hexose, Pseudofructose), Diaceton-L-psicose und Diaceton-L-psicuronsäure. Helvet. chim. Acta 18, 790–799 (1934).

    Google Scholar 

  • Stewart, L. C., N. K. Richtmyer and C. S. Hudson: The oxidation of volemitol by Acetobacter suboxydans and by Acetobacter xylinum. J. Amer. Chem. Soc. 71, 3532–3534 (1949).

    CAS  Google Scholar 

  • Stokes, J. L., and A. Larsen: Amino acid requirements of Acetobacter suboxydans. J. Bacter. 49, 495–501 (1945).

    CAS  Google Scholar 

  • Stubbs, J. J., L. B. Lockwood, E. T. Roe, B. Tabenkin and G. E. Ward: Ketogluconic acids from glucose bacterial production. Industr. Engin. Chem. 32, 1626–1631 (1940).

    CAS  Google Scholar 

  • Stubbs, J. J., L. B. Lockwood, E. T. Roe and G. E. Ward: Fermentation process for the production of 5-ketogluconic acid. U.S.P. Nr. 2, 318, 641 v. 11. 5. 1943.

    Google Scholar 

  • Takahashi, T.: Studies on diseases of Saké. Bull. Coll. Agricult. Univ. Tokyo 7, 531–563 (1907).

    Google Scholar 

  • Takahashi, T.: Studies on the microorganisms of “Tanezu“ (Japanese vinegar ferment). J. Coll. Agricult. Univ. Tokyo 1, 103 (1909).

    CAS  Google Scholar 

  • Takahashi, T., and T. Asai: On gluconic acid fermentation. Part I. On Bacterium Hoshigaki var. rosea nov. spec. Zbl. Bakter. II 82, 390–405 (1930).

    Google Scholar 

  • Takahashi, T., and T. Asai: On glucuronic acid fermentation. Zbl. Bakter. II 84, 193–195 (1931).

    CAS  Google Scholar 

  • Takahashi, T., and T. Asai: On the formation of fructose and kojic acid by acetic acid bacteria. Proc. Imp. Acad. Tokyo 8, 364–366 (1932);

    CAS  Google Scholar 

  • Takahashi, T., and T. Asai: On the formation of fructose and kojic acid by acetic acid bacteria. Zbl. Bakter. II 88, 286–295, sowie J. Agr. Chem. Soc. Japan 9, 55–66, 369–374 (1933a).

    Google Scholar 

  • Takahashi, T., and T. Asai: L-Guluronic acid. J. Agricult. Chem. Soc. Japan 9, 351–360 (1933b).

    CAS  Google Scholar 

  • Takahashi, T., and T. Asai: On gluconic acid fermentation. Part III. On Bact. Hoshigaki var. glucuronicum I, II and III nov. spec. Zbl. Bakter. II 87, 385–412 (1933c).

    CAS  Google Scholar 

  • Takahashi, T., and T. Asai: On the fermentation products of acetic acid bacteria attached to the fruits. The formation of galactonic and komenic acid from galactose. Zbl. Bakter. II 93, 248–252 (1936).

    Google Scholar 

  • Tamiya, H., T. Hida and K. Tanaka: Über den Einfluß des Lichtes, des Kohlenoxyds und des Chinons auf die Methylenblaureduktion. Acta phytochim. (Tokyo) 5, 119–155 (1930).

    CAS  Google Scholar 

  • Tamiya, H., und K. Tanaka: Zur Physiologie der Essigsäuregärung. I. Ein Beitrag zur Kenntnis der Bedeutung des Cytochroms in der Physiologie der Zellatmung. Acta phytochim. (Tokyo) 5, 167–211 (1930).

    CAS  Google Scholar 

  • Tanaka, K.: Zur Physiologie der Essigsäuregärung. II. Über die Einwirkung des KCN und des Acetons und über die Dismutation. Acta phytochim. (Tokyo) 5, 239–266 (1931).

    CAS  Google Scholar 

  • Tanaka, K.: Zur Physiologie der Essigbakterien. I. Über die Glucon-säuregärung der Essigbakterien. Acta phytochim. (Tokyo) 7, 265–297 (1933).

    CAS  Google Scholar 

  • Tanaka, K.: Zur Physiologie der Essigbakterien. II. Über die oxydative Umsetzung einiger organischer Säuren bei Essigbakterien. Acta phytochim. (Tokyo) 8, 285–313 (1935).

    CAS  Google Scholar 

  • Tanaka, K.: Physiologie der Essigsäurebakterien. Vergleichende Untersuchungen über die oxydativen Leistungen von Essigbakterien. J. Sci. Hiroshima Univ. B II 3, 69–99 (1938 a).

    Google Scholar 

  • Tanaka, K.: Physiologie der Essigsäurebakterien. Die Einwirkung verschiedener Gifte auf die Essigsäure-Bakterien. J. Sci. Hiroshima Univ. B II 3, 101–120 (1938b).

    Google Scholar 

  • Tanaka, K.: Oxydierbarkeit von verschiedenen Alkoholen und Aldehyden. J. Sci. Hiroshima Univ. B II 3, 121–134 (1938c).

    Google Scholar 

  • Tanenbaum, St. W.: Metabolism of Acetobacter peroxydans. I. Oxidative enzymes. Biochim. et Biophysica Acta 21, 335–342 (1956a).

    CAS  Google Scholar 

  • Tanenbaum, St. W.: II. Hydrogen-activating and related enzymes. Biochim. et Biophysica Acta 21, 343–349 (1956b).

    CAS  Google Scholar 

  • Tarr, H. L. A., and H. Hibbert: Reactions relating to carbohydrates and polysaccharides. XXXV. Polysaccharides synthesis by the action of Acetobacter xylinus on carbohydrates and related compounds. Canad. J. Res. 4, 372–388 (1930).

    CAS  Google Scholar 

  • Tepper, B. S., and W. Litsky: The nutritional requirements of Acetobacter. III. Aminoacid requirements of Acetobacter xylinum. Growth 17, 193–199 (1953).

    PubMed  CAS  Google Scholar 

  • Tilden, E. B.: The preparation of perseulose by oxidation of perseitol with Acetobacter suboxydans. J. Bacter. 37, 629–637 (1939).

    CAS  Google Scholar 

  • Tolomei, G.: Einwirkung des Lichtes auf die Essiggärung. Staz. sper. agricult. ital. 20, 380–387 (1891).

    Google Scholar 

  • Tosic, J.: Oxidation in Acetobacter. Biochemic. J. 40, 209–214 (1946).

    CAS  Google Scholar 

  • Tosic, J., and T. K. Walker: A procedure for the characterisation of the acetic acid bacteria. J. Soc. Chem. Industr. (Lond.) 65, 104–107, 180–184 (1946).

    CAS  Google Scholar 

  • Tosic, J., and T. K. Walker: Acetobacter acidum-muco-sum n. sp. an organism forming a starch like-polysaccharide. J. Gen. Microbiol. 4, 192–197 (1950).

    PubMed  CAS  Google Scholar 

  • Totton, E. L., and H. A. Lardy: The synthesis of D-tagatose by biochemical oxidation and by an improved chemical method. J. Amer. Chem. Soc. 71, 3076–3078 (1949).

    CAS  Google Scholar 

  • Underkofler, L. A.: Gluconic acid. In: L. A. Underkofler and R. J. Hickey, Industrial fermentations, vol. I, p. 446–469. New York: Chem. Publ. Co. 1954.

    Google Scholar 

  • Underkofler, L. A., A. C. Bantz and W. H. Peterson: Growth factors for bacteria. XIV. Growth requirements of Acetobacter suboxydans. J. Bacter. 45, 183–190 (1943).

    CAS  Google Scholar 

  • Underkofler, L. A., and E. I. Fulmer: The production of dihydroxyacetone by the action of Acetobacter suboxydans upon glycerol. J. Amer. Chem. Soc. 59, 301–302 (1937).

    CAS  Google Scholar 

  • Underkofler, L. A., E. I. Fulmer, A. C. Bantz and E. R. Kooi: The fermentation of the stereoisomeric 2, 3-butanediols by Acetobacter suboxydans. Iowa State Coll. J. Sci. 18, 377–379 (1944).

    CAS  Google Scholar 

  • Utkin, L. M.: Über eine neue Spezies der Essigbakterie. Mikrobiologija 6, 421–434 (1937) [Russisch].

    CAS  Google Scholar 

  • Van Risseghem, H.: De l’action de microorganismes sur les formes diastéréoisomères de l’hexanediol-3, 4. Bull. Soc. Chim. Belg. 45, 21–35 (1936).

    Google Scholar 

  • Van Risseghem, H.: Nouvelle contribution à l’étude de l’action d’Acetobacter suboxydans sur le propandiole 1, 2. Bull. Soc. chim. France 1951, 908–909.

    Google Scholar 

  • Vaughn, R. H.: Some effects of association and competition on Acetobacter. J. Bacter. 36, 357–367 (1938).

    CAS  Google Scholar 

  • Vaughn, R. H.: The acetic acid bacteria. Wallerstein Lab. Communic. 5, 5–26 (1942).

    CAS  Google Scholar 

  • Vaughn, R. H.: Motility in the genus Acetobacter. J. Bacter. 46, 394–395 (1943).

    CAS  Google Scholar 

  • Vaughn, R. H.: Genus IV. Acetobacter Beijerinck. In: R. S. Breed, E. G. D. Murray and N. R. Smith, Bergeys Manual of Determin. Bacteriol., 6. Aufl. Baltimore: Williams & Wilkins Comp. 1948.

    Google Scholar 

  • Vaughn, R. H.: Acetic acid vinegar. In: L. A. Underkofler and R. J. Hickey, Industrial fermentations, Vol. I. New York: Chem. Publ. Co., Inc. 1954.

    Google Scholar 

  • Verona, O.: Microbiologia delle fermentazioni e microbiologia industriale. Firenze: Luigi Macri 1950.

    Google Scholar 

  • Virtanen, A. I., u. B. Bärlund: Die Oxydation des Glycerins zu Dioxyaceton durch Bakterien. Biochem. Z. 169, 169–177 (1926).

    CAS  Google Scholar 

  • Virtanen, A. I., and M. Nordlund: An improved method for the preparation of dihydroxyacetone. LXIV. Biochemic. J. 27, 442–444 (1933).

    CAS  Google Scholar 

  • Visser’t Hooft, F.: Biochemische Onderzoekingen over het geslacht Acetobacter. Delft: W. D. Meinema 1925. Auszug in Dtsch. Essigindustr. 30, 92–93 (1926).

    Google Scholar 

  • Votocek, E., F. Valentin u. F. Rac: Untersuchungen in der Reihe der Rhamnose (Mannomethylose). Collect. Trav. chim. Tschécosl. 2, 402–413 (1930).

    CAS  Google Scholar 

  • Walker, T. K., and J. Tošić: The catalase test with special reference to Acetobacter species. Biochemic. J. 36 (Proc), vii (1942).

    Google Scholar 

  • Walker, T. K., and J. Tošić: The characterization and identification of acetic acid bacteria. J. Inst. Brew. 51, 245 (1945).

    Google Scholar 

  • Walker, T. K., and J. Tošić: The characterization and identification of acetic acid bacteria. J. Inst. Brew. 52, 238–249 (1946).

    Google Scholar 

  • Walker, T. K., and H.B. Wright: Oligosaccharide formation during synthesis of cellulose by Acetobacter acetigenum. J. of Biol. Chem. 69, 362–371 (1957).

    CAS  Google Scholar 

  • Wallen, L. L.: The effect of organometallic and quaternary ammonium compounds on the growth of microorganisms. Iowa State Coll. J. Sci. 29, 526–528 (1955).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Über das gelbe Ferment und seine Wirkungen. Biochem. Z. 266, 377–411 (1933).

    CAS  Google Scholar 

  • Warburg, O., u. E. Negelein: Direkter spektroskopischer Nachweis des sauerstoffübertragenden Ferments in Essigbakterien. Biochem. Z. 262, 237–238 (1933).

    CAS  Google Scholar 

  • Warburg, O., E. Negelein u. E. Haas: Spektroskopischer Nachweis des Sauerstoffübertragenden Ferments neben Cytochrom. Biochem. Z. 266, 1–8 (1933).

    CAS  Google Scholar 

  • Wells, P. A., L. B. Lockwood and J. J. Stubbs: Method of carrying out certain oxidative fermentation processes by bacteria. U.S.P. Nr. 2, 121.533 v. 12. 4. 1937, ausg. 21. 6. 1938.

    Google Scholar 

  • Wells, P. A., L. B. Lockwood, J. J. Stubbs, E. T. Roe, N. Porges and E. A. Gastrock: Sorbose from sorbitol. Semiplant-scale production by Acetobacter suboxydans. Industr. Engin. Chem. 31, 1518–1521 (1939).

    CAS  Google Scholar 

  • Wells, P.A., J. J. Stubbs, L. B. Lockwood and E. T. Roe: Sorbose from sorbitol. Production by submerged growths of Acetobacter suboxydans. Industr. Engin. Chem. 29, 1385–1388 (1937).

    CAS  Google Scholar 

  • Whistler, R. L., and L. A. Underkofler: The production of l-erythrulose by the action of Acetobacter suboxydans upon erythritol. J. Amer. Chem. Soc. 60, 2507–2508 (1938).

    CAS  Google Scholar 

  • Wiame, J. M., R. Harpigny and R. G. Dothey: A new type of Acetobacter: Acetobacter acidophilum prov. sp. J. Gen. Microbiol. 20, 165–172 (1959).

    PubMed  CAS  Google Scholar 

  • Wiame, J. M., et R. Lambion: Contribution à l’étude des acétobacters de vinaigrerie du type „rapide“. Bull. Techn. Vinaigr. 6, 146–150 (1950).

    Google Scholar 

  • Wiame, J. M., et R. Lambion: Rev. Ferment. Industr. aliment. 5, 209–210 (1950).

    Google Scholar 

  • Wiame, J. M., et R. Lambion: Cultures pures d’Acetobacter dans les conditions d’acétification rapide. Bull. Techn. Vinaigr. 7, 195–202 (1951a).

    Google Scholar 

  • Wiame, J. M., et R. Lambion: La culture pure en vinaigrerie du type „rapide“. Bull. Techn. Vinaigr. 7, 203–207 (1951b).

    Google Scholar 

  • Widmer, C., T. E. King and V. H. Cheldelin: Particulate oxidase systems in Acetobacter suboxydans. J. Bacter. 71, 737 (1956).

    CAS  Google Scholar 

  • Wieland, H.: Über den Mechanismus der Oxydationsvorgänge. Ber. dtsch. chem. Ges. 46, 3327–3342 (1913).

    Google Scholar 

  • Wieland, H., u. A. Bertho: Über den Mechanismus der Oxydationsvorgänge. XV. Das Wesen der Essigsäuregärung. Liebigs Ann. 467, 95–157 (1928).

    CAS  Google Scholar 

  • Wieland, H., u. H. J. Pistor: Über den Mechanismus der Oxydationsvorgänge. XLIV. Über das dehydrierende Enzymsystem von Acetobacter peroxydans. I. Liebigs Ann. 522, 116–137 (1936).

    CAS  Google Scholar 

  • Wieland, H., u. H. J. Pistor: Über den Mechanismus der Oxydationsvorgänge. XLIX. Über das dehydrierende Enzymsystem von Acetobacter per-oxydans. II. Liebigs Ann. 535. 205–219 (1938).

    CAS  Google Scholar 

  • Will, H., u. F. Wieninger: Über die Einwirkung von Ozon auf Organismen, welche für den Brauereibetrieb in Betracht kommen. Z. ges. Brauwes. 33, 4–7, 13–16 (1910).

    Google Scholar 

  • Windisch, F.: Wirksamkeit des Acetaldehyd dismutierenden Enzyms beim aerogenen Zellstoffwechsel. Biochem. Z. 250, 466–486 (1932).

    CAS  Google Scholar 

  • Wright, H. B., and T. K. Walker: Synthesis of melibiose by an Acetobacter species in a lactate-buffered glucose medium. Chem. a. Ind. 1955, 18.

    Google Scholar 

  • Wüstenfeld, H.: Der Reinzuchtbetrieb der Versuchsessigfabrik. Dtsch. Essigindustr. 17, 381–383, 395–397 (1913).

    Google Scholar 

  • Wüstenfeld, H.: Die Tätigkeit der Versuchsanstalt des Verbandes deutscher Essigfabrikanten im Jahre 1914. Dtsch. Essigindustr. 19, 9 (1915).

    Google Scholar 

  • Wüstenfeld, H.: Die Tätigkeit der Versuchsanstalt des Verbandes deutscher Essigfabrikanten im Jahre 1915. Dtsch. Essigindustr. 20, 14 (1916).

    Google Scholar 

  • Wüstenfeld, H.: Versuche über die Wirkung von Mangansalzen auf die Oxydationstätigkeit von Essigbildnern. Dtsch. Essigindustr. 29, 267–268 (1925).

    Google Scholar 

  • Wüstenfeld, H.: Lehrbuch der Essigfabrikation. Berlin: Paul Parey 1930.

    Google Scholar 

  • Yamada, M.: Über den Ursprung der Aldehyde in Gärungserzeugnissen. II. Die Oxydation von Alkoholen durch Mikroben. Bull. Agricult. Chem. Soc. Japan 3, 80–83 (1927).

    Google Scholar 

  • Zeile, K.: Die Biosynthese des Hämins. Angew. Chem. 66, 729–735 (1954).

    CAS  Google Scholar 

  • Colvin, J. R.: Synthesis of cellulose in ethanol extracts of Acetobacter xylinum. Nature (Lond.) 183, 1135–1136 (1959).

    CAS  Google Scholar 

  • Frush, H.L., and L. J. Tregoning: Isotope effect in oxidation of D-mannitol-2-C14 by Acetobacter suboxydans. Science 128, 597 (1958).

    PubMed  CAS  Google Scholar 

  • Kitos, P. A., C. H. Wang, B. A. Mohler, T. E. King and V. H. Cheldelin: Glucose and gluconate dissimilation in Acetobacter suboxydans. J. biol. Chem. 238, 1295–1298 (1958).

    Google Scholar 

  • Schramm, M., V. Klybas and E. Racker: Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate-phosphoketolase from Acetobacter xylinum. J. biol. Chem. 233, 1283–1288 (1958).

    PubMed  CAS  Google Scholar 

  • Shimwell, J. L.: A re-assessment of the genus Acetobacter. Antonie v. Leeuwen-hoek 25, 49–67 (1959).

    Google Scholar 

  • Ziegler, H., u. J. Weigl: Zur Kultur und Cellulosesynthese von Acetobacter xylinum (Brown) Holland. Naturwiss. 46, 20 (1959).

    CAS  Google Scholar 

  • Colvin, J. R.: Synthesis of cellulose in ethanol extracts of Acetobacter xylinum. Nature (Lond.) 183, 1135–1136 (1959).

    CAS  Google Scholar 

  • Frush, H.L., and L. J. Tregoning: Isotope effect in oxidation of D-mannitol-2-C14 by Acetobacter suboxydans. Science 128, 597 (1958).

    PubMed  CAS  Google Scholar 

  • Kitos, P. A., C. H. Wang, B. A. Mohler, T. E. King and V. H. Cheldelin: Glucose and gluconate dissimilation in Acetobacter suboxydans. J. biol. Chem. 233, 1295–1298 (1958).

    PubMed  CAS  Google Scholar 

  • Schramm, M., V. Klybas and E. Racker: Phosphorolyse cleavage of fructose-6-phosphate by fructose-6-phosphate-phosphoketolase from Acetobacter xylinum. J. biol. Chem. 233, 1283–1288 (1958).

    PubMed  CAS  Google Scholar 

  • Shimwell, J. L.: A re-assessment of the genus Acetobacter. Antonie v. Leeuwen-hoek 25, 49–67 (1959).

    Google Scholar 

  • Ziegler, H., u. J. Weigl: Zur Kultur und Cellulosesynthese von Acetobacter xylinum (Brown) Holland. Naturwiss. 46, 20 (1959).

    CAS  Google Scholar 

  • Ahmad, M., and A. Kahn: Entstehung polyploider Hefezellen durch Verschmelzung von mehr als zwei Gameten. Nature (Lond.) 173, 133 (1954).

    Google Scholar 

  • Atkins, L., Ph. P. Gray, W. Moses and M. Feinstein: Growth and fermentation factors for different brewery yeasts. Wallerstein Labor. Comm. 37, 153–169 (1949).

    Google Scholar 

  • Bartholomew, J. W. v., and L. Levin: Structure of Saccharomyces carlsbergensis and Sacch. cer. as determined by ultra-thin sectioning methods and electron microscopy. J. Gen. Microbiol. 12, 473–477 (1955).

    PubMed  CAS  Google Scholar 

  • Barton-Wright, E. C.: Some nitrogenous constituents of wort and their fate during fermentation by top and bottom fermentation yeasts. European Brewery Convention, Congress Lucerne 1949, Vol. I, 19.

    Google Scholar 

  • Barton-Wright, E. C.: Some aspects of the nitrogen metabolism of yeast. J. Inst. Brewing 57, 415–426 (1951).

    CAS  Google Scholar 

  • Bauch, R.: Experimentelle Mutationslösung bei Hefe und anderen Pilzen durch Behandlung mit Campher, Acenaphthen und Colchicin. Naturwiss. 29, 503–504 (1941).

    Google Scholar 

  • Bauch, R.: Chemogenetische Untersuchungen an der Hefe. Ber. dtsch. bot. Ges. 60, 42–63 (1943).

    Google Scholar 

  • Bauch, R.: Die Konstanz der chemisch induzierten Gigas-Rassen der Hefe. Wiss. Z. Univ. Greifswald, 3. Math.-nat. Reihe 3, 123 (1954).

    Google Scholar 

  • Beuerinck, W. M.: Anhäufungen. Zbl. Bakter. 14, 827–845 (1893); II 1, 1–9, 49–59, 104–114 (1895); II 6, 193–205 (1900); II 7, 33–60 (1901).

    Google Scholar 

  • Belitzer, W. A., u. A. W. Palladin: Die Gärung. Jena: Gustav Fischer 1955.

    Google Scholar 

  • Bernhard, K., H. Steinhauser u. E. Halpern: Helvet. chim. Acta 24, 1412 (1941). Zit. nach A. Kleinzeller, Synthesis of lipids. Adv. Enzymol. 8, 299–337 (1948).

    CAS  Google Scholar 

  • Bishop, L. R.: Composition and quantitative estimation of the barley proteins. II. J. Inst. Brewing 35, 316–338 (1929).

    CAS  Google Scholar 

  • Braun, W., u. R. Pfund: Versuche über die Bäckerhefe-Erzeugung nach dem Zulauf- und Lüftungsverfahren. Biochem. Z. 287, 115–125 (1936).

    Google Scholar 

  • Braunstein, A. E., u. M. G. Kritzmann: Über den Ab- und Aufbau von Aminosäuren durch Umaminierung. Enzymologie (Den Haag) 2, 129–146 (1937).

    Google Scholar 

  • Braunstein, A. E., u. M. G. Kritzmann: Die enzymatische Umaminierung der Aminosäuren und ihre physiologische Bedeutung. Enzymologie (Den Haag) 7, 25–51 (1939).

    Google Scholar 

  • Breitsprecher, E.: Beiträge zur Kenntnis der Anobiidensymbiose. Z. Morph. u. Ökol. Tiere 11, 494–533 (1928).

    Google Scholar 

  • Brock, T. D.: Lipid synthesis in Hansenula anomala. Mycologia (N. Y.) 48, 337–344 (1956).

    Google Scholar 

  • Buchner, E., u. H. Haehn: Über eine Antiprotease im Hefesaft. Biochem. Z. 26, 171–198 (1910).

    CAS  Google Scholar 

  • Buchner, Hans, u. Rudolf Rapp: Beziehungen des Sauerstoffs zur Gärtätigkeit der lebenden Hefezellen. In: E. Buchner, H. Buchner u. M. Hahn, Die Zymasegärung, S. 350–391. München u. Berlin: R. Oldenburg 1903.

    Google Scholar 

  • Buchner, Paul: Symbiose der Tiere mit pflanzlichen Mikroorganismen. Berlin: Walter de Gruyteru. Co. 1949.

    Google Scholar 

  • Burkholder, P. R., I. McVeigh and D. Moyer: Studies on some growth factors of yeasts. J. Bacter. 48, 385–391 (1944).

    CAS  Google Scholar 

  • Burton, A. K.: The free energy change associated with the hydrolysis of the thiol ester bond of acetyl coenzym A. Biochemic. J. 59, 44–46 (1955).

    CAS  Google Scholar 

  • Campbell, L. A., and S. S. Hegbom: Alcoholic fermentation under aeration. Canad. J. Microbiol. 3, 599–605 (1957).

    CAS  Google Scholar 

  • Caspersson, T., u. B. Thorell: Der endocelluläre Eiweiß- und Nucleinstoffwechsel in embryonalem Gewebe. Chromosoma 2, 132–154 (1941).

    Google Scholar 

  • Chalinor, S. W., and N. W. R. Daniels: Fat production by inositol-deficient yeast. Nature (Lond.) 176, 1267–1268 (1955).

    Google Scholar 

  • Chang, W., and W. H. Peterson: Purification of bound formes of biotin. J. of Biol. Chem. 198, 587–595 (1951).

    Google Scholar 

  • Chevalier, P.: Une torula productive de flavine. Bull. Soc. Chim. biol. Paris 23, 421–428 (1941).

    CAS  Google Scholar 

  • Chin, C. H.: Effect of aeration on the cytochrome systems of the resting cells of brewers yeast. Nature (Lond.) 165, 926 (1950).

    CAS  Google Scholar 

  • Chou, T. C., G. D. Novelli, E. R. Stadtman u. F. Lipmann: Siehe unter F. Lipmann (1953a, b).

    Google Scholar 

  • Christophersen, J., u. H. Precht: Über den Umkehrpunkt der Atmungskurven und die Fermentwirkungsmaxima bei der Einwirkung steigender Temperaturen auf Hefen. Biol. Zbl. 70, 261–274 (1951).

    Google Scholar 

  • Christophersen, J., u. H. Precht: Über den Einfluß der Wachstumstemperatur auf die Größe von Hefezellen. Zb. Bakter. II 108, 1–6 (1954).

    Google Scholar 

  • Chudiakow, N. v.: Untersuchungen über die alkoholische Gärung. Landw. Jb. 23, 391 (1894).

    Google Scholar 

  • Claassen, H.: Das Wachstum der Hefe und die Zunahme ihrer Bestandteile bei dem Lufthefeverfahren. Biochem. Z. 228, 154–162 (1930).

    CAS  Google Scholar 

  • Clerk, de: La théorie des potentials d’oxydo-réduction et son intérêt en brasserie. Bull. Assoc. anciens École supér. de Brasserie Univ. Louvain 34, 55–59 (1934a).

    Google Scholar 

  • Wschr. Brauerei 1934b, 196–200 u. 204–207.

    Google Scholar 

  • Connstein, W., u. R. Lüdecke: Über Glyceringewinnung durch Gärung. Ber. dtsch. chem. Ges. 52, 1385–1391 (1919).

    Google Scholar 

  • Conway, E. J., and M. Downey: pH Values of the yeast cell. Biochemic. J. 47, 355–360 (1950). Zit. nach Brauwiss. 1951, 192.

    Google Scholar 

  • Conway, E. J., and R. P. Kernan: Effect of redox dyes on the active transport of hydrogen, potassium, and sodium ions across the yeast cell membrane. Biochemic. J. 61, 32–36 (1955).

    CAS  Google Scholar 

  • Cook, A. H. (Herausgeber): The Chemistry and Biology of Yeasts. New York: Academic Press Inc. 1958.

    Google Scholar 

  • Cutts, N. S., and C. Rainbow: Studies of a yeast exacting towards p-aminobenzoic acid. J. Gen. Microbiol. 4, 150–155 (1950).

    PubMed  CAS  Google Scholar 

  • Damlé, W. R., and R. S. W. Thorne: The growth and fermentation of yeast 6479 with simple peptides as nitrogen nutrients. J. Inst. Brewing 55, 13–18 (1949).

    Google Scholar 

  • Delbrück-Hayduck: Die Gärungsführung in Brauerei, Brennerei und Preßhefefabrik. Berlin: Paul Parey 1911.

    Google Scholar 

  • Delbrück-Schönfeld: System der natürlichen Reinzucht. Berlin: Paul Parey 1903.

    Google Scholar 

  • De Robichon-Szulmajster, H.: Le méso-inositol, facteur de croissance pour Saccharomyces cerevisiae. I. Intervention et spécificité du méso-inositol dans le métabolisme des pyrimidines. Biochim. et Biophysica Acta 21, 313–318 (1956).

    Google Scholar 

  • Dickens, F.: Pasteur-Meyerhof-Quotient. In: Die Methoden der Fermentforschung. Herausgeg. von E. Bamann u. K. Myrbäck, Bd. III, S. 2445–2449. Leipzig: Georg Thieme 1941.

    Google Scholar 

  • Diddens, B. H. A., u. J. Lodder: Die anasporogenen Hefen. 2. Hälfte. Amsterdam: N. V. Noord-Hollandische Uitgeversmaatschappij 1942.

    Google Scholar 

  • Drews s. Foth-Drews (1951).

    Google Scholar 

  • Drews, B.: Über die Autolyse einiger Kulturhefen. Biochem. Z. 288, 207–237 (1936).

    CAS  Google Scholar 

  • Drouhet, E., et M. Couteau: Facteurs vitaminique de croissance des Candida. C. r. Acad. Sci. Paris 239, 1675–1677 (1954).

    PubMed  CAS  Google Scholar 

  • Eddy, A.A.: Flocculation characteristics of yeasts. J. Inst. Brewing 61, 307–320 (1955).

    Google Scholar 

  • Eddy, A.A.: Aspects of the chemical composition of yeast. (In Cook 1958.)

    Google Scholar 

  • Edlbacher, S., M. Becker u. A. v. Segesser: Die Einwirkung von Hefe auf Arginin und Histidin. Hoppe-Seylers Z. 255, 53–56 (1938).

    CAS  Google Scholar 

  • Ehrlich, F.: Üb er eine Methode zur Spaltung racemischer Aminosäuren mittels Hefe. Biochem. Z. 1, 8–31 (1906).

    Google Scholar 

  • Ehrlich, F.: Die chemischen Vorgänge bei der Hefegärung. Biochem. Z. 2, 52–80 (1907).

    CAS  Google Scholar 

  • Enders, C., u. M. Hegendörfer: Untersuchungen über den Wuchsstoffgehalt von Hefen. Biochem. Z. 299, 347–358 (1938).

    Google Scholar 

  • Ephrussi, B., et P. Slonimski: Effet de l’oxygène sur la formation des enzymes respiratoirs chez la levure de boulangerie. C. r. Acad. Sci. Paris 230, 685–686 (1950).

    CAS  Google Scholar 

  • Escherich, K.: In: Symbiose der Hefe von K. Hennies. Brauwiss. 1954, 6–10.

    Google Scholar 

  • Euler, H. v., E. Adler, G. Günther u. N. B. Das: Über den enzymatischen Abbau und Aufbau der Glutaminsäure. Hoppe-Seylers Z. 254, 61–103 (1938).

    Google Scholar 

  • Euler, H. v., E. Adler u. T. Staehof-Eriksen: Glutaminsäuredehydrase aus Hefe. Hoppe-Seylers Z. 248, 227–241 (1937).

    Google Scholar 

  • Euler, H. v., u. H. Fink: Stickstoffgleichgewicht in Hefezellen. Hoppe-Seylers Z. 157, 222–262 (1926).

    Google Scholar 

  • Farmer, S. N., and D. A. Jones: Influence of potassium on sugar metabolism. Nature (Lond.) 150, 768–769 (1942).

    CAS  Google Scholar 

  • Fink, H.: Zur biologischen Eiweißsynthese. Angew. Chem. 51, 475–481 (1938).

    CAS  Google Scholar 

  • Fink, H., u. E. Berwald: Über die Umwandlung des Cytochrom-spektrums in Bierhefen. Biochem. Z. 258, 141–146 (1933).

    CAS  Google Scholar 

  • Fink, H., u. J. Gailer: Morphologische Änderungen von Torula utilis. Brauwiss. 1954, 61–65, 90–95, 124–126, 150–153.

    Google Scholar 

  • Fink, H., G. Haeseler u. M. Schmidt: Zur Frage der Fettgewinnung mit Hilfe von Mikroorganismen. Wschr. Brauerei 1937, 89–93, 100–103.

    Google Scholar 

  • Fink, H., u. A. Hock: Über den biologischen Wert des Eiweißes verschiedener Hefen für das Wachstum. Brau weit 1948, 58–61, 78–81, 99–101.

    Google Scholar 

  • Fink, H., u. F. Just: Über den Vitamin BrGehalt verschiedener Hefen und seine Beeinflussung. Biochem. Z. 308, 15–28 (1941).

    CAS  Google Scholar 

  • Fink, H., u. F. Just: Die Prüfung verschiedener Pyrimidinderivate auf deren Eignung als Vorstufen für die Biosynthese von Aneurin und Cocarboxylase. Biochem. Z. 313, 39–47 (1942).

    CAS  Google Scholar 

  • Fink, H., u. J. Krebs: Hefezüchtungen in einfachen Kohlenstoff Verbindungen. Biochem. Z. 300, 59–77 (1938).

    CAS  Google Scholar 

  • Fink, H., J. Krebs, A. Scheunert u. K. H. Wagner: Die Synthese von Vitamin B1 und B2 (Komplex) durch die Hefe Torula utilis. Biochem. Z. 302, 1–11 (1939).

    Google Scholar 

  • Fink, H., u. R. Lechner: Herstellung von Futterhefe aus Sulfitablauge. Angew. Chem. 49, 775–777 (1936).

    CAS  Google Scholar 

  • Fink, H., R. Lechner u. E. Heinrich: Über die Futterhefegewinnung in Holzzuckerlösungen. I. Biochem. Z. 278, 23–29 (1935).

    CAS  Google Scholar 

  • Fink, H., R. Lechner u. E. Heinrich: Über die Futterhefegewinnung in Holzzuckerlösungen. II. Biochem. Z. 283, 71–82 (1936).

    Google Scholar 

  • Fink, H., u. M. Ross: Einfluß des Zerteilungsgrades der Luft auf die Hefeausbeute bei der Zellsubstanzsynthese. Biochem. Z. 323, 389–398 (1952).

    PubMed  CAS  Google Scholar 

  • Fink, H., J. Schlie u. U. Rüge: Über die Zusammensetzung, die Verdaulichkeit und die Eiweißqualität des Mycels von Penicillium notatum. Hoppe-Seylers Z. 292, 251–263 (1953).

    CAS  Google Scholar 

  • Fornet, A.: Zit. in E. Rosenbaums Beiträgen zur Herstellung der Backhefe. Z. Unters. Lebensmitt. 72, 334–351 (1936).

    Google Scholar 

  • Foth-Drews: Die Praxis des Brennereibetriebes von B. Drews. Berlin: Paul Parey 1951.

    Google Scholar 

  • Freeman, G. G., and G. M. S. Donald: Fermentation process leading to glycerol. I. The influence of certain variables on glycerol formation in the presence of sulfites. Appl. Microbiol. 5, 197–210 (1957a).

    PubMed  CAS  Google Scholar 

  • Freeman, G. G., and G. M. S. Donald: II. Studies on viability, growth, and fermentation of Sacch. cerevisiae. Appl. Microbiol. 5, 211–215 (1957 b).

    PubMed  CAS  Google Scholar 

  • Freeman, G. G., and G. M. S. Donald: III. Studies on glycerol formation in the presence of alcali. Appl. Microbiol., 5, 216–220 (1957c).

    PubMed  CAS  Google Scholar 

  • Fritz, A.: Untersuchungen an Hefemitochondrien. Brauwiss. 8, 222–227, 254–259 (1955).

    Google Scholar 

  • Geffers, H.: Untersuchungen über das Fettbildungsvermögen bei Pilzen der Gattung Oospora Wallroth. Arch. Mikrobiol. 8, 66–98 (1937).

    CAS  Google Scholar 

  • Genevois, L., et J. Ribéreau-Gayon: Le vin. Paris: Hermann & Cie. 1947.

    Google Scholar 

  • Gilliland, R. B.: Flocculation of brewery yeast during fermentation. Proc. European Brew. Conv. Congr., Brighton 1951, S. 35–58.

    Google Scholar 

  • Gilliland, R. B.: Flocculation of brewing yeast. Brewers’ Guild J. 41, 246–270 (1955).

    Google Scholar 

  • Glaubitz, M., u. R. Koch: Atlas der Gärungsorganismen. Berlin: Paul Parey (1956).

    Google Scholar 

  • Grassmann, W., u. H. Dyckerhoff: Über die Proteinase und die Polypeptidase der Hefe. In: R. Willstätter, Untersuchungen über Enzyme, Bd. 2, S. 1708–1732. Berlin: Springer 1928.

    Google Scholar 

  • Gray, W. D., and C. Sova: Relation of molecule size and structure to alcohol inhibition of glucose utilization by yeast. J. Bacter. 72, 349–356 (1956).

    CAS  Google Scholar 

  • Green, S. R., and J. Stone: Fermentability of wort trisaccharide. Proc. Amer. Brew. Meeting 1952, S. 61–75. Zit. nach Brauwiss. 1954, 57.

    Google Scholar 

  • Guilliermond, A., et R. Gautheret: L’accumulation des colorants vitaux par les cellules de levures est-elle un phénomène d’adsorption. C. r. Soc. Biol. Paris 130, 1202–1204 (1939).

    CAS  Google Scholar 

  • Guthenberg, H., L. Enebo u. E. Sandegren: Stick-stoffassimilation bei Brauereihefen. Versuche mit markierter Asparaginsäure. Svensk Brygg 1954, 81–88. Zit. nach Brauwiss. 1954, 134.

    Google Scholar 

  • György, P.: Vitamins methods, Vol. I 1950; Vol. II 1951. New-York: Academic Press Inc. Publishers.

    Google Scholar 

  • Haehn, H.: Physiological value of beer salts in nutrition. Ludwig Beer. Amer. Brewer 66, 37–40 (1933).

    Google Scholar 

  • Haehn, H.: Autolyse. Erg. Enzymforsch. Leipzig 5, 117–158 (1936).

    CAS  Google Scholar 

  • Haehn, H.: Glycerin-gewinnung auf gärtechnischem Wege. Chem. Zbl. 1938 II, 2857.

    Google Scholar 

  • Haehn, H.: Über die biologische und biochemische Leistung der Hefezellen. Ernährung u. Verpflegung 1, 126–128 (1949).

    Google Scholar 

  • Haehn, H.: Biochemie der Gärungen. Berlin: Walter de Gruyter & Co. 1952.

    Google Scholar 

  • Haehn, H.: Zur Biologie und Biochemie der Mikroorganismen unter besonderer Berücksichtigung der Essiggärung. Branntweinwirtschaft 78, 397–400 (1956).

    Google Scholar 

  • Haehn, H., M. Glaubitz u. W. Gross: Zur Frage der Vergärbarkeit der Dextrine. Amylohexaose und verschiedene Heferassen. Ber. dtsch. chem. Ges. 70, 1492–1495 (1937).

    Google Scholar 

  • Haehn, H., u. W. Kinttof: Über den chemischen Mechanismus der Fettbüdung in der lebenden Zelle. Ber. dtsch. chem. Ges. 56, 439–445 (1923).

    Google Scholar 

  • Haehn, H., u. W. Kinttof: Z. Chem. Zelle u. Gewebe 12, 115–156 (1925).

    CAS  Google Scholar 

  • Haehn, H., u. H. Leopold: Über eine Aspertasewirkung der Hefe. Biochem. Z. 292, 380–387 (1937).

    CAS  Google Scholar 

  • Hahn, M.: Das proteolytische Enzym des Hefepreßsaftes. Ber. dtsch. chem. Ges. 31, 200–201 (1898).

    CAS  Google Scholar 

  • Hansen, J. H., and P. M. Nossal: Morphological and biochemical effects of freezing on yeast cells. Biochem. et Biophysica Acta 16, 502–512 (1955).

    CAS  Google Scholar 

  • Hartelius, V.: Untersuchungen über die Stickstoffassimilation der Hefe. C. r. Trav. Labor. Carlsberg, Sér. physiol. 22, 303–321 (1939).

    Google Scholar 

  • Haurowitz, F.: Chemistry a. Biology of Proteins. New York: Academic Press Inc. 1950.

    Google Scholar 

  • Hautmann, F.: Über die Nektarhefe Anthomyces Reukaufii. Arch. Protistenkde 48, 213–244 (1924).

    CAS  Google Scholar 

  • Hayduck, M.: Degenerieren der Hefe. Brauerei-Lexikon von M. Delbrück, S. 234. Berlin: Paul Parey 1910.

    Google Scholar 

  • Hayduck, M.: Hefe-Nährlösungen. In: Gärungsbakteriologisches Praktikum von W. Henneberg, 2. Aufl., S. 51–52. Berlin: Paul Parey 1926.

    Google Scholar 

  • Hayduck, F., u. H. Haehn: Das Problem der Zymasebildung in der Hefe. Biochem. Z. 128, 568–605 (1922).

    CAS  Google Scholar 

  • Hayduck, F., u. H. Haehn: Die Hefereinzucht in der Entwicklungsgeschichte der Brauerei. Gesellschaft für die Geschichte und Bibhographie des Brauwesens E. V. S. 106–166. Berlin: Institut für Gärungsgewerbe 1931.

    Google Scholar 

  • Helm, E., B. Nohr u. R. S. W. Thorne: Die Messung der Hefeflockung und ihre Bedeutung für die Brauerei. Brauwiss. 1954, 157. Kurzer Bericht.

    Google Scholar 

  • Henneberg, W.: Gärungsbakteriologisches Praktikum. Berlin: Paul Parey 1926.–1936. Siehe A. Fornet 1936.

    Google Scholar 

  • Hennies, K.: Symbiose der Hefe. Brauwiss. 1954, 6–10.

    Google Scholar 

  • Hertwig, R.: Wechselverhältnis von Kern und Protoplasma. Sitzgsber. Ges. Morph. Physiol., München 1903.

    Google Scholar 

  • Hjorth-Hansen, S.: Über das Wachstum der Hefe in synthetischer Nährlösung bei konstantem pH. Biochem. Z. 301, 292–300 (1939).

    CAS  Google Scholar 

  • Hoch, F. T., u. B. L. Vallée: Hefe-Alkoholdehydrogenase, ein Zink-Metalloenzym. Angew. Chem. 67, 663 (1955). Notiz.

    Google Scholar 

  • Illies, R.: Weitere Versuche über den Wuchststoffgehalt der Rübenmelasse. Z. Spiritusind. 61, 259–260; 267–268 (1938).

    CAS  Google Scholar 

  • Ingram, M.: An introduction to the biology of yeasts. London: Pitman & Sons Ltd. 1955.

    Google Scholar 

  • Janke, A.: Arbeitsmethoden der Mikrobiologie. Dresden u. Leipzig: Theodor Steinkopff 1946.

    Google Scholar 

  • Jansen, H. E., and F. Mendlik: A study on yeast flocculation. Proc. European Brew. Conv. Congr., Nizza 1953, S. 143–157.

    Google Scholar 

  • Jinks, I. L.: Linkage between two polymeric genes for raffinose and sucrose fermentation in yeasts. C. r. Trav. Labor. Carlsberg, Sér. physiol. 25, 252–257 (1953).

    CAS  Google Scholar 

  • Jörgensen, Holger: Die Bestimmung der Wasserstoffionenkonzentration und deren Bedeutung für Technik und Landwirtschaft. Dresden u. Leipzig: Theodor Steinkopff 1935.

    Google Scholar 

  • Joslyn, M. A.: Yeast autolysis I. Chemical and cytological changes involved in autolysis. Wallerstein Labor. Comm. 18, Nr 61, 107–122 (1955) s. auch Nr 62, 191–205 (1955).

    CAS  Google Scholar 

  • Just, F.: Über die Wirkung des Vitamins H′ auf schnellwachsende Zellen wie Hefen, Bakterien und bösartige Tumoren. Branntwein Wirtschaft 2, 369–376 (1948).

    Google Scholar 

  • Kanitz, A.: Der Einfluß der Temperatur auf die pulsierenden Vakuolen der Infusorien und die Abhängigkeit biologischer Vorgänge von der Temperatur überhaupt. Biol. Zbl. 27, 11–25 (1907).

    Google Scholar 

  • Kanitz, A.: Temperaturabhängigkeit von Lebensprozessen, RGT-Regel. In: C. Oppenheimer (Herausgeber), Handbuch der Biochemie des Menschen und der Tiere, II. Aufl., Bd. 2, S. 200. Jena: Gustav Fischer 1925.

    Google Scholar 

  • Ketterer, H.: Vergleich der Methylenblau- und Acridinorangemethode mit der Kulturmethode als Lebend-Tot-Nachweis für Hefezellen unter Anwendung verschiedener Noxen als Todesursache und verschiedenen Hefen als Testorganismen. Brauwiss. 1956, 14–19, 59–64.

    Google Scholar 

  • Kiessling, K. H.: Incorporation of radioactive phosphate into thiamine phosphates in yeast. Acta chem. scand. (Copenh.) 10, 831–839 (1956).

    Google Scholar 

  • Knorr, F.: Ein Beitrag zu der Beeinflussung des Bakterienwachstums durch Hefen. Brauwiss. 8, 104–105 (1955).

    Google Scholar 

  • Koch, Anton: 50 Jahre Erforschung der Insektensymbiosen. Naturwiss. 37, 313–317 (1950).

    Google Scholar 

  • Koch, Anton, K. Offhaus, I. Schwarz u. J. Bandier: Symbioseforschung und Medizin. Naturwiss. 38, 339–345 (1951).

    CAS  Google Scholar 

  • Koch, Rich.: Antibiotische Wirkungen von Hefen auf Bakterien. Brauerei 6, 307–309 (1952).

    Google Scholar 

  • Koch, Rich., u. A. Herbst: Zur Frage der morphologischen Variation von Torulopsis utilis. Branntweinwirtschaft 2, 193–195 (1948).

    Google Scholar 

  • Koch, Rich., F. Thomas u. E. E. Bruchmann: Untersuchungen über die mikrobiologische Fettbildung. Branntweinwirtschaft 3, 65–67 (1949).

    CAS  Google Scholar 

  • Kocková-Kratoch-vilová, A., A. Vavruchová u. D. Vopátková-Nováková: Der mikrobielle Ursprung von Diacetyl und Acetoin im Bier. Brauwiss. 9, 73–82 (1956).

    Google Scholar 

  • Kögl, F., u. W. A. Borg: Über die Konstitution der Biotine. Hoppe-Seylers Z. 281, 65–72 (1944).

    Google Scholar 

  • Kögl, F., u. B. Tönnis: Darstellung von kristallisiertem Biotin aus Eigelb. Hoppe-Seylers Z. 242, 43–73 (1936).

    Google Scholar 

  • Komarowa, L. I.: Die Rolle der natürlichen Durchmischung bei der Alkoholgärung. Mikrobiologia 21, 579–583 (1952). Zit. nach Brauwiss. 1953, 163.

    Google Scholar 

  • Kordatzki, W.: Taschenbuch der praktischen pH-Messung für wissenschaftliche Laboratorien und technische Betriebe. München: R. Müller & Steinicke 1949.

    Google Scholar 

  • Kressin, G.: Beiträge zur vergleichenden Protoplasmatik der Mooszelle. Diss. Greifswald 1935.

    Google Scholar 

  • Kretzschmar, H.: Hefe und Alkohol sowie andere Gärungsprodukte. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Kritzmann, M. G.: Über den Ab- und Aufbau von Aminosäuren durch Umaminierung. Enzymologia (Den Haag) 5, 44–51 (1938).

    Google Scholar 

  • Kudo, Sh.: Flockung der Brauereihefe. Vorläufige Mitteilung über einen neuen Stoff, der die Flockung der Hefe stark fördert. Brauerei. Wiss. Beil. 7, 93 (1954a). Ref.

    Google Scholar 

  • Kudo, Sh.: Flockung der Brauereihefe. Brauerei 1954b, 345–347.

    Google Scholar 

  • Kuen, F. M., u. K. Püringer: Über den Puringehalt der Hefe. Biochem. Z. 272, 113–118 (1934).

    CAS  Google Scholar 

  • Kuhn, R., K. Reinemund, F. Weygand u. R. Ströbele: Über die Synthese des Lactoflavins (Vitamin B2). Ber. dtsch. chem. Ges. 68, 1765–1774 (1935).

    Google Scholar 

  • Kuhn, R., u. H. Rudy: Lactoflavin als Co-Ferment; Wirkstoff und Träger. Ber. dtsch. chem. Ges. 69, 2557–2567 (1936).

    Google Scholar 

  • Kuhn, R., H. Rudy u. F. Weygand: Synthese der Lactoflavin-5-phosphorsäure. Ber. dtsch. chem. Ges. 69, 1543–1547 (1936).

    Google Scholar 

  • Laer, van: Siehe F. Mendlik.

    Google Scholar 

  • Lang, K.: Der intermediäre Stoffwechsel. Berlin: Springer 1952.

    Google Scholar 

  • Langford, C. T.: Recent advances in the fermentation field. Chemurgic Digest 7, No 5, 4–7, 33 (1948).

    Google Scholar 

  • Langford, C. T.: Wallerstein Labor. Comm. 12, 106 (1949).

    Google Scholar 

  • Lardy, H.A.: The influence of inorganic ions on phosphorylation. In: Phosphorus Metabolism, herausgegeb. von W. D. McElroy u. B. Glass, Bd. I, S. 477–499. Baltimore: John Hopkins Press 1951.

    Google Scholar 

  • Laurent, E.: Recherches physiologiques sur les levures. Ann. Soc. belge Mikrosc. 14, 29 (1890).

    Google Scholar 

  • Lechner, R.: Über die Verhefung der Pentosen. Angew. Chem. 53, 163–167 (1940).

    CAS  Google Scholar 

  • Lehmann, I.: Das Redoxpotential. In Bamann-Myrbäck, Methoden der Fermentforschung, S. 834–846. Leipzig: Georg Thieme 1940.

    Google Scholar 

  • Lehnartz, E.: Einführung in die chemische Physiologie, S. 368. Berlin-Göttingen-Heidelberg: Springer 1952.

    Google Scholar 

  • Lemoigne, M., J.-P. Aubert et J. Millet: La production d’alcool et le rendement de croissance de la levure de boulangerie cultivée en aérobiose. Ann. Inst. Pasteur (Paris) 87, 427–439 (1957).

    Google Scholar 

  • Leupold, U., and H. Hottinger: Some data on segregation in Saccharomyces. Heredity 8, 243–258 (1954).

    Google Scholar 

  • Leuthardt, F.: Lehrbuch der Physiologischen Chemie, S. 432 u. 449. Berlin: Walter de Gruyter & Co. 1955.

    Google Scholar 

  • Liebig, I.V.: Sur la fermentation et la source de la force musculaire. Ann. Chim. Phys., Sér. IV 23, 5, besonders S. 42 (1871).

    Google Scholar 

  • Lindegren, C. C.: Genetics of the fungi. Annual. Rev. Microbiol. 2, 47–69 (1948).

    Google Scholar 

  • Lindegren, C. C., and G. Lindegren: Tetraploid Saccharomyces. J. Gen. Microbiol. 5, 858–893 (1951).

    Google Scholar 

  • Lindegren, C. C., and G. Lindegren: Proximity of genes controlling the fermentation of similar carbohydrates in Saccharomyces. Nature (Lond.) 170, 965–968 (1952).

    CAS  Google Scholar 

  • Lindner, P.: Entdeckte Verborgenheiten. Berlin: Paul Parey 1923.

    Google Scholar 

  • Lindner, P.: Mikroskopische und biologische Betriebskontrolle in den Gärungsgewerben. Berlin: Paul Parey 1930.

    Google Scholar 

  • Lindquist, W.: On the mechanism of yeast flocculation. J. Inst. Brewing 59, 59–61 (1953).

    Google Scholar 

  • Lipmann, F.: Coenzym A, Past and Future. Federat. Proc. 12, 673–674 (1953a).

    CAS  Google Scholar 

  • On chemistry and function of coenzym A. Bacter. Rev. 17, 1–16 (1953b).

    Google Scholar 

  • Lodder, I.: Die anasporogenen Hefen. 1. Hälfte. Amsterdam: N. V. Noord-Hollandsche Uitgevers-Maatschaappij 1934.

    Google Scholar 

  • Lodder, I., and N. I. W. Kregervanrij: The yeasts, a taxonomic study. Amsterdam: North-Holland Publishing Company 1952.

    Google Scholar 

  • Lohmann, K.: Darstellung von Adenylpyrophosphorsäure aus Muskulatur. Biochem. Z. 233, 460–469 (1931).

    CAS  Google Scholar 

  • Lohmann, K., u. P. Langen: Untersuchungen an den kondensierten Phosphaten der Hefe. Biochem. Z. 328, 1–11 (1956).

    PubMed  CAS  Google Scholar 

  • Lohmann, K., u. Ph. Schuster: Über die Co-Carboxylase. Naturwiss. 25, 26–27 (1937a).

    CAS  Google Scholar 

  • Lohmann, K., u. Ph. Schuster: Untersuchungen über die Co-Carboxylase. Biochem. Z. 294, 183–214 (1937b).

    CAS  Google Scholar 

  • Lüers, H.: Die Veränderung der Wasserstoffionenkonzentration während der Gärung. Z. ges. Brauwes. 37, 79–82 (1914).

    Google Scholar 

  • Lüers, H.: Chemie und Technologie der landwirtschaftlichen Gewerbe. Berlin: Paul Parey 1944.

    Google Scholar 

  • Lüers, H.: Die wissenschaftlichen Grundlagen von Mälzerei und Brauerei, S. 626 u. 755 (Moufang). Nürnberg: Hans Carl 1949.

    Google Scholar 

  • Betrachtungen über die Bruchbildung der Hefe. Brauwiss. 1953, 49–53.

    Google Scholar 

  • Lundin, H.: Über den Einfluß des Sauerstoffs auf die assimilatorische und dissimilatorische Tätigkeit der Hefe. Biochem. Z. 141, 310–341, 342–369 (1923); 142, 454–462, 463–492 (1923).

    CAS  Google Scholar 

  • Lynen, F.: Der Fettsäurecyclus. Angew. Chem. 67, 463–470 (1955).

    CAS  Google Scholar 

  • Mahdihassan, S.: Symbionts specific of wax and pseudo lac insects. Arch. Protistenkde 63, 18–22 (1928).

    Google Scholar 

  • Mahdihassan, S.: The microorganism of red and yellow lac insects. Arch. Protistenkde 68, 613–623 (1929).

    Google Scholar 

  • Mattenheimer, H.: Trennung der Poly- und Metaphosphatasen der Bierhefe. Angew. Chem. 67, 409 (1955).

    Google Scholar 

  • Mattenheimer, H.: Naturwiss. 40, 530 (1953).

    CAS  Google Scholar 

  • Mayer, A.: Agrikulturchemie, 7. Aufl., Bd. III. Gärungschemie. Heidelberg: Karl Winter 1927.

    Google Scholar 

  • McClary, D. O., M. A. Williams, C. C. Lindegren and M. Ogur: Chromosome counts in a polyploid series of Saccharomyces. J. Bacter. 73, 360–364 (1957).

    CAS  Google Scholar 

  • Meisenheimer, I.: Die stickstoffhaltigen Bestandteile der Hefe. Hoppe-Seylers Z. 104, 229–283 (1919); 114, 205–249 (1921).

    CAS  Google Scholar 

  • Mendlik, F.: Was sind Oxydations-Reduktionspotentiale und welche Bedeutung haben sie für die Brauerei? Wschr. Brauerei 52, 417–422 (1935).

    CAS  Google Scholar 

  • Metcalfe, G., Sonja Chayen, E. R. Roberts and T. G. G. Wilson: Nitrogen fixation by soil yeasts. Nature (Lond.) 174, 841–842 (1954).

    CAS  Google Scholar 

  • Meyerhof, O.: Die chemischen und energetischen Verhältnisse bei der Muskelarbeit. Asher-Spiros Erg. Physiol. 22, 328–343 (1923).

    CAS  Google Scholar 

  • Meyerhof, O.: Über den Einfluß des Sauerstoffs auf die alkoholische Gärung der Hefe. Biochem. Z. 162, 43, 54, 55, 59–62 (1925).

    Google Scholar 

  • Michaelis, L.: Oxydations-Reduktions-Potentiale, 2. Aufl. Berlin: Springer 1933.

    Google Scholar 

  • Miller, I.I., I. Calvin and I.H. Tremaine: Factors influencing sporulation of Saccharomyces cerevisiae. Canad. J. Microbiol. 1, 560–573 (1955).

    CAS  Google Scholar 

  • Moat, A.G., u. E. K. Emmons: The amino acid nutrition of yeast in relationship to biotin deficiency. J. Bacter. 68, 687–690 (1954).

    CAS  Google Scholar 

  • Möller, E. F.: Die Wuchsstoffe der Mikroorganismen unter besonderer Berücksichtigung der Hefen. Brauwiss. 1950, 217–220.

    Google Scholar 

  • Morris, E. O.: Seaweed as a source of yeast food. J. Sci. Food a. Agr. 6, 611–621 (1955).

    CAS  Google Scholar 

  • Mrak, J. M., and H.-J. Phaff: Yeasts. Annual Rev. Microbiol. 2, 1–47 (1948).

    Google Scholar 

  • Moufang, E.: In: H. Lüers, Die wissenschafthchen Grundlagen von Mälzerei und Brauerei, S. 755. Nürnberg: Hans Carl 1949.

    Google Scholar 

  • Mundkur, B. D.: Interphase nuclei and cell sizes in a polyploid series of Saccharomyces. Experientia (Basel) 9, 373–374 (1953).

    CAS  Google Scholar 

  • Negelein, E., u. H. Brömel: Protein der d-Aminosäureoxydase. Biochem. Z. 300, 225–239 (1939).

    CAS  Google Scholar 

  • Neubauer, O., u. K. Frommherz: Über den Abbau der Aminosäuren bei der Hefegärung. Hoppe-Seylers Z. 70, 326–350 (1940).

    Google Scholar 

  • Neuberg, C., and H. Lustig: Preparation of active zymase extracts from top yeast. Arch. of Biochem. 1, 191–196 (1943).

    Google Scholar 

  • Nielsen, N.: Untersuchungen über die Stickstoffassimilation der Hefe. C. r. Trav. Labor. Carlsberg, Sér. physiol. 21, 395–424 (1936).

    Google Scholar 

  • Nielsen, N., u. J. Dagys: Wuchsstoffwirkung der Aminosäuren. C. r. Trav. Labor. Carlsberg, Sér. physiol. 22, 447–479 (1940).

    CAS  Google Scholar 

  • Nielsen, N., u. V. Hartelius: Untersuchungen über die Stickstoffassimilation der Hefe. C. r. Trav. Labor. Carlsberg, Sér. physiol. 22, 23–46 (1936–1940).

    Google Scholar 

  • Nielsen, N., u. V. Hartelius: Untersuchungen über die Wuchsstoffwirkung der Aminosäuren gegenüber Hefe. Biochem. Z. 295, 211–225 (1938).

    CAS  Google Scholar 

  • Nielsen, N., u. V. Hartelius: Ergänzende Untersuchungen über die Wuchsstoffwirkung der Aminosäuren auf Hefe. Biochem. Z. 307, 187–193 (1941).

    CAS  Google Scholar 

  • Niethammer, A.: Hefen sowie mikroskopische Pilze aus Blüten, Samen und Früchten. Arch. Mikrobiol. 13, 45–59 (1942).

    Google Scholar 

  • Nord-Weidenhagen: Handbuch der Enzymologie. Leipzig: Akademische Verlagsgesellschaft 1940.

    Google Scholar 

  • Novelli, G. D., R. M. Flynn u. F. Lipmann: Siehe F. Lipmann (1953b).

    Google Scholar 

  • Ogur, M.: The rapid estimation of ploidy in cultures of Saccharomyces. J. Bacter. 69, 159–162 (1955).

    CAS  Google Scholar 

  • Olbrich, H.: Pentosenassimilation. Brantweinwirtschaft 74, 265–267 (1952).

    CAS  Google Scholar 

  • Olbrich, H.: Die Melasse. Berlin: Institut für Gärungsgewerbe 1956.

    Google Scholar 

  • Olson, B. H., u. M. J. Johnson: Factors producing high yeasts yields in synthetic media. J. Bacter. 57, 235–246 (1949).

    CAS  Google Scholar 

  • Panzer: Privatmitteilung 1951.

    Google Scholar 

  • Parfentjer, J. A.: Yeast as a neglected source for the preparation of antibiotics. Amer. Brewer 87, (H. 7), 39–41 (1954).

    Google Scholar 

  • Pasteur, L.: Mémoire sur la fermentation alcoolique. Ann. Chim. Phys., Sér. III 58, 384 (1860).

    Google Scholar 

  • Pasteur, L.: Études sur la bière. Paris: Gauthier-Vilares 1876.

    Google Scholar 

  • Peynaud, E.: Bilans des produits secondaires de la fermentation alcoolique. Industr. Agricoles et Alimentaires 1948, Nr 4–6, 99–107.

    Google Scholar 

  • Philips, A. W.: Utilization by yeasts of the carbohydrates of wort. J. Inst. Brewing 61, 122–126 (1955). Zit. nach Brauerei, Wiss. Beil. 8, 125 (1955).

    Google Scholar 

  • Pomper, S.: Isolation of triploid Saccharomyces cerevisiae. Nature (Lond.) 170, 892–893 (1952).

    CAS  Google Scholar 

  • Pomper, S., K.M. Daniels and D. V. McKee: Genetic analysis of polyploid yeast. Genetics 39, 343–355 (1954).

    PubMed  CAS  Google Scholar 

  • Precht, H., J. Christophersen u. H. Hensel: Temperatur und Leben. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Rauen, H. M.: Biochemisches Taschenbuch. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  • Reader, V.: The relation of the growth of certain microorganisms to the composition of the medium. I. The synthetic cultur medium. Biochemic. J. 21, 901–907 (1927).

    CAS  Google Scholar 

  • Reindel, Fr., u. W. Hoppe: Über die stickstoffhaltigen Ausscheidungsprodukte der Hefe. Chem. Ber. 85, 716–731 (1952).

    CAS  Google Scholar 

  • Ridgway, G. J., and H.C. Douglas: Distribution of inositol in subcellular fractions of yeast cells. J. Bacter. 75, 85–88 (1958).

    CAS  Google Scholar 

  • Rieche, A.: Über die mikrobiologisch-technische Eiweiß- und Fettsynthese auf der Basis von Zellstoffablaugen. Wiss. Ann. dtsch. Akad. Wiss. Berlin 3, 705–727 (1954).

    CAS  Google Scholar 

  • Rippel-Baldes, A.: Grundriß der Mikrobiologie. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Rohrer, E.: Flockung der Hefe. Schweiz. Brauereirdsch. 61, 1–2, 168–169 (1950).

    Google Scholar 

  • Roine, P.: On the formation of primary aminoacids in the protein synthesis in yeast. Diss. Helsinki 1947.

    Google Scholar 

  • Roman, H., D. C. Hawthorne and H. C. Douglas: Polyploidy in yeast and its bearing on the occurrence of irregular genetic ratios. Proc. Nat. Acad. Sci. U.S.A. 37, 79–84 (1951).

    CAS  Google Scholar 

  • Salkowski, E.: Über Zuckerbildung und andere Fermentreaktionen in der Hefe. Hoppe-Seylers Z. 13, 506–538 (1889).

    Google Scholar 

  • Schanderl, H.: Untersuchungen über die systematische Stellung und die Physiologie des Kellerschimmels Rhacodium cellare Person. Zbl. Bakter. II 94, 112–127 (1936).

    CAS  Google Scholar 

  • Die Stickstoffassimilation durch Hefesymbionten von Rhagium inquisitor L. Z. Morph. u. Ökol. Tiere 1942, 526–533.

    Google Scholar 

  • Schanderl, H.: Antibiotika und Weinhefen sowie neue Einblicke in den Wuchsstoff- und Schwefelhaushalt der Weinhefen. Dtsch. Weinztg 90, 342–346 (1954).

    Google Scholar 

  • Schanderl, H.: Zur Frage der Bindung des atmosphärischen Stickstoffs durch Hefen. Brauwiss. 8, 157–158 (1955).

    Google Scholar 

  • Schöpfer, W.: Vitamine und Wachstumsfaktoren bei den Mikroorganismen mit besonderer Berücksichtigung des Vitamins Bx. Erg. Biol. 16, 1–173 (1939).

    Google Scholar 

  • Schryver, S. B., and E. M. Thomas: The nitrogenous constituants of wort and their assimilation by yeast. J. Inst. Brewing 35, 571–576 (1929).

    CAS  Google Scholar 

  • Skovsted, A.: Induced campher mutations in yeast. C. r. Trav. Labor. Carlsberg, Sér. physiol. 24, 249–261 (1948).

    Google Scholar 

  • Sowden, J. C., S. Fränkel, B. H. Moore and J. E. McClary: Utilization of l-C14-D-glucose by Torula utilis yeast. J. of Biol. Chem. 206, 547–552 (1954). Zit. nach Brauwiss. 1955, 87.

    CAS  Google Scholar 

  • Stelling-Dekker, N.M.: Die sporogenen Hefen. Amsterdam: N. V. Noord-Hollandische Uitgeversmaatschappij 1931.

    Google Scholar 

  • Stockhausen, F.: Elektrische Ladung der Hefe und Wasserstoffionenkonzentration, Einfluß auf Gärfähigkeit und Flockenbildungsvermögen. Wschr. Brauerei 1927, 121–124, 133–139.

    Google Scholar 

  • Stöckli, A.: Die Papierchromatographie und ihre Bedeutung für die brauereibiologische Forschung. Schweiz. Brauerei-Rdsch. 65, 139–144 (1954). Zit. nach Brauerei, Wiss. Beü. 1955, 26.

    Google Scholar 

  • Strese, S.: Hemmende und fördernde Wirkung von Hefen auf das Wachstum einiger Bakterien. Brauerei, Wiss. Beil. 1952, 131.

    Google Scholar 

  • Strugger, S.: Fluoreszenzmikroskopie und Mikrobiologie, S. 35. Hannover: M. u. H. Schaper 1949.

    Google Scholar 

  • Suomalainen, H., and E. Axelson: Effect of thiamin on the rate of fermentation of zymohexoses and of maltose by baker’s yeast. Biochim. et Biophysica Acta 20, 315–318 (1956a).

    CAS  Google Scholar 

  • Suomalainen, H., E. Axelson and E. Oura: The interaction of zymohexoses and maltose fermentation by baker’s yeast. Biochim. et Biophysica Acta 20, 319–322 (1956b).

    CAS  Google Scholar 

  • Swellengrebel, N. H.: Über Plasmolyse und Turgorregulation der Preßhefe. Zbl. Bakter. II 14, 374–388, 481 bis 492 (1905).

    CAS  Google Scholar 

  • Szilvinyi, A.: Der Stickstoffwechsel der Bierhefe. Mitt. Versuchsstat. Gärungsgewerbe, Wien 5, 47–54 (1951a).

    Google Scholar 

  • Redoxpotential und Hefestoffwechsel. Brauwiss. 1951b, 8–12.

    Google Scholar 

  • Tait, A., u. L. Fletscher: Die Entwicklung und Ernährung der Hefe. J. Inst. Brewing 29, 509–537 (1923).

    Google Scholar 

  • Taysen, A.C.: Methoden zur industriellen Verwertung der Hefe Brauerei 1948, 90.

    Google Scholar 

  • Tebbenhoff, E.: Kinetische Untersuchungen über den Stoffwechsel und die Zellteilung von hefeähnlichen Pilzen. Diss. Techn. Hochschule München 1945.

    Google Scholar 

  • Theorell, H.: Das gelbe Ferment, seine Chemie und Wirkungen. Erg. Enzymforsch. 6, 111–138 (1937).

    CAS  Google Scholar 

  • Thommel, K. A.: Erfahrungen mit dem Belüftungssystem nach Vogelbusch. Branntweinwirtschaft 76, 121–125 (1954).

    Google Scholar 

  • Thorne, R. S. W.: The influence of amino-acid-degradation products and some related substances upon yeast growth and fermentation. J. Inst. Brewing 45, 13–32 (1939).

    CAS  Google Scholar 

  • Thorne, R. S. W.: The growth and fermentation of a strain of Saccharomyces cerevisiae with amino-acids as nutrients. J. Inst. Brewing 47, 255–272 (1941).

    CAS  Google Scholar 

  • Mechanismus der Stickstoffassimilation durch Hefe und ihre Beziehung zum Problem des Hefewachstums in der Würze. Brauwiss. 1951, 89–91 u. 108–109.

    Google Scholar 

  • Thorne, R. S. W.: Different aspects of yeast floccuation. Proc. European Brew. Conv. Congr., Brighton 1951, S. 21–34.

    Google Scholar 

  • Townsend, G.F., u. C.C. Lindegren: Charakteristische Wachstumsformen der verschiedenen Arten einer polyploiden Saccharomycesserie. J. of Bot. 67, 480–483 (1954).

    CAS  Google Scholar 

  • Urona, A., u. A. J. Vertanen: Antibiotics of yeasts. Ann. med. exper. et biol. fenn. 1947, 36–47.

    Google Scholar 

  • Vallee, B. L., F.L. Hoch, S. J. Abelstein and E. C. Wacker: Pyridine nucleotide dependent metallohydrogenases. J. Amer. Chem. Soc. 78, 5879–5883 (1956).

    CAS  Google Scholar 

  • Van Lanen, J. M., and F. W. Tanner: Vitamins in microorganisms. Vitamins and Hormones 6, 164–224 (1948).

    Google Scholar 

  • Vigneaud, Vincent du, J.M. Spangler, Dean Burk, C. J. Kensler, K. Sugiura and C. P. Reoads: The procarcinogenic effect of biotin in butter yellow formation. Science (Lancaster, Pa.) 95, 174–176 (1942).

    Google Scholar 

  • Vogelbusch, W.: D. R. P. 6821306 (1933).

    Google Scholar 

  • Walters, L. S., and M. R. Thiselton: Utilization of lysine by yeasts. J. Inst. Brewing 59, 401–404 (1953). Zit. nach Brauwiss. 1954, 17.

    Google Scholar 

  • Warburg, O.: Versuche an überlebendem Carcinomgewebe. Biochem. Z. 142, 317–333 (1923).

    CAS  Google Scholar 

  • Warburg, O.: Wasserstoffübertragende Fermente. Berlin: Dr. W. Saenger 1948.

    Google Scholar 

  • Warburg, O., u. W. Christian: Gelbes Ferment. Biochem. Z. 254, 438–458 (1932).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Über das gelbe Ferment und seine Wirkungen. Biochem. Z. 266, 377–411 (1933).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Isolierung der prosthetischen Gruppen der d-Aminosäure-oxydase. Biochem. Z. 298, 150–168 (1938).

    CAS  Google Scholar 

  • Webb, D. A., and W. R. Fearon: Studies on elemental cell composition. Sci. Proc. Roy. Dublin Soc. 21, 487–504 (1937).

    CAS  Google Scholar 

  • Wehmer, C.: Versuche über die Mucorineengärung. I. Zbl. Bakter., Abt. II 14, 556–572 (1905). II. Zbl. Bakter., Abt. II 15, 8–19 (1906).

    Google Scholar 

  • Wendel, F.: Die praktische Bedeutung der Wuchsstoffe bei der Gewinnung von Bäckerhefe aus Melasse. Z. Spiritusind. 63, 269–270 (1940).

    CAS  Google Scholar 

  • White, J.: Yeast Technology. London: Chapman & Hall 1954.

    Google Scholar 

  • White, J., and D. J. Munns: Quantitative studies on the importance of nutrilites in yeast production. Amer. Brewer 86, Nr 5, 29–83 (1953a).

    Google Scholar 

  • White, J., and D. J. Munns: Occurence and estimation of vitamins essentiel to the growth of yeasts. Amer. Brewer 86, Nr 25, 29–33, 83 (1953b). Zit. nach Brauwiss. 1953, 221.

    Google Scholar 

  • Kohlenstoffassimilation beim Hefewachstum. Amer. Brewer 1954, 35–36, 41–46, 73, 94. Zit. nach Branntweinwirtschaft 1955, 128–129.

    Google Scholar 

  • Wikén, T., u. O. Richard: Der Einfluß minimaler Mengen Sauerstoff auf die Vergärung der Glucose durch die Kulturweinhefe „Fendant“. Experientia (Basel) 9, 417–425 (1953).

    Google Scholar 

  • Über die Kohlendioxydproduktion der „Fendant“-Weinhefe in Stickstoff bzw. Argon, Luft und Stickstoff bzw. Argon-Luft-Gemisch. Antonie van Leeuwenhoek 20, 386–405 (1954).

    Google Scholar 

  • Wikén, T., H. Somm u. F. Sulzer: Untersuchungen über den Wirkstoffbedarf einiger Kulturweinhefen. Arch. Mikrobiol. 20, 201–220 (1954).

    PubMed  Google Scholar 

  • Wildiers, E.: Une nouvelle substance indispensable au développement de la levure. Cellule 18, 313 (1901).

    Google Scholar 

  • Wiles, A. E.: Identification and importance of yeasts occurring in brewery. J. Inst. Brewing 59, 265–284 (1953).

    Google Scholar 

  • Wiles: European Brewery Convention. Proceedings of the Congress Brighton 1951.

    Google Scholar 

  • Windisch, F.: Die Bedeutung des Sauerstoffs für die Hefe und ihre biochemischen Wirkungen.

    Google Scholar 

  • Windisch, F.: Biochem. Z. 246, 332–382 (1932).

    CAS  Google Scholar 

  • Windisch, F.: Über den Energiestoffwechsel in der Hefezelle. Erg. Enzymforsch. 2, 169–177 (1933).

    CAS  Google Scholar 

  • Windisch, F., H. Haehn u. W. Heumann: Qualitative Differenzierung des Atmungs- und Spaltungsstoffwechsels auf Grund des mycetischen Pro-liferationstestes. Arch. Geschwulstforsch. 6, 64–77 (1953a).

    PubMed  CAS  Google Scholar 

  • Windisch, F., H. Haehn u. W. Heumann: Irreversibilität der aeroben Spaltkraft bei optimaler Sauerstoffversorgung der Zelle. Z. Naturforsch. 8b, 465–472 (1953b).

    Google Scholar 

  • Windisch, F., W. Heumann u. Chr. Goslich: Bestimmung der cytostatischen Dissimilationswerte nach anoxybiotischer bzw. antimetabolitischer Sistierung des Zellwachstums. Biol. Zbl. 74, 646–662 (1955).

    Google Scholar 

  • Windisch, F., W. Nordheim u. W. Hetjmann: Respiratorische Gebundenheit der über die Zellmembran erfolgenden protoplasmatischen Phosphatversorgung. Hoppe-Seylers Z. 303, 153–160 (1956).

    CAS  Google Scholar 

  • Windisch, F., D. Stierand u. H. Haehn: Über den Nachweis der Zellphosphate und die Ünspezifität der bisher gebräuchlichen Methoden zur histochemischen Lokalisierung der Ribonukleotide. Protoplasma 42, 346–363 (1953).

    Google Scholar 

  • Windisch, S.: Einiges über die technischen Wuchshefen. Brauwelt 1948, 203–207.

    Google Scholar 

  • Über das Nachlassen der Hefe. Brauerei 1952a, 311–312.

    Google Scholar 

  • Das Problem des Zellkerns bei Hefen. Brauerei 1952b, 251–253.

    Google Scholar 

  • Über die Gäreigenschaften der Hefe. Brauerei 1953a, 504–506.

    Google Scholar 

  • Windisch, S.: Die Eigenschaften der drei für den gärungsgewerblichen Betrieb wichtigsten Hefearten und ihre Erkennung bei der mikrobiologischen Betriebskontrolle. Brauerei. Wiss. Beil. 6, 25–28 (1953b).

    Google Scholar 

  • Windisch, S., u. C. Enders: Über Plasmolyse, Zytorrhyse, Autolyse der Hefen und ihre Anwendung bei technischen Prozessen. Brauwelt 1946, 151–220.

    Google Scholar 

  • Winge, Ö.: On haplophase and diplophase in some Saccharomycetes. C. r. Trav. Labor. Carlsberg, Sér. physiol. 21, 77–108 (1935).

    Google Scholar 

  • Winge, Ö., u. C. Roberts: Die Gene der Maltose- und Raffinosevergärung in einem obergärigen Saccharomyces cerevisiae-Stamm. C. r. Trav. Labor. Carlsberg 25, 241–251 (1953).

    CAS  Google Scholar 

  • Winge, Ö., u. C. Roberts: Causes of deviations form 2:2 segregation in the tetrads of monohybrid yeasts. C. r. Trav. Labor. Carlsberg, Sér. physiol. 25, 285–326 (1954).

    CAS  Google Scholar 

  • Winge, Ö., u. C. Roberts: Identification of the maltose-genes in some american haploid and european diploid yeasts. C. r. Trav. Labor. Carlsberg, Sér. physiol. 25, 331–340 (1955).

    CAS  Google Scholar 

  • Winzler, R. J., Dean Burk and Vincent du Vigneaud: Biotin in fermentation, respiration, growth and nitrogen. Arch. of Biochem. 5, 25–47 (1944).

    CAS  Google Scholar 

  • Wright, L. D., H. R. Skeggs and E. L. Cresson: The elucidation of biocytin. Science (Lancaster, Pa.) 114, 635–636 (1952).

    Google Scholar 

  • Yemm, E. W., and B. F. Folkes: Regulation of respiration during the assimilation of nitrogen in Torulopsis utilis. Biochemic. J. 57, 495–508 (1954). Zit. nach Brauerei, Wiss. Beil. 1955, 43.

    CAS  Google Scholar 

  • Andersson, B.: Über Co-Zymaseaktivierung einiger Dehydrogenasen. Hoppe-Seylers Z. 217, 186–190 (1933).

    CAS  Google Scholar 

  • Die Co-Zymase als Co-Enzym bei enzymatischen Dehydrierungen. Hoppe-Seylers Z. 225, 57–68 (1934).

    Google Scholar 

  • Auhagen, E.: Co-Carboxylase, ein neues Co-Enzym der alkoholischen Gärung. Hoppe-Seylers Z. 204, 149–167 (1932a).

    CAS  Google Scholar 

  • Über Co-Carboxylase. II. Mitt. Hoppe-Seylers Z. 209, 20–26 (1932b).

    Google Scholar 

  • Bailey, K., and E. C. Webb: Purification of yeast hexokinase and its reaction with β, β’-dichlorodiethyl sulphide. Biochemic. J. 42, 60–68 (1948).

    CAS  Google Scholar 

  • Barron Guzman, E. S., and S. Levine: Oxidation of alcohols by yeast alcohol dehydrogenase and by the living cell. The thiol groups of the enzyme. Arch. of Biochem. a. Biophysics 41, 175–187 (1952).

    CAS  Google Scholar 

  • Barthel, C., H. v. Euler u. K. Myrbäck: Gärung und Wachstum in getrockneten Hefezellen. II. Hoppe-Seylers Z. 183, 237–243 (1929).

    CAS  Google Scholar 

  • Berg, R. L., and W. W. Westerfeld: The mechanism of ketol formation from pyruvate and aldehydes. J. of Biol. Chem. 152, 113–118 (1944).

    CAS  Google Scholar 

  • Berger, L., M. W. Slein, S. P. Colowick and C. F. Cori: Isolation of hexokinase from baker’s yeast. J. Gen. Physiol. 29, 379–391 (1946).

    CAS  Google Scholar 

  • Bernfeld, P., u. A. Meutémédian: Sur les enzymes amylolytiques VI. L’isophosphorylase. Helvet. chim. Acta 31, 1724–1735 (1948 a).

    PubMed  CAS  Google Scholar 

  • Sur les enzymes amylolytiques VII. L’isophosphorylase et la formation de polysaccharides ramifiés. Helvet. chim. Acta 31, 1735–1739 (1948 b).

    PubMed  CAS  Google Scholar 

  • Black, S.: Yeast aldehyde dehydrogenase. Arch. of Biochem. a. Biophysics 34, 86–97, (1951).

    CAS  Google Scholar 

  • Bonnichsen, R. K.: Crystalline animal alcohol dehydrogenase II. Acta chem. scand. (Copenh.) 4, 715–716(1950).

    CAS  Google Scholar 

  • Bonnichsen, R.K., and G. Lundgren: Comparison of the alcohol dehydrogenase (ADH) and the Widmark procedures in forensic chemistry for determining alcohol. Acta Pharmacol, et Toxicol. 13, 256–266 (1957).

    CAS  Google Scholar 

  • Bonnichsen, R.K., and H. Theorell: An enzymatic method for the microdetermination of ethanol. Scand. J. Clin. a. Labor. Invest. 3, 58–62 (1951).

    CAS  Google Scholar 

  • Bonnichsen, R. K., and A. M. Wassén: Crystalline alcohol dehydrogenase from horse liver. Arch. of Biochem. 18, 361–363 (1948).

    CAS  Google Scholar 

  • Boyer, P. D.: Spectrophotometry study of the reaction of protein sulfhydryl groups with organic mercurials. J. Amer. Chem. Soc. 76, 4331–4337 (1954).

    CAS  Google Scholar 

  • Brink, N. G., R. K. Bonnichsen and H. Theorell: A modified method for the enzymatic microdetermination of ethanol. Acta pharmacol. (Københ.) 10, 223–236 (1954).

    CAS  Google Scholar 

  • Brown, D. H.: The phosphorylation of d-(+)-glucosamine by crystalline yeast hexokinase. Biochim. et Biophysica Acta 7, 487–493 (1951).

    CAS  Google Scholar 

  • Brown, D. H.: Action of phosphoglucomutase on D-glucosamine-6-phosphate. J. of Biol. Chem. 204, 877–889 (1953).

    CAS  Google Scholar 

  • Büchner, E.: Alkoholische Gärung ohne Hefezellen. Ber. dtsch. chem. Ges. 30, 117–124 (1897).

    Google Scholar 

  • Bücher, Th.: Über ein phosphatübertragendes Gärungsferment. Biochim. et Biophysica Acta 1, 292–314 (1947).

    Google Scholar 

  • Bücher, Th., u. H. Redetzki: Eine spezifische photometrische Bestimmung von Äthylalkohol auf fermentativem Wege. Klin. Wschr. 1951, 615–616.

    Google Scholar 

  • Caputto, R., L. F. Leloir, R. E. Trucco, C. E. Cardini and A. Paladine: A coenzyme for phosphoglucomutase. Arch. of Biochem. 18, 201–203 (1948).

    CAS  Google Scholar 

  • Caputto, R., L. F. Leloir, R. E. Trucco, C. E. Cardini and A. Paladine: The enzymatic transformation of galactose into glucose derivatives. J. of Biol. Chem. 179, 497–498 (1949).

    CAS  Google Scholar 

  • Cardini, C. E.: Activation of plant phosphoglucomutase by glucose-1, 6-diphosphate. Enzy-mologia (Den Haag) 15, 44–48 (1952/53).

    Google Scholar 

  • Cardini, C. E., A. C. Paladini, R. Caputto, L. F. Leloir and R. E. Trucco: The isolation of the coenzyme of phosphoglucomutase. Arch. of Biochem. 22, 87–100 (1949).

    CAS  Google Scholar 

  • Carson, S. F., S. Ruben, M. D. Kamen and J. W. Foster: Radioactive carbon as an indicator of carbon dioxide utilization. VI. On the possibility of carbon dioxide reduction via the carboxylase system. Proc. Nat. Acad. Sci. U.S.A. 27, 475–480 (1941).

    CAS  Google Scholar 

  • Castor, J. G. B., and J. F. Guymon: On the mechanism of formation of higher alcohols during alcohol fermentation, Science (Lancaster. Pa.) 115, 147–149 (1952).

    CAS  Google Scholar 

  • Colowick, S. P., and H. M. Kalckar: The rôle of myokinase in transphosphory-lations. I. The enzymatic phosphorylation of hexoses by adenyl pyrophosphate. J. of Biol. Chem. 148, 117–126 (1943).

    CAS  Google Scholar 

  • Connstein, W., u. K. Lüdecke: Über Glyceringewinnung durch Gärung. Ber. dtsch. chem. Ges. 52, 1385–1391 (1919).

    Google Scholar 

  • Conway, E. J., and E. O’Mal-ley: The effect of carbonic anhydrase on the action of yeast carboxylase. Biochemic. J. 54, 154–163 (1953).

    CAS  Google Scholar 

  • Cori, C. F., S. P. Colowick and G. T. Cori: The isolation and synthesis of glucose-1-phosphoric acid. J. of Biol. Chem. 121, 465–477 (1937).

    CAS  Google Scholar 

  • Cori, C. F., and G. T. Cori: Mechanism of formation of hexosemonophosphate in muscle and isolation of a new phosphate ester. Proc. Soc. Exper. Biol. a. Med. 34, 702–705 (1936).

    Google Scholar 

  • Cori, G. T., S. P. Colowick and C. F. Cori: The formation of glucose-l-phosphoric acid in extracts of mammalian tissues and of yeast. J. of Biol. Chem. 123, 375–380 (1938 a).

    CAS  Google Scholar 

  • Cori, G. T., S. P. Colowick and C. F. Cori: The enzymatic conversion of glucose-1-phosphoric ester to 6-ester in tissue extracts. J. of Biol. Chem. 124, 543–555 (1938b).

    CAS  Google Scholar 

  • Cori, G. T., and C. F. Cori: Formation of glucose-l-phosphoric acid in muscle extracts. Proc. Soc. Exper. Biol. a. Med. 36, 119–122 (1937).

    Google Scholar 

  • Cori, G. T., and J. Larner: Amylo-l, 6-glucosidase. Federat. Proc. 9, 163 (1950).

    Google Scholar 

  • Cramer, F. B., and G. E. Woodward: 2-Desoxy-D-glucose as an antagonist of glucose in yeast fermentation. J. Franklin Inst. 253, 354–360 (1952).

    CAS  Google Scholar 

  • Dandliker, W. B., and J. B. Fox jr.: Light scattering of D-glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 214, 275–283 (1955).

    CAS  Google Scholar 

  • Dirscherl, W.: Die Bildung von Acetoin aus Acetaldehyd und aus Brenztraubensäure durch Bestrahlung mit ultraviolettem Licht. Ein Beitrag zum Problem der „Carboligase“. 2. Mitteilung über Acyloine. Hoppe-Seylers Z. 188, 225–246 (1930).

    Google Scholar 

  • Dirscherl, W.: Mechanismus und Kinetik der Acyloinbildung bei der Gärung. 3. Mitteilung über Acyloine. Hoppe-Seylers Z. 201, 47–77 (1931).

    CAS  Google Scholar 

  • Dirscherl, W., u. E. Braun: Zur Kenntnis des Acetoins und seiner Dimeren. 1. Mitteilung über Acyloine. Ber. dtsch. chem. Ges. 63, 416–422 (1930).

    Google Scholar 

  • Dirscherl, W., u. H. Nahm: Nichtfermenta-tive Decarboxylierung der Brenztraubensäure und Acetoinbildung. 9. Mitteilung über Acyloine. Hoppe-Seylers Z. 264, 41–56 (1940).

    CAS  Google Scholar 

  • Dixon, M.: Aldehyde mutase. Erg. Enzymforsch. 8, 217–246 (1939).

    CAS  Google Scholar 

  • Doering, W.E. ., and T. C. Aschner: Mechanism of alkoxide-catalyzed carbinol-carbonyl equilibrium. J. Amer. Chem. Soc. 75, 393–397 (1953).

    CAS  Google Scholar 

  • Doudoroff, M., N. O. Kaplan and W. Z. Hassid: Phosphorolysis and synthesis of sucrose with a bacterial preparation. J. of Biol. Chem. 148, 67–75 (1943).

    CAS  Google Scholar 

  • Drabkin, D. L., and O. Meyerhof: A spectrophotometric study of the oxidation and phosphorylation of d-gly-ceraldehyde 3-phosphate. J. of Biol. Chem. 157, 571–583 (1945).

    CAS  Google Scholar 

  • Edelhoch, H., V. W. Rodwell and S. Grisolia: The molecular properties of yeast and muscle phosphoglyceric acid mutase. J. of Biol. Chem. 228, 891–903 (1957).

    CAS  Google Scholar 

  • Ehrlich, F.: Über die Entstehung des Fuselöles. Z. Ver. Rübenzuckerindustr, 1905, 539–567.

    Google Scholar 

  • Ehrlich, F.: Zur Frage der Fuselölbildung der Hefe. Ber. dtsch. chem. Ges. 39, 4072–4075 (1906).

    Google Scholar 

  • Ehrlich, F.: Die chemischen Vorgänge bei der Hefegärung. Biochem. Z. 2, 52–80 (1907 a).

    CAS  Google Scholar 

  • Ehrlich, F.: Über die Bedingungen der Fuselölbildung und über ihren Zusammenhang mit dem Eiweißaufbau der Hefe. Ber. dtsch. chem. Ges. 40, 1027–1047 (1907b).

    CAS  Google Scholar 

  • Ehrlich, F.: Über die Entstehung der Bernsteinsäure bei der alkoholischen Gärung. Biochem. Z. 18, 391–423 (1909).

    CAS  Google Scholar 

  • Elander, M., and K. Myrbäck: Isolation of crystalline trehalose after fermentation of glucose by maceration juice. Arch. of Biochem. 21, 249–255 (1949).

    CAS  Google Scholar 

  • Embden, G., H. J. Deuticke u. G. Kraft: Über die intermediären Vorgänge bei der Glycolyse in der Muskulatur. Klin. Wschr. 1933, 213–215.

    Google Scholar 

  • Euler, H. v., u. E. Adler: Über die Komponenten der Dehydrase-systeme. VI. Dehydrierung von Hexosen unter Mitwirkung von Adenosintriphosphorsäure. Hoppe-Seylers Z. 235, 122–153 (1935).

    Google Scholar 

  • Fischer, H. F., E. E. Conn, B. Vennesland and F. H. Westheimer: The enzymatic transfer of hydrogen. I. The reaction catalyzed by alcohol dehydrogenase. J. of Biol. Chem. 202, 687–697 (1953).

    Google Scholar 

  • Fitting, C., and H. W. Scherp: Observations on a strain of Neisseria meningitidis in the presence of glucose and maltose. I. Growth studies. J. Bacter. 61, 203–214 (1951).

    CAS  Google Scholar 

  • Fitting, C., and H. W. Scherp: Observations on a strain of Neisseria meningitidis in the presence of glucose and maltose. II. Studies with washed cells. J. Bacter. 63, 545–560 (1952 a).

    CAS  Google Scholar 

  • Fitting, C., and H. W. Scherp: Observations on a strain of Neisseria meningitidis in the presence of glucose and maltose. III. Cell-free extracts and the phosphorolysis of maltose. J. Bacter. 64, 287–298 (1952b).

    CAS  Google Scholar 

  • Fukui, S., and K. Mohara: Relation between glycerol fermentation and yeast cocarboxylase. II. Formation of glycerol by use of sulphathiazole as an antivitamin B1. J. Fermentation Technol. Japan 29, 198–201 (1951).

    CAS  Google Scholar 

  • Garner, R. L., and G. F. Grannis: Phosphogalactoisomerase, Science (Lancaster. Pa.) 114, 501–502 (1951).

    CAS  Google Scholar 

  • Gay-Lussac, L. J.: Sur l’analyse de l’alcool et de l’éther sulfurique, et sur les produits de la fermentation. Ann. Chim. et Phys. 95, 311–318 (1815).

    Google Scholar 

  • Genevois, L.: Acide succinique et glycérine dans de fermentation alcoolique. Bull. Soc. Chim. biol. Paris 18, 295–300 (1936).

    CAS  Google Scholar 

  • Genevois, L.: Essais de bilans de la fermentation alcoolique due aux cellules de levure. Biochim. et Biophysica Acta 4, 179–192 (1950).

    CAS  Google Scholar 

  • Genevois, L., et M. Lafon: Transformation de l’acétate marqué par la levure en fermentation anaérobie: Formation d’acide succinique, d’isopropanol, d’alcool amylique et de stérols. Bull. Soc. Chim. Biol. Paris. 38, 89–97 (1956).

    PubMed  CAS  Google Scholar 

  • Gilvarg, C.: Utilization of glucose-1-C14 by yeast. J. of Biol. Chem. 199, 57–64 (1952).

    CAS  Google Scholar 

  • Goepfert, G. J., and F. F. Nord: On the mechanism of enzyme action. Part. 20. Chemistry of dehydrogenations with and without training of Fusarium Uni Bolley (FIB). Arch. of Biochem. 1, 289–301 (1943).

    Google Scholar 

  • Gottschalk, A.: d-Fructo-pyranose—a sugar unfermentable by yeast. A.stral. J. Exper. Biol. a. Med. Sci. 21, 133–137 (1943).

    Google Scholar 

  • Grant, P. T., and C. Long: The enzymic phosphorylation of D-glucosamine. Biochemic. J. 50, xx (1952).

    CAS  Google Scholar 

  • Green, D.E. a-Glycerophosphate dehydrogenase. Biochemic. J. London 30, 629–644 (1936).

    CAS  Google Scholar 

  • Green, D. E., D. Herbert, and V. Subrahmanyan: On the isolation and properties of carboxylase. J. of Biol. Chem. 135, 795–796 (1940).

    CAS  Google Scholar 

  • Green, D. E., D. Herbert, and V. Subrahmanyan: Carboxylase. J. of Biol. Chem. 138, 327–339 (1941).

    CAS  Google Scholar 

  • Grisolia, S., and B. K. Joyce: Enzymatic synthesis and isolation of 2, 3-diphosphoglycerate. J. of Biol. Chem. 233, 18–19 (1958).

    CAS  Google Scholar 

  • Gross, N. H., and C. H. Werkman: Isotopic composition of acetylmethylcarbinol formed by yeast juice. Arch. of Biochem. 15, 125–131 (1947).

    CAS  Google Scholar 

  • Guarino, A. J., and H. Z. Sable: Studies on phosphomutases. II. Phosphoribomutase and phosphoglucomutase. J. of Biol. Chem. 215, 515–526 (1955).

    CAS  Google Scholar 

  • Halsey, Y. D.: The reaction of methyl mercury nitrate with the sulfhydryl groups of yeast glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 214, 589–593 (1955).

    CAS  Google Scholar 

  • Hanes, C. S.: The breakdown and synthesis of starch by an enzyme system from pea seeds. Proc. Roy. Soc. Lond., Ser. B 128, 421–450 (1940).

    CAS  Google Scholar 

  • Harden, A.: Alcoholic fermentation, 4. Aufl. London, New York u. Toronto: Longmans, Green & Co. 1932.

    Google Scholar 

  • Harden, A., and R. Robison: A new phosphoric ester obtained by the aid of yeast-juice. Proc. Chem. Soc. 30, 16–17 (1914).

    CAS  Google Scholar 

  • Harden, A., and W. J. Young: The alcoholic fermentation of yeast-juice. J. of Physiol. 32, iii (1905).

    Google Scholar 

  • Harden, A., and W. J. Young: The alcoholic ferment of yeast-juice. Part II. The coferment of yeast-juice. Proc. Roy. Soc. Lond. Ser. B 78, 369–375 (1906).

    Google Scholar 

  • Harpur, R. P., and J. H. Quastel: Phosphorylation of d-glucosamine by brain extracts. Nature (Lond.) 164, 693–694 (1949).

    CAS  Google Scholar 

  • Hassid, W. Z., M. Doudoroff and H. A. Barker: Enzymatically synthesized crystalline sucrose. J. Amer. Chem. Soc. 66, 1416–1419 (1944).

    CAS  Google Scholar 

  • Hayes jr., J. E., and S. F. Velick: Yeast alcohol dehydrogenase: molecular weight, coenzyme binding, and reaction equilibria. J. of Biol. Chem. 207, 225–244 (1954).

    Google Scholar 

  • Hehre, E. J., and D. M. Hamilton: Bacterial synthesis of an amylopectin-like polysaccharide from sucrose. J. of Biol. Chem. 166, 777–778 (1946).

    CAS  Google Scholar 

  • Hobson, P. N., W. J. Whelan and S. Peat: A “de-branching“ enzyme in bean and potato. Biochemic. J. 47, xxxix (1950).

    CAS  Google Scholar 

  • Hoch, F. L., R. J. P. Williams and B. L. Vallee: The role of zinc in alcohol dehydrogenases. II. The kinetics of the instantaneous reversible inhibition of yeast alcohol dehydrogenase by 1, 10-phenanthroline. J. of Biol. Chem. 232, 453–464 (1958).

    CAS  Google Scholar 

  • Hölzer, H., u. H. W. Goedde: Oxydation von α-Ketosäuren und einigen Aldehyden mit Pyruvat-Decarboxylase aus Hefe. Biochem. Z. 329, 192–208 (1957).

    PubMed  Google Scholar 

  • Holzer, H., G. Schultz, C. Villar-Palasi, u. J. Jüntgen-Sell: Isolierung der Hefencarboxylase und Untersuchungen über die Aktivität des Enzyms in lebenden Zellen. Biochem. Z. 327, 331–344 (1956).

    PubMed  CAS  Google Scholar 

  • Hopkins, R. H., and R. H. Roberts: The kinetics of alcoholic fermentation of sugars by brewer’s yeast. IV. Specificity. The rates of fermentation of a- and β-glucose. Biochemic. J. 30, 76–83 (1936).

    CAS  Google Scholar 

  • Hudson, M. T., and G. E. Woodward: Glucosone. II. Inhibition of yeast metabolism, yeast hexokinase und tissue glycolysis. Biochim. et Biophysica Acta 28, 127–133 (1958).

    CAS  Google Scholar 

  • Isbell, H. S., und W. W. Pigman: Pyranose-furanose interconversions with reference to the mutarotations of galactose, levulose, lactulose, and turanose. J. Res. Nat. Bur. Stand. 20, 773–798 (1938).

    CAS  Google Scholar 

  • Kagan, B. O., S. N. Ljatker und E. M. Tsvasman: Phosphorylysis of sucrose by the cultures of Leuconostoc mesenterioides. Biokhimija 7, 93–108 (1942); Ref. Chem. Abstr. 37, 47606 (1943).

    CAS  Google Scholar 

  • Katz, J., and W. Z. Hassid: Arsenolysis of amylose and amylopectin. Arch. of Biochem. 30, 272–281 (1951).

    CAS  Google Scholar 

  • Katz, J., W. Z. Hassid and M. Dou-doroff: Arsenolysis and phosphorolysis of the amylose and amylopectin fractions of starch. Nature (Lond.) 161, 96 (1948).

    CAS  Google Scholar 

  • Kleinzeller, A.: The formation of succinic acid in yeast. Biochemic. J. 35, 495–501 (1941).

    CAS  Google Scholar 

  • Klenow, H., R. Emberland and P. Plesner: On the interaction between glucose-1, 6-diphosphate and ribose-1-phosphate. Acta chem. scand. (Copenh.) 8, 1103–1104 (1954).

    Google Scholar 

  • Klenow, H., and B. Larsen: The action of phos-phoglucomutase preparations on ribose-1-phosphate. Arch. of Biochem. a. Biophysics 37, 488–490 (1952).

    CAS  Google Scholar 

  • Kluyver, A. J., u. W. J. Hoppenbrouwers: Ein merkwürdiges Gärungs-bakterium: Lindners Termobakterium mobile. Arch. Mikrobiol. 2, 245–260 (1931).

    Google Scholar 

  • Kobel, M., und E. Hackenthal: Die modifizierten Gärformen. In Bamann-Myrbäck (Her-ausgeb.), Die Methoden der Fermentforschung, S. 2173–2196. Leipzig: Georg Thieme 1941a.

    Google Scholar 

  • Kobel, M., und E. Hackenthal: Phytochemische Reduktion (Reduktion durch gärende Hefe). In Bamann-Myrbäck (Herausgeb.), Die Methoden der Fermentforschung, S. 2197–2205. Leipzig: Georg Thieme 1941b.

    Google Scholar 

  • Koshland jr., D. E., and F. H. Westheimer: Mechanism of alcoholic fermentation. The fermentation of glucose-1-C14. J. Amer. Chem. Soc. 72, 3383–3388 (1950).

    Google Scholar 

  • Kosterlitz, H. W.: The fermentation of galactose and galactose-1-phosphate. Biochemic. J. 37, 322–326 (1943).

    CAS  Google Scholar 

  • Krebs, E. G., and R. R. Wright: The use of antibody to inhibit a particular step in a multienzyme system. J. of Biol. Chem. 192, 555–559 (1951).

    CAS  Google Scholar 

  • Krebs, H. A., and F. J. W. Roughton: Carbonic anhydrase as a tool in studying the mechanism of reactions involving H2CO3, CO2 orHCO3 -. Biochemic. J. 43, 550–555 (1948).

    CAS  Google Scholar 

  • Krimsky, I., and E. Racker: Glutathione, a prosthetic group of glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 198, 721–729 (1952).

    CAS  Google Scholar 

  • Kubowitz, F., u. W. Lüttgens: Zusammensetzung, Spaltung und Resynthese der Carboxylase. Biochem. Z. 307, 170–172 (1940/41).

    Google Scholar 

  • Kunitz, M., and M. R. MacDonald: Crystalline hexokinase (heterophosphatese). Method of isolation and properties. J. Gen. Physiol. 29, 393–412 (1946).

    CAS  Google Scholar 

  • Lardy, H. A., and J. A. Ziegler: The enzymatic synthesis of phosphopyruvate from pyruvate. J. of Biol. Chem. 159, 343–351 (1945).

    CAS  Google Scholar 

  • Lehmann, J.: Aktivierung von Alkohol-dehydrogenase durch Co-Enzym. Biochem. Z. 272, 95–103 (1934).

    CAS  Google Scholar 

  • Leloir, L. F.: The metabolism of hexosephosphates. In W. D. McElroy and B. Glass: Phosphorus metabolism, a symposium on the role of phosphorus in metabolism of plants and animals, Bd. 1, S. 67–93. Baltimore: Johns Hopkins Press 1951a.

    Google Scholar 

  • Leloir, L. F.: The enzymatic transformation of uridine diphos-phateglucose into a galactose derivative. Arch. of Biochem. a. Biophysics 33, 186–190 (1951b).

    CAS  Google Scholar 

  • Leloir, L. F.: Enzymatic isomerisation and related processes. Adv. Enzymol. 14, 193–218 (1953).

    CAS  Google Scholar 

  • Leloir, L. F., and E. Cabib: The enzymic synthesis of trehalose phosphate. J. Amer. Chem. Soc. 75, 5445–5446 (1953).

    CAS  Google Scholar 

  • Leloir, L. F., and C. E. Cardini: The biosynthesis of sucrose. J. Amer. Chem. Soc. 75, 6084 (1953).

    CAS  Google Scholar 

  • Leloir, L. F., R. E. Trucco, C.E. Cardini, A. Paladini and R. Caputto: The coenzyme of phosphoglucomutase. Arch. of Biochem. 19, 339–340 (1948).

    CAS  Google Scholar 

  • Leuthardt, F., et H. Nielsen: Phosphorylation biologique de la thiamine. Helvet. chim. Acta 35, 1196–1209 (1952).

    CAS  Google Scholar 

  • Levy, H. R., and B. Vennesland: The stereospecificity of enzymatic hydrogen transfer from diphosphopyridine nucleotide. J. of Biol. Chem. 228, 85–96 (1957).

    CAS  Google Scholar 

  • Ling, K.-H., and H. A. Lardy: Uridine and inosine-triphos-phates as phosphate donors for phosphohexokinase. J. Amer. Chem. Soc. 76, 2842–2843 (1954).

    CAS  Google Scholar 

  • Lintner, C. J., u. H. J. v. Liebig: Über die Reduktion des Furfurols durch Hefe bei der alkoholischen Gärung. Hoppe-Seylers Z. 72, 449–454 (1911).

    CAS  Google Scholar 

  • Loewus, F. A., H. R. Levy and B. Vennesland: The enzymatic transfer of hydrogen. VI. The reaction catalyzed by D-glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 223, 589–597 (1956).

    Google Scholar 

  • Loewus, F. A., B. Vennesland and D. L. Harris: The site of enzymatic hydrogen transfer in diphosphopyridine nucleotide. J. Amer. Chem. Soc. 77, 3391–3393 (1955).

    CAS  Google Scholar 

  • Lohmann, K.: Über Phosphorylierung und Dephosphorylierung. Bildung der natürlichen Hexosemonophosphorsäure aus ihren Komponenten. Biochem. Z. 262, 137–151 (1933).

    CAS  Google Scholar 

  • Lohmann, K., u. O. Meyerhof: Über die enzymatische Umwandlung von Phosphoglycerinsäure in Brenztraubensäure und Phosphorsäure. Biochem. Z. 273, 60–72 (1934).

    CAS  Google Scholar 

  • Lohmann, K., u. Ph. Schuster: Untersuchungen über die Cocarboxylase. Biochem. Z. 294, 188–214 (1937).

    CAS  Google Scholar 

  • Lutwak-Mann, C., u. T. Mann: Über die Verkettung der chemischen Umsetzungen in der alkoholischen Gärung. I. Mitteilung. Bildung und Spaltung der Adenosin-triphosphorsäure und deren Zusammenhang mit den Vorgängen der Zuckerspaltung. Biochem. Z. 281, 140–156 (1935).

    CAS  Google Scholar 

  • Magnus-Levy, A.: Ueber den Aufbau der hohen Fettsäuren aus Zucker. Arch. Anat. u. Physiol., Physiol. Abt. 1902, 365–369.

    Google Scholar 

  • Malmström, B. G.: The purification of yeast enolase by zone electrophoresis and ion-exchange chromatography, and the existence of several active forms of the enzyme. Arch. of Biochem. a. Biophysics 70, 58–69 (1957).

    Google Scholar 

  • Maxwell, E. S.: Diphosphopyridine nucleotide, a cofactor for galacto-waldenase. J. Amer. Chem. Soc. 78, 1074 (1956).

    CAS  Google Scholar 

  • Melchior, N. C., and J.B. Melchior: The role of complex metal ions in the yeast hexokinase reaction. J. of Biol. Chem. 231, 609–623 (1958).

    CAS  Google Scholar 

  • Meyerhof, O.: Über die enzy-matische Milchsäurebildung im Muskelextrakt. III. Mitteilung: Die Milchsäurebildung aus den gärfähigen Hexosen. Biochem. Z. 183, 176–215 (1927).

    CAS  Google Scholar 

  • Meyerhof, O.: Über die Wirkungsweise der Hexokinase. Naturwiss. 23, 850–851 (1935 a).

    CAS  Google Scholar 

  • Meyerhof, O.: Über die Intermediärvorgänge bei der biologischen Kohlenhydratspaltung. Erg. Enzymforsch. 4, 208–229 (1935b).

    CAS  Google Scholar 

  • Meyerhof, O.: The origin of the reaction of Harden and Young in cell-free alcoholic fermentation. J. of Biol. Chem. 157, 105–119 (1945).

    CAS  Google Scholar 

  • Meyerhof, O., u. W. Kiessling: Über ein neues phosphoryliertes Intermediärprodukt der Kohlenhydratspaltung und sein enzymatisches Gleichgewicht. Naturwiss. 22, 838 (1934).

    CAS  Google Scholar 

  • Meyerhof, O.: Über die Isolierung der isomeren Phosphoglycerinsäuren (Glycerinsäure-2-Phosphorsäure und Glycerinsäure-3-Phosphorsäure) aus Gäransätzen und ihr enzymatisches Gleichgewicht. Biochem. Z. 276, 239–253 (1935 a).

    CAS  Google Scholar 

  • Meyerhof, O.: Über die enzymatische Umwandlung von Glycerin-aldehydphosphorsäure in Dioxyacetonphosphorsäure. Biochem. Z. 279, 40–48 (1935b).

    CAS  Google Scholar 

  • Meyerhof, O.: Über den enzymatischen Umsatz der synthetischen Phosphobrenztraubensäure (enol-Brenz-traubensäure:phosphorsäure). Biochem. Z. 280, 99–109 (1935c).

    CAS  Google Scholar 

  • Meyerhof, O., u. K. Lohmann: Über die enzymatische Gleichgewichtsreaktion zwischen Hexosediphosphorsäure und Dioxyacetonphosphorsäure. Naturwiss. 22, 220 (1934a).

    CAS  Google Scholar 

  • Meyerhof, O.: Über die enzymatische Gleichgewichtsreaktion zwischen Hexosediphosphorsäure und Dioxyacetonphosphorsäure. Biochem. Z. 271, 89–110 (1934b).

    CAS  Google Scholar 

  • Meyerhof, O., K. Lohmann u. Ph. Schuster: Über die Aldolase, ein Kohlenstoff-verknüpfendes Ferment. I. Mitteilung: Aldolkondensation von Dioxyacetonphosphorsäure mit Acetaldehyd. Biochem. Z. 286, 301–318 (1936a).

    CAS  Google Scholar 

  • Meyerhof, O.: Über die Aldolase, ein Kohlenstoff-verknüpfendes Ferment. II. Mitteilung: Aldolkondensation von Dioxyacetonphosphorsäure mit Glycerinaldehvd. Biochem. Z. 286, 319–335 (1936b).

    CAS  Google Scholar 

  • Meyerhof, O., P. Ohlmeyer, u. W. Möhle: Über die Koppelung zwischen Oxydoreduktion und Phosphatveresterung bei der anaeroben Kohlenhydratspaltung. II. Mitteilung: Die Koppelung als Gleichgewichtsreaktion. Biochem. Z. 297, 113–133 (1938).

    CAS  Google Scholar 

  • Meyerhof, O., and P. Oesper: The mechanism of the oxidative reaction in fermentation. J. of Biol. Chem. 170, 1–22 (1947).

    CAS  Google Scholar 

  • Meyerhof, O., and P. Oesper: The enzymatic equilibria of phospho(enol)pyruvate. J. of Biol. Chem. 179, 1371–1385 (1949).

    CAS  Google Scholar 

  • Mills, G. T., E. B. Smith and A. C. Lochhead: The presence of uridine pyrophosphogalactose and uridine pyrophosphogalactose-4-epimerase in non-galactose adapted yeasts. Biochim. et Biophysica Acta 25, 521–528 (1957).

    CAS  Google Scholar 

  • Müller, D.: Alko-holdehydrase aus Hefe losgelöst. Biochem. Z. 262, 239–247 (1933).

    Google Scholar 

  • Meyerhof, O., and P. Oesper: Alkoholdehydrase aus Hefe. II. Biochem. Z. 268, 152–157 (1934).

    Google Scholar 

  • Muntz, J. A.: The rôle of potassium and ammonium ions in alcoholic fermentation. J. of Biol. Chem. 171, 653–665 (1947).

    CAS  Google Scholar 

  • Myrbäck, K.: Die Abhängigkeit der alkoholischen Gärung von der Acidität. Hoppe-Seylers Z. 139, 30–38 (1924).

    Google Scholar 

  • Myrbäck, K.: Trehalose und Trehalase. Erg. Enzymforsch. 10, 168–190 (1949).

    Google Scholar 

  • Myrbäck, K., u. G. Neumüller: Stärke und Glykogen. Enzymatische Synthese und Hydrolyse. Erg. Enzymforsch. 12, 1–88 (1951).

    Google Scholar 

  • Needham, D. M., and R. K. Pillai: The coupling of oxido-reductions and dismutations with esterification of phosphate in muscle. Biochemic. J. 31, 1837–1851 (1937).

    CAS  Google Scholar 

  • Nege-lein, E., u. H. Brömel: Über die Entstehung von Glycerin bei der Gärung. Biochem. Z. 303, 231–233 (1939/40).

    CAS  Google Scholar 

  • Negelein, E., u. H.-J. Wulff: Kristallisation des Proteins der Acetaldehydreduktase. (Kurze Mitteilung.) Biochem. Z. 289, 436–447 (1937a).

    CAS  Google Scholar 

  • Negelein, E., u. H.-J. Wulff: Dissoziationskonstanten und Reaktionsfähigkeit der Acetaldehydreduktase. (Kurze Mitteilung.) Biochem. Z. 290, 445–446 (1937 b).

    CAS  Google Scholar 

  • Negelein, E., u. H.-J. Wulff: Diphosphopyridinproteid. Alkohol, Acetaldehyd. Biochem. Z. 293, 351–389 (1937 c).

    CAS  Google Scholar 

  • Neubauer, O., u. K. Fromhertz: Über den Abbau der Aminosäuren bei der Hefegärung. Hoppe-Seylers Z. 70, 326–350 (1910/11).

    Google Scholar 

  • Neuberg, C.: Gärung und phytochemische Reduktion. Biochim. et Biophysica Acta 4, 170–178 (1950).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Färber: Über den Verlauf der alkoholischen Gärung bei alkalischer Reaktion. I. Zellfreie Gärung in alkalischen Lösungen. Biochem. Z. 78, 238–263 (1917).

    Google Scholar 

  • Neuberg, C., u. I. S. Forrest: Einfache Darstellung aktiver Zymaselösungen aus Bäckerhefe. Hoppe-Seylers Z. 295, 110–113 (1953).

    CAS  Google Scholar 

  • Neuberg, C., u. J. Hirsch: Über den Verlauf der alkoholischen Gärung bei alkalischer Reaktion. II. Gärung mit lebender Hefe in alkalischen Lösungen. Biochem. Z. 96, 175–202 (1919a).

    CAS  Google Scholar 

  • Neuberg, C., u. J. Hirsch: Wirkungsweise der Abfangmethode bei der Acetaldehyd-Glycerin-Spaltung des Zuckers. Die Korrelation von Acetaldehyd und Glycerin innerhalb der gesamten Gärführung, der zeitliche Verlauf dieser Vergärungsform und ihre gewöhnlichen Beziehungen zur alkoholischen Gärung. Biochem. Z. 98, 141–158 (1919b).

    CAS  Google Scholar 

  • Neuberg, C., u. J. Hirsch: Die dritte Vergärungsform des Zuckers. Biochem. Z. 100, 304–322 (1919c).

    CAS  Google Scholar 

  • Neuberg, C., u. J. Hirsch: Über ein Kohlenstoffketten-knüpfendes Ferment (Carboligase). Biochem. Z. 115, 282–310 (1921).

    CAS  Google Scholar 

  • Netjberg, C., J. Hirsch u. E. Reinfurth: Die drei Vergärungsformen des Zuckers, ihre Zusammenhänge und Bilanz. Biochem. Z. 105, 307–336 (1920).

    Google Scholar 

  • Netjberg, C., u. L. Karczag: Über zuckerfreie Hefegärungen. IV. Carboxylase, ein neues Enzym der Hefe. Biochem. Z. 36, 68–75 (1911a).

    Google Scholar 

  • Neuberg, C., u. J. Hirsch: Über zuckerfreie Hefegärungen. V. Zur Kenntnis der Carboxylase. Biochem. Z. 36, 76–81 (1911b).

    Google Scholar 

  • Netjberg, C., u. J. Kerb: Entsteht bei zuckerfreien Hefegärungen Äthylalkohol? Z. Gärungsphysiol. 1, 114–120 (1912).

    Google Scholar 

  • Neuberg, C., u. M. Kobel: Die vierte und fünfte Vergärungsform des Zuckers. Naturwiss. 18, 427–429 (1930).

    CAS  Google Scholar 

  • Neuberg, C., u. J. Hirsch: Über den Mechanismus des Abbaues von Zucker durch das Thermobacterium mobile Lindner. Biochem. Z. 243, 451–460 (1931).

    CAS  Google Scholar 

  • Netjberg, C., u. L. Liebermann: Zur Kenntnis der Carboligase. II. Mitt. Biochem. Z. 121, 311–325 (1921).

    Google Scholar 

  • Neuberg, C., u. H. Ohle: Zur Kenntnis der Carboligase. III. Mitteilung. Der Bau der biosynthetisch verknüpften mehrgliedrigen Kohlenstoffketten. Biochem. Z. 127, 327–339 (1922a).

    CAS  Google Scholar 

  • Neuberg, C., u. H. Ohle: Zur Kenntnis der Carboligase. IV. Mitteilung. Weitere Feststellungen über die biosynthetische Kohlenstoffkettenverknüpfung beim Gärungsvorgange. Biochem. Z. 128, 610–618 (1922b).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Reinfurth: Die Festlegung der Aldehydstufe bei der alkoholischen Gärung. Ein experimenteller Beweis der Acetaldehyd-Brenztraubensäure-theorie. Biochem. Z. 89, 365–414 (1918a).

    CAS  Google Scholar 

  • Neuberg, C., u. H. Ohle: Natürliche und erzwungene Glycerinbildung bei der alkoholischen Gärung. Biochem. Z. 92, 234–266 (1918b).

    CAS  Google Scholar 

  • Neuberg, C., u. H. Ohle: Weitere Untersuchungen über die korrelative Bildung von Acetaldehyd und Glycerin bei der Zuckerspaltung und neue Beiträge zur Theorie der alkoholischen Gärung. Ber. dtsch. chem. Ges. 52, 1677–1703 (1919).

    Google Scholar 

  • Neuberg, C., u. H. Ohle: Ein neues Abfangverfahren und seine Anwendung auf die alkoholische Gärung. Biochem. Z. 106, 281–291 (1920a).

    CAS  Google Scholar 

  • Neuberg, C., u. H. Ohle: Über den Chemismus der alkoholischen Gärung, zugleich Bemerkungen zur gleichnamigen Mitteilung von E. Zerner. Ber. dtsch. chem. Ges. 53, 462–469 (1920b).

    Google Scholar 

  • Neuberg, C., u. H. Ohle: Über die Vergärbarkeit der Brenztraubensäure unter den Bedingungen des Abfangverfahrens. (Vergärung der Pyruvinat-Sulfite durch Hefe). Ber. dtsch. chem. Ges. 53, 1039–1052 (1920c).

    Google Scholar 

  • Neuberg, C., u. E. Simon: Über chemische Vorgänge und über energetische Verhältnisse beim physiologischen Ab- und Umbau der Kohlenhydrate und ihrer Spaltungsprodukte. Erg. Enzymforsch. 2, 118–138 (1933).

    CAS  Google Scholar 

  • Nilsson, R.: Studien über den enzymatischen Kohlenhydratabbau. Ark. Kemi, Mineral, u. Geol., Ser. A 10, No 7 (1932).

    Google Scholar 

  • Nord, F. F., and S. Weiss: Yeast and mold fermentations. In J. B. Sumner u. K. Myrbäck, The Enzymes, Bd. II, S. 742–790. New York: Academic Press 1951.

    Google Scholar 

  • Nygaard, A. P., and H. Theorell: The reaction mechanism of yeast alcohol dehydrogenase (ADH), studied by overall reaction velocities. Acta chem. scand. (Copenh.) 9, 1300–1305 (1955 a).

    CAS  Google Scholar 

  • Nygaard, A. P., and H. Theorell: Dissociation constants in the yeast alcohol dehydrogenase system, calculated from overall reaction velocities. Acta chem. scand. (Copenh.) 9, 1551–1552 (1955b).

    CAS  Google Scholar 

  • Oesper, P.: The mechanism of action of glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 207, 421–429 (1954).

    CAS  Google Scholar 

  • Ogston, F. J., and D. E. Green: The mechanism of the reaction of substrates with molecular oxygen. I. Biochemic. J. 29, 1983–2004 (1935).

    CAS  Google Scholar 

  • Ohlmeyer, P., u. L. Mehmke: Neue Versuche über ein Co-Ferment der Gärung. Hoppe-Seylers Z. 272, 212–216 (1942).

    CAS  Google Scholar 

  • Ostern, P., et J.-A. Guthke: Les transformations initiales de la glycogènolyse. La fonction de Tester hexosemonophosphorique. C. r. Soc. biol. Paris 121, 282–285 (1936).

    CAS  Google Scholar 

  • Ostern, P., J.-A. Guthke u. J. Terszakowec: Über die Bildung des Hexose-monophosphorsäure-esters und dessen Umwandlung in Fructose-diphosphor-säure-ester im Muskel. Hoppe-Seylers Z. 243, 9–37 (1936).

    CAS  Google Scholar 

  • Parnas, J.-K., et T. Baranowski: Sur les phosphorylations initiales du glycogène. C. r. Soc. biol. Paris 120, 307–310 (1935).

    CAS  Google Scholar 

  • Parnas, J.-K., P. Ostern u. T. Mann: Über die Verkettung der chemischen Vorgänge im Muskel. Biochem. Z. 272, 64–70 (1934).

    CAS  Google Scholar 

  • Pasternak, V. Z., M. G. Sevag and R. E. Miller: The inhibition of yeast carboxylase by homologous antiserum. J. Bacter. 61, 189–193 (1951).

    CAS  Google Scholar 

  • Pasteur, L.: Mémoire sur la fermentation alcoolique. Ann. Chim. et Phys. [3] 58, 323–426 (1860).

    Google Scholar 

  • Peat, S., S. J. Pirt und W. J. Whelan: The enzymatic synthesis and degradation of starch. Part XV. β-Amylase and the constitution of amylose. J. Chem. Soc. (Lond.) 1952 a, 705–713.

    Google Scholar 

  • The enzymic synthesis and degradation of starch. Part XVI. The purification and properties of the β-amy-lase of soya bean. J. Chem. Soc. (Lond.) 1952b, 714–722.

    Google Scholar 

  • Peat, S., G. J. Thomas and W. J. Whelan: The enzymic synthesis and degradation of starch. Part XVII. Z-enzyme. J. Chem. Soc. (Lond.) 1952, 722–733.

    Google Scholar 

  • Peat, S., W. J. Whelan and S. J. Pirt: The amylolytic enzymes of soya bean. Nature (Lond.) 164, 499–500 (1949).

    CAS  Google Scholar 

  • Pizer, L. I., and C. E. Ballou: Phosphate transfer catalyzed by phosphoglyceric acid mutase. J. Amer. Chem. Soc. 79, 3612–3613 (1957).

    CAS  Google Scholar 

  • Posternak, Th., et J. P. Rosselet: Synthèses d’esters phosphoriques d’intérêt biologique. III. Synthèse des acides a-D-mannose-1-phosphorique, D-mannose-6-phosphorique et a-D-mannose-1, 6- diphosphorique. Action de la phosphogluco-mutase. Helvet. chim. Acta 36, 1614–1623 (1953)

    CAS  Google Scholar 

  • Posternak, Th., et J. P. Rosselet: Action de la phosphoglucomutase du muscle sur des acides aldose-1-phosphoriques. Transformation de l’acide galactose-1-phos-phorique. Helvet. chim. Acta 37, 246–250 (1954).

    CAS  Google Scholar 

  • Pullman, M. E., A. San Pietro and S. P. Colowick: On the structure of reduced diphosphopyridine nucleotide. J. of Biol. Chem. 206, 129–141 (1954).

    CAS  Google Scholar 

  • Racker, E.: Crystalline alcoholdehydrogenase from bakers’ yeast. J. of Biol. Chem. 184, 313–319 (1950).

    CAS  Google Scholar 

  • Racker, E.: Alternative pathways of glucose and fructose metabolism. Adv. Enzymol. 15, 141–182 (1954).

    CAS  Google Scholar 

  • Racker, E., and I. Krimsky: The mechanism of oxidation of aldehydes by glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 198, 731–743 (1952).

    CAS  Google Scholar 

  • Rafter, G. W.: The reaction of o-iodosobenzoate with 3 phosphoglyceraldehyde dehydrogenase. Arch. of Biochem. a. Biophysics 67, 267–271 (1957).

    CAS  Google Scholar 

  • Rapoport, S., and J. Luebering: The formation of 2, 3-diphosphoglycerate in rabbit erythrocytes: the existence of a diphosphoglycerate mutase. J. of Biol. Chem. 183, 507–516 (1950).

    CAS  Google Scholar 

  • Rapoport, S., and J. Luebering: An optical study of diphosphoglycerate mutase. J. of Biol. Chem. 196, 583–588 (1952).

    CAS  Google Scholar 

  • Ribéreau-Gayon, J., E. Peynaud et M. Lafon: Recherches sur la genèse des produits secondaires de la fermentation alcoolique. Bull. Soc. Chim. biol. Paris 37, 457–473 (1955).

    PubMed  Google Scholar 

  • Robison, R.: A new phosphoric ester produced by the action of yeast juice on hexoses. Biochemic. J. 16, 809–824 (1922).

    CAS  Google Scholar 

  • Rodwell, V. W., J. C. Towne and S. Grtsolia: Crystalline phosphoglyceric acid mutase. Biochim. et Biophysica Acta 20, 394–396 (1956).

    CAS  Google Scholar 

  • Rapoport, S., and J. Luebering: The kinetic properties of yeast and muscle phosphoglyceric acid mutase. J. of Biol. Chem. 228, 875–890 (1957).

    Google Scholar 

  • Saltman, P.: Hexokinase in higher plants. J. of Biol. Chem. 200, 145–154 (1953).

    CAS  Google Scholar 

  • Schlamowitz, M., and D. M. Greenberg: On the mechanism of enzymatic conversion of glucose-1-phosphate to glucose-6-phosphate. J. of Biol. Chem. 171, 293–295 (1947).

    CAS  Google Scholar 

  • Seegmiller, J. E.: Triphosphopyridine nucleotide-linked aldehvde dehydrogenase from yeast. J. of Biol. Chem. 201, 629–637 (1953).

    CAS  Google Scholar 

  • Segal, H. L., and P. D. Boyer: The rôle of sulfhydryl groups in the activity of D-glyceraldehyde 3-phosphate dehydrogenase. J. of Biol. Chem. 204, 265–281 (1953).

    CAS  Google Scholar 

  • Simola, P. E.: Über den Co-Zymase- und Co-Carb-oxylasegehalt des Rattenorganismus bei B-Avitaminose. Biochem. Z. 254, 229–244 (1932).

    CAS  Google Scholar 

  • Singer, T. P., and J. Pensky: Acetoin synthesis by highly purified α-carboxylase. Arch. of Biochem. a. Biophysics 31, 457–459 (1951).

    CAS  Google Scholar 

  • Rapoport, S., and J. Luebering: Mechanism of acetoin synthesis by a-carboxylase. Biochim. et Biophysica Acta 9, 316–327 (1952a).

    Google Scholar 

  • Rapoport, S., and J. Luebering: Isolation and properties of the a-carboxylase of wheat germ. J. of Biol. Chem. 196, 375–388 (1952b).

    Google Scholar 

  • Slade, H. D., and C. H. Werkman: Assimilation of acetic and succinic acids containing heavy carbon by Aero-bacter indologenes. Arch. of Biochem. 2, 97–111 (1943).

    CAS  Google Scholar 

  • Slein, M. W.: Phosphomannose isomerase. J. of Biol. Chem. 186, 753–761 (1950).

    CAS  Google Scholar 

  • Slein, M. W.: Phosphohexoseisomerase. Federat. Proc. 13, 299 (1954).

    Google Scholar 

  • Slein, M. W., G. T. Cori and C. F. Cori: A comparative study of hexokinase from yeast and animal tissues. J. of Biol. Chem. 186, 763–780 (1950).

    CAS  Google Scholar 

  • Sobotka, H., and M. Reiner: Selective fermentation. II. Fermentation of sugar mixtures by Sauterne yeast. Biochemic. J. 24, 1783–1786 (1930).

    CAS  Google Scholar 

  • Somers, G. F., and E. L. Cosby: The conversion of fructose-6-phosphate into glucose-6-phosphate in plant extracts. Arch. of Biochem. 6, 295–302 (1945).

    CAS  Google Scholar 

  • Spiegelmann, S., and M. Nozawa: On the inability of intact yeast cells to ferment their carbohydrate reserves. Arch. of Biochem. 6, 303–322 (1945).

    Google Scholar 

  • Stumpf, P. K.: Carbohydrate metabolism in higher plants. I. Pea aldolase. J. of Biol. Chem. 176, 233–241 (1948).

    CAS  Google Scholar 

  • Suomalainen, H., and E. Oura: Yeast carboxylase and cell permeability. Acta chem. scand. (Copenh.) 11, 1090 (1957).

    Google Scholar 

  • Suomalainen, H., and E. Oura: Cell permeability and decarboxylation of a-keto acids by intact yeast. Biochim. et Biophysica Acta 28, 120–127 (1958).

    CAS  Google Scholar 

  • Sutherland, E. W., T. Z. Posternak and C. F. Cori: The mechanism of action of phosphoglucomutase and phosphoglyceric acid mutase. J. of Biol. Chem. 179, 501–502 (1949).

    CAS  Google Scholar 

  • Tewfik, S., and P. K. Stumpf: Carbohydrate metabolism in higher plants. II. The distribution of aldolase in plants. Amer. J. Bot. 36, 567–571 (1949).

    CAS  Google Scholar 

  • Theorell, H., and R. Bon-nichsen: Studies on liver alcohol dehydrogenase. I. Equilibria and initial reaction velocities. Acta chem. scand (Copenh.) 5, 1105–1126 (1951).

    CAS  Google Scholar 

  • Theorell, H., and A. P. Nygaard: Kinetics and equilibria in flavoprotein systems. I. A fluorescence recorder and its application to a study of the dissociation of the old yellow enzyme and its resynthesis from riboflavin phosphate and protein. Acta chem. scand. (Copenh.) 8, 877–888 (1954).

    CAS  Google Scholar 

  • Theorell, H., A. P. Nygaard and R. Bonnichsen: Kinetics of alcohol dehydrogenases, studied with the aid of a fluorescence recorder. Acta chem. scand. (Copenh.) 8, 1490–1491 (1954).

    CAS  Google Scholar 

  • Theorell, H., A. P. Nygaard and R. Bonnichsen: Studies on liver alcohol dehydrogenase. III. The influence of pH and some anions on the reaction velocity constants. Acta chem. scand. (Copenh.) 9, 1148–1165 (1955).

    CAS  Google Scholar 

  • Topper, Y.J.: On the mechanism of action of phosphoglucose isomerase and phosphomannose isomerase. J. of Biol. Chem. 225, 419–425 (1957).

    CAS  Google Scholar 

  • Towne, J. C., V. W. Rodwell and S. Grisolia: The micro-estimation, distribution and biosynthesis of 2, 3-diphosphoglyceric acid. J. of Biol. Chem. 226, 777–788 (1957).

    CAS  Google Scholar 

  • Traube, M.: Theorie der Ferment Wirkungen. Berlin: Ferdinand Dummler 1858.

    Google Scholar 

  • Trucco, R. E., R. Caputto, L. F. Leloir and N. Mittel-man: Galactokinase. Arch. of Biochem. 18, 137–146 (1948).

    CAS  Google Scholar 

  • Vallee, B. L., and F. L. Hoch: Yeast alcohol dehydrogenase, a zinc metalloenzyme. J. Amer. Chem. Soc. 77, 821–822 (1955a).

    CAS  Google Scholar 

  • Vallee, B. L., and F. L. Hoch: Zinc, a component of yeast alcohol dehydrogenase. Proc. Nat. Acad. Sci. U.S.A. 41, 327–338 (1955b).

    CAS  Google Scholar 

  • Vallee, B. L., F. L. Hoch, S. J. Adelstein and W. E. C. Wacker: Pyridine nucleotide dependent metallo-dehydrogenases. J. Amer. Chem. Soc. 78, 5879–5883 (1956).

    CAS  Google Scholar 

  • Velick, S. F.: Coenzyme binding and the thiol groups of glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 203, 563–573 (1953).

    CAS  Google Scholar 

  • Velick, S. F., and J. E. Hayes jr.: xPhosphate binding and the glyceraldehyde-3-phosphate dehydrogenase reaction. J. of Biol. Chem. 203, 545–562 (1953).

    CAS  Google Scholar 

  • Velick, S. F., J. E. Hayes jr., and J. Harting: The binding of diphosphopyridine nucleotide by glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 203, 527–544 (1953).

    CAS  Google Scholar 

  • Velick, S. F., and S. Udenfriend: The composition and amino acid end-groups of glyceraldehyde-3-phosphate dehydrogenases. J. of Biol. Chem. 203, 575–582 (1953).

    CAS  Google Scholar 

  • Wallenfels, K., u. H. Schüly: Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden. VI. Die chemische Natur des Säureproduktes hydrierter Pyridinium-verbindungen und ein Vorschlag für einen Mechanismus der enzymatischen Reduktion von Brenztraubensäure und Phosphoglycerinsäure. Biochem. Z. 329, 75–82 (1957).

    PubMed  CAS  Google Scholar 

  • Wallenfels, K., u. H. Sund: Zum Wirkungsmechanismus der Alkoholdehydrogenase aus Hefe. Angew. Chem 67, 517 (1955).

    CAS  Google Scholar 

  • Wallenfels, K., u. H. Sund: Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden. I. Freie SH-Gruppen und Aktivität der Alkoholdehydrogenase aus Hefe. Biochem. Z. 329, 17–30 (1957a).

    PubMed  CAS  Google Scholar 

  • Wallenfels, K., u. H. Sund: Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden. III. Binäre und ternäre Zinkkomplexe als Modellsubstanzen für die Enzym-Coenzymverbindung. Biochem. Z. 329, 41–47 (1957 b).

    PubMed  CAS  Google Scholar 

  • Wallenfels, K., u. H. Sund: Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden. V. Das DPN+-Bindungsvermögen von ADH und Zink-ADH. Biochem. Z. 329, 59–74 (1957c).

    PubMed  CAS  Google Scholar 

  • Wallenfels, K., H. Sund u. H. Diek-mann: Über den Mechanismus der Wasserstoff Übertragung mit Pyridinnucleotiden. IV. Hemmstoffe für DPN-abhängige Zinkenzyme. Biochem. Z. 329, 48–58 (1957).

    PubMed  CAS  Google Scholar 

  • Wallenfels, K., H. Sund, A. Faessler u. H. Burchard: Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden. II. Der minimale und maximale Zinkgehalt kristallisierter Alkoholdehydrogenase aus Hefe. Biochem. Z. 329, 31–40 (1957).

    PubMed  CAS  Google Scholar 

  • Warburg, O.: Wasserstoffübertragende Fermente, S. 51. Berlin: W. Saenger 1948.

    Google Scholar 

  • Warburg, O., u. W. Christian: Proteinteil des kohlenhydrat-oxydierenden Ferments der Gärung. Biochem. Z. 301, 221–222 (1939).

    CAS  Google Scholar 

  • Wallenfels, K., u. H. Sund: Isolierung und Kristallisation des Proteins des oxydierenden Gärungsferments. Biochem. Z. 303, 40–68 (1939/40).

    Google Scholar 

  • Wallenfels, K., u. H. Sund: Isolierung und Kristallisation des Gärungsferments Enolase. Naturwiss. 29, 589–590 (1941).

    Google Scholar 

  • Wallenfels, K., u. H. Sund: Isolierung und Kristallisation des Gärungsferments Enolase. Biochem. Z. 310, 384–421 (1941/42).

    Google Scholar 

  • Wallenfels, K., u. H. Sund: Isolierung und Kristallisation des Gärungsferments Zymohexase. Biochem. Z. 314, 149–176 (1943).

    Google Scholar 

  • Warburg, O., u. K. Gawehn: Isolierung der Hefenzymohexase und ihre Kristallisation als Quecksilbersalz. Z. Naturforsch. 9b, 206–208 (1954).

    Google Scholar 

  • Warburg, O., K. Gawehn u. A.W. Geissler: Stöchiometrische Versuche mit dem oxydirenden Gärungsferment. Z. Naturforsch. 12b, 47–48 (1957).

    Google Scholar 

  • Weil-Malherbe, H.: The enzymic phosphorylation of vitamin B1. Biochemic. J. 33, 1997–2007 (1939).

    CAS  Google Scholar 

  • Westheimer, F. H., H. F. Fischer, E. E. Conn and B. Vennesland: The enzymatic transfer of hydrogen from alcohol to DPN. J. Amer. Chem. Soc. 73, 2403 (1951).

    CAS  Google Scholar 

  • Williams, R. J. P., F. L. Hoch and B. L. Vallee: The role of zinc in alcohol dehydrogenases. III. The kinetics of the time-dependent inhibition of yeast alcohol dehydrogenase by 1, 10-phenanthroline. J. of Biol. Chem. 232, 465–474(1958).

    CAS  Google Scholar 

  • Willstätter, R., u. H. Sobotka: Vergleich von α- und β-Glucose in der Gärung. Hoppe-Seylers Z. 123, 164–169 (1922a).

    Google Scholar 

  • Willstätter, R., u. H. Sobotka: Über auswählende Gärung von Zuckergemischen. Hoppe-Seylers Z. 123, 170–175 (1922b).

    Google Scholar 

  • Wold, F., and C. E. Ballou: Studies on the enzyme enolase. I. Equilibrium studies. J. of Biol. Chem. 227, 301–213 (1957 a).

    CAS  Google Scholar 

  • Willstätter, R., u. H. Sobotka: Studies on the enzyme enolase. II. Kinetic studies. J. of Biol. Chem. 227, 313–328 (1957b).

    Google Scholar 

  • Wood, H. G., and C. H. Werkman: The relationship of bacterial utilization of CO2 to succinic acid formation. Biochemic. J. 34, 129–138 (1940).

    CAS  Google Scholar 

  • Ågren, G.: Utilization of peptide bound amino acids by lactic acid bacteria. II. Acta chem. scand. 2, 611–619 (1948).

    Google Scholar 

  • Allen, S. H. G., and D. Powelson: Pathways of glucose oxidation in dividing and nondividing cells of Escherichia coli. J. Bact. 75, 184–189 (1958).

    PubMed  CAS  Google Scholar 

  • Altermatt, H. A., A. C. Blackwood and A. C. Neish: The anaerobic dissimilation of D-xylose-1-C14, D-xylose-2-C14, and D-xylose-5-C14 by Leuconostoc mesenteroides. Canad. J. Biochem. 33, 622–626 (1955).

    PubMed  CAS  Google Scholar 

  • Altermatt, H.A., F. J. Simpson and A.C. Neish: The anaerobic dissimilation of D-ribose-1-C14, D-xylose-1-C14, D-xylose-2-C14, and D-xylose-5-C14 by Aerobacter aerogenes. Canad. J. Biochem. 33, 615–621 (1955a).

    PubMed  CAS  Google Scholar 

  • Altermatt, H.A., F. J. Simpson and A.C. Neish: The fermentation of D-allose and D-glucose by Aerobacter aerogenes. Canad. J. Microbiol. 1, 473–478 (1955b).

    CAS  Google Scholar 

  • Amdur, B. H., H. Rilling and K. Bloch: The enzymatic conversion of mevalonic acid to squalene. J. Amer. chem. Soc. 79, 2646–2647 (1957).

    CAS  Google Scholar 

  • Andersen, A.A., and J. E. Greaves: d-Lactic acid fermentation of Jerusalem artichokes. Ind. Eng. Chem. 34, 1522–1526 (1942).

    CAS  Google Scholar 

  • Anderson, A. W., and P. R. Elliker: The nutritional requirements of lactic streptococci isolated from starter cultures. I. Growth in a synthetic medium. J. Dairy Sci. 36, 161–167 (1953).

    CAS  Google Scholar 

  • Anderson, L., A. M. Landel and D. F. Diedrich: The galactose-glucose conversion in isotopic water. Biochim. biophys. Acta 22, 573–575 (1956).

    PubMed  CAS  Google Scholar 

  • Andreasen, A.A., and T. J. B. Stier: Anaerobic nutrition of Saccharomyces cerevisiae. J. cell. comp. Physiol. 48, 317–328 (1956).

    CAS  Google Scholar 

  • Andrews, E. A., and V. R. Williams: Biotin synthesis by Lactobacillus casci. J. biol. Chem. 193, 11–12 (1951).

    CAS  Google Scholar 

  • Appleby, C. A., and R.K. Morton: Crystalline cytochrome b2 and lactic dehydrogenase of yeast. Nature (Lond.) 173, 749–752 (1954).

    CAS  Google Scholar 

  • Ashwell, G., and J. Hickman: Formation of xylulose phosphate from ribose phosphate in spleen extracts. J. Amer. chem. Soc. 76, 5889 (1954).

    CAS  Google Scholar 

  • Ashwell, G., and J. Hickman: Identification of 3-ketopentose arising from ribose phosphate. J. Amer. chem. Soc. 77, 1062–1063 (1955).

    CAS  Google Scholar 

  • Asnis, R. E., M. Fritz and M. C. Glick: Some observations on the phosphoroclastic dissimilation of pyruvate by cell-free extracts of Escherichia coli. Biochim. biophys. Acta 22, 578–579 (1956).

    PubMed  CAS  Google Scholar 

  • Aubel, E., et J. Houget: Consommation d’oxygène par un anaérobie strict, Clostridium butyricum. C. R. Acad .sci. (Paris) 209, 260–261 (1939).

    Google Scholar 

  • Auhagen, E., u. T. Auhagen: Über die Umschaltung der alkoholischen Zuckerspaltung durch Hefe in Milchsäuregärung. II. Biochem. Z. 268, 247–252 (1934).

    CAS  Google Scholar 

  • Auhagen, E., u. C. Neuberg: Über die Umschaltung der alkoholischen Zuckerspaltung durch Hefe in Milchsäuregärung. I. Biochem. Z. 264, 452–455 (1933).

    CAS  Google Scholar 

  • Axelrod, A. E., M. A. Mitz and K. Hofmann: The chemical nature of fat-soluble materials with biotin activity in human plasma. Additional studies on lipide stimulation of microbial growth. J. biol. Chem. 175, 265–274 (1948).

    PubMed  CAS  Google Scholar 

  • Ayengar, P., and E. Roberts: Utilization of D-glutamic acid by Lactobacillus arabinosus: glutamic racemase. J. biol. Chem. 197, 453–460 (1952).

    PubMed  CAS  Google Scholar 

  • Bachstetz, M.: Über die Konstitution der Orotsäure. Ber. dtsch. chem. Ges. 63, 1000 bis 1007 (1930).

    Google Scholar 

  • Balamuth, W., and P. E. Thompson: Comparative studies an amebae and amebicides. In: S. H. Hutner and A. Lwoff, Biochemistry and physiology of protozoa. II. S. 277–345. New York: Academic Press 1955.

    Google Scholar 

  • Baldwin, E.: Biochemic. Einführung in ihre Dynamik. (Übersetzt aus dem Englischen von O. Westphal, O. Westphal u. H. Grünewald.) Weinheim/Bergstr.: Verlag Chemie 1957.

    Google Scholar 

  • Bard, R. C., and I. C. Gunsalus: Glucose metabolism of Clostridium perfringens: existence of a metallo-aldolase. J. Bact. 59, 387–400 (1950).

    PubMed  CAS  Google Scholar 

  • Barker, H. A.: The metabolism of the colorless alga, Proto-theca zopfii Krüger. J. cell. comp. Physiol. 7, 73–93 (1935).

    CAS  Google Scholar 

  • Barker, H. A.: On the role of carbon dioxide in the metabolism of Clostridium thermoaceticum. Proc. nat. Acad. Sci. (Wash.) 30, 88–90 (1944).

    CAS  Google Scholar 

  • Barker, H. A., and V. Haas: Butyribacterium, a new genus of gram-positive, non-sporulating anaerobic bacteria of intestinal origin. J. Bact. 47, 301–305 (1944).

    PubMed  CAS  Google Scholar 

  • Barker, H. A., M. D. Kamen and V. Haas: Carbon dioxide utilization in the synthesis of acetic and butyric acids by Butyribacterium rettgeri. Proc. nat. Acad. Sci. (Wash.) 31, 355–360 (1945).

    CAS  Google Scholar 

  • Baron, J., u. M. Pólányi: Über die Anwendung des zweiten Hauptsatzes der Thermodynamik auf Vorgänge im tierischen Organismus. Biochem. Z. 53, 1–20 (1913).

    Google Scholar 

  • Barron, E. S. G.: Studies on biological oxidations. VI. The oxidation of pyruvic acid by gonococci. J. biol. Chem. 113, 695–715 (1936).

    CAS  Google Scholar 

  • Barron, E. S. G.: Thiol groups of biological importance. Advane. Enzymol. 11, 201–266 (1951).

    Google Scholar 

  • Barron, E. S. G., and A. B. Hastings: Studies on biological oxidations. II. The oxidation of lactic acid by α-hydroxyoxidase and its mechanism. J. biol. Chem. 100, 155–182 (1933).

    CAS  Google Scholar 

  • Barron, E. S. G., and H. R. Jacobs: Oxidations produced by hemolytic streptococci. J. Bact. 36, 433–449 (1938).

    PubMed  CAS  Google Scholar 

  • Barron, E. S. G., and C. M. Lyman: Studies on biological oxidations. XL The metabolism of pyruvic acid by animal tissues and bacteria. J. biol. Chem. 127, 143–161 (1939).

    CAS  Google Scholar 

  • Barron, E. S. G., and C. P. Miller jr.: Studies on biological oxidations. I. Oxidations produced by gonococci. J. biol. Chem. 97, 691–715 (1932).

    CAS  Google Scholar 

  • Barron, E. S. G., and T. P. Singer: Studies on biological oxidation. XIX. Sulfhydryl enzymes in carbohydrate metabolism. J. biol. Chem. 157, 221–240 (1945).

    CAS  Google Scholar 

  • Barton-Wright, E. C.: The microbiological assay of the vitamin B-complex and amino acids. London: Pitman & Sons 1952.

    Google Scholar 

  • Bauernfeind, J. C., A. L. Sotier and C. S. Boruff: Growth stimulants in the microbiological assay for riboflavin and pantothenic acid. Ind. Eng. Chem., Analyt. Ed. 14, 666–671 (1942).

    CAS  Google Scholar 

  • Bauernfeind, J. C., A. L. Sotier and C. S. Boruff: Bergeys Manual of Determinative Bacteriology: siehe R. S. Breed, E. G. D. Murray und A. P. Hitchens (1948) oder R. S. Breed, E. G. D. Murray u. N. R. Smith 1957.

    Google Scholar 

  • Bergmann, E. D., U. Z. Littauer and B. E. Volcani: The breakdown of pentose phosphates in Escherichia coli. Biochim. biophys. Acta 13, 288–289 (1954a).

    CAS  Google Scholar 

  • Bergmann, E. D., U. Z. Littauer and B. E. Volcani: The formation of D-3-phosphoglyceric acid from pentoses by Escherichia coli. Biochem. J. 56, 147–150 (1954b).

    PubMed  CAS  Google Scholar 

  • Bernhauer, K., J. Rauch u. J. N. Miksch: Über die Säurebildung durch Rhizopus-Arten. II. Zur Milchsäurebildung in der Submerskultur. Biochem. Z. 320, 178–188 (1950).

    Google Scholar 

  • Bernstein, I.A.: Fermentation of ribose-C14 by Lactobacillus pentosus. J. biol. Chem. 205, 309–316 (1953).

    CAS  Google Scholar 

  • Bernstein, I. A., K. Lentz, M. Malm, P. Schambye and H. G. Wood: Degradation of glucose-C14 with Leuconostoc mesenteroides; alternate pathways and tracer patterns. J. biol. Chem. 215, 137–152 (1955).

    PubMed  CAS  Google Scholar 

  • Bertho, A., u. H. Glück: Über den Atmungsprozeß der Milchsäurebakterien Justus Liebigs. Ann. Chem. 494, 159–191 (1932).

    CAS  Google Scholar 

  • Bever, A. T.: A proposed classification scheme for flavin enzymes. Enzymologia 15, 275–278 (1952).

    PubMed  CAS  Google Scholar 

  • Bhat, J. V.: Role of iron in the nutrition and metabolism of Clostridium lacto-acetophilum. Arch. Mikrobiol. 23, 142–145 (1955).

    PubMed  CAS  Google Scholar 

  • Bhat, J. V., and H. A. Barker: Clostridium lacto-acetophilum nov. spec, and the role of the acetic acid in butyric fermentation of lactate. J. Bact. 54, 381–391 (1947).

    PubMed  CAS  Google Scholar 

  • Bhat, J. V., and H. A. Barker: Tracer studies on the role of acetic acid and carbon dioxide in the fermentation of lactate by Clostridium lacto-acetophilum. J. Bact. 56, 777–779 (1948).

    PubMed  CAS  Google Scholar 

  • Bidan, P.: Sur quelques bactéries isolées de vins en fermentation malolactique. Ann. technol. agric. 4, 597–617 (1956).

    Google Scholar 

  • Blackwood, A. C., and E. R. Blakley: Carbohydrate metabolism by Leuconostoc mesenteroides. Candad. J. Microbiol. 2, 741–746 (1956).

    CAS  Google Scholar 

  • Blanchard, M. L., S. Korkes, A. Campillo and S. Ochoa: Function of biotin in the metabolism of Lactobacillus arabinosus. J. biol. Chem. 187, 875–890 (1950).

    PubMed  CAS  Google Scholar 

  • Boeri, E., E. Cutolo, M. Luzzati and L. Tosi: Preparation and properties of cytochrome b2 from yeast. Arch. Biochem. 56, 487–499 (1955).

    PubMed  CAS  Google Scholar 

  • Boeri, E., and L. Tosi: Properties of cytochrome b2 from yeast. Arch. Biochem. 60, 463–475 (1956).

    PubMed  CAS  Google Scholar 

  • Bolcato, V.: Über die Mannitgärung der Lävulose. Ann. Chim. appl. 23, 405–410 (1933) [Italienisch].

    CAS  Google Scholar 

  • Bolcato, V.: Untersuchungen über die Fermente der Milchsäuregärung. II. Die Rolle der Milchsäure bei der Mannitgärung der Fructose. Ann. Chim. appl. 26, 24–30 (1936a) [Italienisch].

    CAS  Google Scholar 

  • Bolcato, V.: IV. Der Einfluß der Reaktion des Mediums auf die Vergärung von Glucose und Fructose. Ann. Chim. appl. 26, 423–427 (1936b) [Italienisch].

    CAS  Google Scholar 

  • Bolcato, V.: Untersuchungen über die Milchsäure-Mannit-Fermente. Enzymologia 5, 52–56 (1938) [Italienisch].

    CAS  Google Scholar 

  • Bolcato, V.: Simultaneous fixation of trioses, pyruvic acid, and acetaldehyde from alcoholic fermentation with living cells. Nature (Lond.) 165, 814 (1950a).

    CAS  Google Scholar 

  • Bolcato, V.: Phenylhydrazine oxalate as „trapping agent“ for the simultaneous fixation of intermediate products in lactic acid fermentation with living cells. Science 112, 252–253 (1950b).

    PubMed  CAS  Google Scholar 

  • Bolcato, V.: Research on lacto-mannitic bacteria. Enzymologia 14. 21–23 (1950c).

    PubMed  CAS  Google Scholar 

  • Bolcato, V.: La chimica delle fermentazioni, S. 299ff. Bologna: N. Zanichelli 1952.

    Google Scholar 

  • Bolcato, V.: A thermophilic, motile strain of Microbacterium. Antonie v. Leeuwenhoek 23, 351–356 (1957).

    CAS  Google Scholar 

  • Bolcato, V., u. F. Pozzi: Untersuchungen über die Fermente der Milchsäure-Mannit-Gärung. IX. Kompetitive Wirkung der Enzyme auf die Brenztraubensäure. Enzymologie 13, 201–204 (1949) [Italienisch].

    CAS  Google Scholar 

  • Bond, T. J., T. J. Bardos, M. Sibley and W. Shive: The folinic acid group, a series of new vitamins related to folic acid. J. Amer. chem. Soc. 71, 3852–3853 (1949).

    CAS  Google Scholar 

  • Borek, E., N. Grossowicz and H. Waelsch: The effect of hydroxyl-amine on the metabolism of glutamine and asparagine. Arch. Biochem. 31, 273–277 (1951).

    PubMed  CAS  Google Scholar 

  • Borsook, H., and H. M. Winegarden: The free energy of glucose and of tripalmitin. Proc. nat. Acad. Sci. (Wash.) 16, 559–573 (1930).

    CAS  Google Scholar 

  • Brady, R.O.: The enzymatic synthesis of fatty acids by aldol condensation. Proc. nat. Acad. Sci. (Wash.) 44, 993–998 (1958).

    CAS  Google Scholar 

  • Brand, Th. v.: Metabolism of Trypanosom idae and Bodonidae. In: A. Lwoff, Biochemistry and physiology of protozoa. I. S. 177–234. New York: Academic Press 1951.

    Google Scholar 

  • Brand, Th. v.: Chemical physiology of endoparasitic animals. New York: Academic Press 1952.

    Google Scholar 

  • Braunstein, A. E., u. R. M. Asarch: Beteiligung von Vitamin B6 an der enzymatischen Bildung von Schwefelwasserstoff aus L-Cystein. Ber. Akad. Wiss. UdSSR. 71, 93–96 (1950) [Russisch].

    Google Scholar 

  • Braunstein, A. E., E. V. Gorjatschenkowa u. T. S. Paschkina: Enzymatische Bildung von Alanin aus L-Kynurenin und L-Tryptophan und die Rolle von Vitamin B6 bei diesem Prozeß. Biochimia 14, 163–179 (1949) [Russisch].

    Google Scholar 

  • Breed, R. S., E. G. D. Murray and A. P. Hitchens: Bergeys Manual of Determinative Bacteriology, 6th ed. Baltimore: Williams & Wilkins Company 1948.

    Google Scholar 

  • Breed, R. S., E. G. D. Murray and N. R. Smith: Bergeys Manual of Determinative Bacteriology, 7th ed. Baltimore: Williams & Wilkins Company 1957.

    Google Scholar 

  • Breusch, F. L.: Stoffwechsel der Kohlenhydrate. In: Physiologische Chemie, herausgeg. von B. Flaschenträger u. E. Lehnartz, Bd. II, la, S. 274–792. Berlin-Göttingen-Heidelberg: Springer 1954.

    Google Scholar 

  • Brockman, J. A., E. L. R. Stokstad, E. L. Patterson, J. V. Pierce, M. Maggi and F. Day: Structure of protogen A. J. Amer. chem. Soc. 74, 1868 (1952).

    CAS  Google Scholar 

  • Brodie, A. F., and F. Lipmann: Identification of a gluconolactonase. J. biol. Chem. 212, 677–685 (1955).

    PubMed  CAS  Google Scholar 

  • Broquist, H. P., and E. E. Snell: On the interaction of avidin and oleic acid. J. biol. Chem. 173, 435–436 (1948).

    PubMed  CAS  Google Scholar 

  • Broquist, H. P., and E. E. Snell: Biotin and bacterial growth. I. Relation to aspartate, oleate and carbon dioxide. J. biol. Chem. 188, 431–444 (1951).

    PubMed  CAS  Google Scholar 

  • Brown, R. W., H. G. Wood and C. H. Werkman: Fixation of carbon dioxide in lactic acid by Clostridium butylicum. Arch. Biochem. 5, 423–433 (1944).

    CAS  Google Scholar 

  • Brown, S. A.: A chemical procedure for the determination of the carbon-14 distribution in labeled xylose. Canad. J. Biochem. 33, 368–373 (1955).

    PubMed  CAS  Google Scholar 

  • Buchanan, J. M., J. G. Flaks, S. C. Hartman, B. Levenberg, L. N. Lukens and L. Warren: The enzymatic synthesis of inosinic acid de novo. In: Ciba Foundation Symposium on the chemistry and biology of purines (edit. by G. E. W. Wolstenholme and C. M. O’Connor), S. 233–255. London: J. & A. Churchill 1957.

    Google Scholar 

  • Buchner, E.: Alkoholische Gärung ohne Hefezellen. Ber. dtsch. chem. Ges. 30, 117–124 (1897).

    CAS  Google Scholar 

  • Buchner, E., H. Buchner u. M. Hahn: Die Zymasegärung. München: Oldenbourg 1903.

    Google Scholar 

  • Buchner, E., u. J. Meisenheimer: Enzyme bei Spaltpilzgärungen. Ber. dtsch. chem. Ges. 36, 634–638 (1903).

    CAS  Google Scholar 

  • Buchner, E., u. J. Meisenheimer: Die chemischen Vorgänge bei der alkoholischen Gärung. Ber. dtsch. chem. Ges. 37, 417–428 (1904).

    CAS  Google Scholar 

  • Buchner, E., u. J. Meisenheimer: Die chemischen Vorgänge bei der alkoholischen Gärung. Ber. dtsch. chem. Ges. 38, 620–630 (1905).

    CAS  Google Scholar 

  • Buchner, E., u. J. Meisenheimer: Über die Milchsäuregärung. Justus Liebigs Ann. Chem. 349, 125–139 (1906).

    CAS  Google Scholar 

  • Bullock, M. W., J. A. Brockman jr., E. L. Patterson, J. V. Pierce, M. H. v. Saltza, F. Sanders and E. L. R. Stokstad: Syntheses in the thioctic acid series. J. Amer. chem. Soc. 76, 1828–1832 (1954).

    CAS  Google Scholar 

  • Burma, D. P., and B.L. Horecker: L-Ribulo-kinase and the formation of D-xylulose phosphate in Lactobacillus pentosus. Biochim. biophys. Acta 24, 660–661 (1957).

    PubMed  CAS  Google Scholar 

  • Burma, D. P., and B.L. Horecker: Pentose fermentation by Lactobacillus plantarum. III. Ribulo-kinase. J. biol. Chem. 231, 1039–1051 (1958 a).

    CAS  Google Scholar 

  • Burma, D. P., and B.L. Horecker: IV. L-Ribulose-5-phosphate 4-epimerase. J. biol. Chem. 231, 1053–1064 (1958b).

    PubMed  CAS  Google Scholar 

  • Burton, K.: The free energy change associated with the hydrolysis of the thiol ester bond of acetyl coenzyme A. Biochem. J. 59, 44–46 (1955).

    PubMed  CAS  Google Scholar 

  • Burton, K., and H.A. Krebs: The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosinetriphosphate. Biochem. J. 54, 94–107 (1953).

    PubMed  CAS  Google Scholar 

  • Burton, K., and T.H. Wilson: The free-energy changes for the reduction of diphosphopyridine nucleotides and the dehydrogenation of L-malate and l-glycerol 1-phosphate. Biochem. J. 54, 86–94 (1953).

    PubMed  CAS  Google Scholar 

  • Buyze, G., C. J. A. van den Hamer and P. G. de Haan: Correlation between hexosemonophoßphate shunt, glycolytic system and fermentation-type in lactobacilli. Antonie v. Leeuwenhoek 23, 345–350 (1957).

    CAS  Google Scholar 

  • Callow, A. B.: On catalase in bacteria and its relation to anaerobiosis. J. Path. Bact. 26, 320–325 (1923).

    CAS  Google Scholar 

  • Camien, M. N., and M. S. Dunn: Antagonism in the utilization of D-amino acids by lactic acid bacteria. II. Influence of DL-serine and glycine on the utilization of D-alanine. J. biol. Chem. 185, 553–559 (1950).

    PubMed  CAS  Google Scholar 

  • Campbell, J. J. R., and I. C. Gunsalus: Citric acid fermentation by streptococci and lactobacilli. J. Bact. 48, 71–76 (1944).

    PubMed  CAS  Google Scholar 

  • Cantino, E. C.: The physiology of the aquatic phycomycete, Blastocladia prings-heimii, with emphasis on its nutrition and metabolism. Amer. J. Bot. 36, 95–112 (1949).

    CAS  Google Scholar 

  • Cantino, E. C.: Nutrition and phylogeny in the water molds. Quart. Rev. Biol. 25, 269–277 (1950).

    PubMed  CAS  Google Scholar 

  • Cantino, E. C.: Evidence for an accessory factor involved in fructose utilization by the aquatic fungus, Pythiogeton. Amer. J. Bot. 38, 579–585 (1951a).

    CAS  Google Scholar 

  • Cantino, E. C.: Metabolism and morphogenesis in a new Blastocladiella. Antonie v. Leeuwenhoek 17, 326–362 (1951b).

    Google Scholar 

  • Cantino, E. C.: The biochemical nature of morphogenetic patterns in Blastocladiella. Amer. Naturalist 86, 399–404 (1952).

    Google Scholar 

  • Cantino, E. C.: Physiology and phylogeny in the water molds a reevaluation. Quart. Rev. Biol. 30, 138–149 (1955).

    PubMed  CAS  Google Scholar 

  • Caputto, R., L. F. Leloir, C. E. Cardini and A. C. Paladini: Isolation of the coenzyme of the galactose phosphate glucose phosphate transformation. J. biol. Chem. 184, 333–350 (1950).

    PubMed  CAS  Google Scholar 

  • Caputto, R., L. F. Leloir, R. E. Trucco, C. E. Cardini and A. C. Paladini: The enzymatic transformation of galactose into glucose derivatives. J. biol. Chem. 179, 497–498 (1949).

    PubMed  CAS  Google Scholar 

  • Carr, J. G.: Occurrence and activity of some lactic acid bacteria from apple juices, ciders and perries. J. Inst. Brewing 63, 436–440 (1957).

    Google Scholar 

  • Carson, S. F., J. W. Foster, W. E. Jefferson, E. F. Phares and D. S. Anthony: Oxidative formation of lactic acid by a fungus. Arch. Biochem. 33, 448–458 (1951).

    PubMed  CAS  Google Scholar 

  • Cattaneo, C., u. C. Neuberg: Umstellung der Coli-Gärung auf reine Milchsäure-Gärung. Biochem. Z. 272, 441–444 (1934).

    CAS  Google Scholar 

  • Chantrenne, H., and F. Lipmann: Coenzyme A depen-dence and acetyl donor function of the pyruvate-formate exchange system. J. biol. Chem. 187, 757–767 (1950).

    PubMed  CAS  Google Scholar 

  • Christman, A. A. : Purine and pyrimidine metabolism. Physiol. Rev. 32, 303–348 (1952).

    PubMed  CAS  Google Scholar 

  • Christman, J. F., and H. C. Lichstein: The relationship of biotin to the coenzyme of certain amino acid deaminases. J. Bact. 60, 107–112 (1950).

    PubMed  CAS  Google Scholar 

  • Clark, J. A., and R. A. MacLeod: Ion antagonism in glycolysis by a cell-free bacterial extract. J. biol. Chem. 211, 531–540 (1954a).

    PubMed  CAS  Google Scholar 

  • Clark, J. A., and R. A. MacLeod: The effect of some inorganic ions on a bacterial apyrase. J. biol. Chem. 211, 541–547 (1954b).

    PubMed  CAS  Google Scholar 

  • Clifton, C. E. : Introduction to bacterial physiology. New York-Toronto-London: McGraw-Hill 1957.

    Google Scholar 

  • Cohen, S. S.: The role of the oxidative pathway of glucose-6-phosphate degradation in growing and virus-infected E. coli. In: Phosphorus metabolism (edit. by W. D. McElroy and B. Glass), Bd. 1, S. 148–158. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Colio, L. G., and V. Babb: Study of a new stimulatory growth factor. J. biol. Chem. 174, 405–409 (1948).

    PubMed  CAS  Google Scholar 

  • Collins, E. B., F. E. Nelson and C. E. Parmelee: Acetate and oleate requirements of the lactic group of streptococci. J. Bact. 59, 69–74 (1950).

    PubMed  CAS  Google Scholar 

  • Cook, R. P. : Pyruvic acid in bacterial metabolism, with an account of the methods used for the detection and determination of pyruvic acid. Biochem. J. 24, 1526–1537 (1930).

    PubMed  CAS  Google Scholar 

  • Coolidge, T. B. : Hetero- to homofermentative change in lactobacilli. J. infect. Dis. 88, 241–242 (1951).

    PubMed  CAS  Google Scholar 

  • Coolidge, T. B., N. B. Williams, A. E. I. Ebisch and E. A. Hodges: Metabolic changes in oral lactobacilli. J. infect. Dis. 85, 126–130 (1949).

    PubMed  CAS  Google Scholar 

  • Coryell, Ch. D. : The proposed terms „exergonic“ and „endergonic“ for thermodynamics. Science 92, 380 (1940).

    PubMed  CAS  Google Scholar 

  • Costilow, R. N., and T. W. Humphreys, Nitrate reduction by certain strains of Lactobacillus plantarum. Science 121, 168 (1955).

    PubMed  CAS  Google Scholar 

  • Craig, J. A., and E. E. Snell: The comparative activities of pantethine, pantothenic acid, and coenzyme A for various microorganisms. J. Bact. 61, 283–291 (1951).

    PubMed  CAS  Google Scholar 

  • Crasemann, J. M. : The nutrition of Chytridium and Macrochytrium. Amer. J. Bot. 41, 302–210 (1954).

    Google Scholar 

  • Cremer, W. : Reaktionen des Kohlenoxyds mit Metallverbindungen des Cysteins. Biochem. Z. 206, 228–239 (1929).

    CAS  Google Scholar 

  • Crook, E. M., and K. Law: Glyoxalase: the role of the components. Biochem. J. 52, 492–499 (1952).

    PubMed  CAS  Google Scholar 

  • Crowther, S., J. D. Fulton and L. P. Joiner: The metabolism of Leishmania donovani in culture. Biochem. J. 56, 182–185 (1954).

    PubMed  CAS  Google Scholar 

  • Czapek, F.: Biochemie der Pflanzen, 3. Aufl. , Bd. I, S. 338f. Jena: Gustav Fischer 1922.

    Google Scholar 

  • Dacre, J. C., and M. E. Sharpe: Catalase production by lactobacilli. Nature (Lond. ) 178, 700 (1956).

    CAS  Google Scholar 

  • Dalby, A., and A. C. Blackwood: Oxidation of sugars by an enzyme preparation from Aerobacter aerogenes. Canad. J. Microbiol. 1, 733–744 (1955).

    CAS  Google Scholar 

  • Dalgliesh, C. E., W. E. Knox and A. Neuberger: Intermediary metabolism of tryptophan. Nature (Lond. ) 168, 20–22 (1951).

    CAS  Google Scholar 

  • Damaschke, K.: Die Wasserstoffgärung von Chlorella im Dunkeln nach Anaerobiose unter Stickstoff. Z. Naturforsch. 12b, 441–443 (1957).

    Google Scholar 

  • Davidson, J. N. : The biochemistry of the nucleic acids, 3rd ed. London: Methuen & Co. 1957.

    Google Scholar 

  • Davis, J. G. : Über Atmung und Gärung von Milchsäurebakterien. I. Biochem. Z. 265, 90–104 (1933).

    CAS  Google Scholar 

  • Davis, J. G. : II. Biochem. Z. 267, 357–359 (1934).

    Google Scholar 

  • Dawes, E. A., and S. M. Foster: The formation of ethanol in Escherichia coli. Biochim. biophys. Acta 22, 253–265 (1956).

    PubMed  CAS  Google Scholar 

  • Dawes, E. A., and W. H. Holms: Metabolism of Sarcina lutea. I. Carbohydrate oxidation and terminal respiration. J. Bact. 75, 390–399 (1958a).

    PubMed  CAS  Google Scholar 

  • Dawes, E. A., and W. H. Holms: Metabolism of Sarcina lutea. II. Isotopic evaluation of the routes of glucose utilization. Biochim. biophys. Acta 29, 82–91 (1958b).

    PubMed  CAS  Google Scholar 

  • Dedonder, R. : Étude de la glycolyse chez certaines bactéries du genre Bacillus. I. Déshydrogénation du glucose-6-phosphate et de l’acide 6-phosphogluconique chez B. subtilis et B. megatherium. Ann. I.st. Pasteur 85, 71–81 (1953).

    CAS  Google Scholar 

  • De Ley, J.: The hexose monophosphate oxidation route in Aerobacter cloacae. Enzymologia 18, 33–46 (1956).

    Google Scholar 

  • De Ley, J., and S. Cornut: Direct oxidation of glucose by Aerobacter sp. Nature (Lond. ) 168, 515–516 (1951).

    Google Scholar 

  • DeMoss, R. D. : Routes of ethanol formation in bacteria. J. cell. comp. Physiol. 41 (Suppl. 1), 207–224 (1953).

    CAS  Google Scholar 

  • DeMoss, R. D., R. C. Bard and I. C. Gunsaltjs: The mechanism of the hetero-lactic fermentation: a new route of ethanol formation. J. Bact. 62, 499–511 (1951).

    PubMed  CAS  Google Scholar 

  • DeMoss, R. D., and M. Gibbs: 6-Phosphogluconate dehydrogenase from Leuconostoc mesenteroides. J. Bact. 70, 730–734 (1955).

    PubMed  CAS  Google Scholar 

  • DeMoss, R. D., I. C. Gunsalus and R. C. Bard: A glucose-6-phosphate dehydrogenase in Leuconostoc mesenteroides. J. Bact. 66, 10–16 (1953).

    PubMed  CAS  Google Scholar 

  • DeMoss, R. D., and M. E. Happel: 2-Deoxy-D-glucose metabolism in Leuconostoc mesenteroides. J. Bact. 70, 104–109 (1955).

    PubMed  CAS  Google Scholar 

  • Dickens, F.: Mechanism of carbohydrate oxidation. Nature (Lond. ) 138, 1057 (1936).

    CAS  Google Scholar 

  • Dickens, F.: Oxidation of phosphohexonate and pentose phosphoric acids by yeast enzymes. I. Oxidation of phosphohexonate. II. Oxidation of pentose phosphoric acids. Biochem. J. 32, 1626–1644 (1938).

    PubMed  CAS  Google Scholar 

  • Dickens, F.: Anaerobic glycolysis, respiration, and the Pasteur effect. In: The enzymes (edit, by J. B. Sumner and K. Myrbäck), Bd. II, 1, S. 625–683. New York: Academic Press 1951.

    Google Scholar 

  • Dinning, J. S., B. K. Allen, R. S. Young and P. L. Day: The role of vitamin B12 in thymine biosynthesis by Lactobacillus leichmannii. J. biol. Chem. 233, 674–676 (1958).

    PubMed  CAS  Google Scholar 

  • Ditturi, F., S. Gurin and J. L. Rabinowitz: The biosynthesis of squalene from mevalonic acid. J. Amer. chem. Soc. 79, 2650–2651 (1957).

    Google Scholar 

  • Doetsch, R. N., and M. J. Pelczar: The microbacteria. I. Morphological and physiological characteristics. J. Bact. 56, 37–49 (1948).

    Google Scholar 

  • Dolin, M. I. : The oxidation and peroxidation of DPNH2 in extracts of Streptococcus faecalis 10Cl. Arch. Biochem. 46, 483–484 (1953a).

    PubMed  CAS  Google Scholar 

  • Dolin, M. I. : Lipoic acid function: α-dicarbonyl oxidation by Streptococcus faecalis. Fed. Proc. 12, 198 (1953 b).

    Google Scholar 

  • Dolin, M. I. : The flavin requirement for DPNH-menadione reductase in Streptococcus faecalis. Biochim. biophys. Acta 15, 153–154 (1954).

    PubMed  CAS  Google Scholar 

  • Dolin, M. I. : The DPNH-oxidizing enzymes of Streptococcus faecalis. II. The enzymes utilizing oxygen, cytochrome C. , peroxide, and 2, 6-dichlorophenol-indophenol or ferricyanide as oxidants. Arch. Biochem. 55, 415–435 (1955a).

    CAS  Google Scholar 

  • Dolin, M. I. : Diacetyl oxidation by Streptococcus faecalis, a lipoic acid dependent reaction. J. Bact. 69, 51–58 (1955b).

    PubMed  CAS  Google Scholar 

  • Dolin, M. I., and I. C. Gunsalus: Pyruvic acid metabolism. II. An acetoin-forming enzyme system in Streptococcus faecalis. J. Bact. 62, 199–214 (1951).

    PubMed  CAS  Google Scholar 

  • Domagk, G. F., and B. L. Horecker: Pentose fermentation by Lactobacillus plantarum. V. Fermentation of 2-deoxy-d-ribose. J. biol. Chem. 233, 283–286 (1958).

    PubMed  CAS  Google Scholar 

  • Dorner, W.: Allgemeine und milchwirtschaftliche Mikrobiologie. Frauenfeld u. Leipzig: Huber & Co. 1943.

    Google Scholar 

  • Doudoroff, M., N. Kaplan and W. Z. Hassid: Phosphorolysis and synthesis of sucrose with bacterial preparations. J. biol. Chem. 148, 67–75 (1943).

    CAS  Google Scholar 

  • Douglas, H. C. : Hydrogen peroxide in the metabolism of Lactobacillus brevis. J. Bact. 54, 272 (1947).

    PubMed  CAS  Google Scholar 

  • Downing, M., and B. S. Schweigert: Rôle of vitamin B12 in nucleic acid metabolism. IV. Metabolism of C14-labeled thymidine by Lactobacillus leichmannii. J. biol. Chem. 220, 521–526 (1956).

    PubMed  CAS  Google Scholar 

  • Dubos, R. J. : The effect of lipids and serum albumin on bacterial growth. J. exp. Med. 85, 9–22 (1947).

    PubMed  CAS  Google Scholar 

  • Dunn, M. S. : Amino acids in food and analytical methods for their determination. Food Technol. 1, 269–286 (1947).

    CAS  Google Scholar 

  • Dunn, M. S., S. Shankman, M. N. Camien and H. Block: Amino acid requirements of twentythree lactic acid bacteria. J. biol. Chem. 168, 1–22 (1947).

    PubMed  CAS  Google Scholar 

  • Dunn, M. S., S. Shankman, M. N. Camien, W. Frankl and L. B. Rockland: Investigations of amino-acids, peptides and proteins. XVIII. The amino-acid requirements of Leuconostoc mesenteroides. J. biol. Chem. 156, 703–713 (1944).

    CAS  Google Scholar 

  • Edlbacher, S. : Histidase und Urocaninase. Ergebn. Enzymforsch. 9, 131–154 (1943).

    CAS  Google Scholar 

  • Edlbacher, S., u. O. Wiss: Zur Kenntnis des Abbaus der Aminosäuren im tierischen Organismus. V. Die antipodische Hemmung des Aminosäureabbaus. Helv. chim. Acta 27, 1831–1839 (1944).

    CAS  Google Scholar 

  • Edson, N. L. : The oxidation of lactic acid by Mycobacterium phlei. Biochem. J. 41, 145–151 (1947).

    PubMed  CAS  Google Scholar 

  • Eggerth, A. H. : Gram-positive non-spore-bearing anaerobic bacilli of human feces. J. Bact. 30, 277–299 (1935).

    PubMed  CAS  Google Scholar 

  • Eggleton, G. P., and P. Eggleton: A method of estimating phosphagen and some other phosphorus compounds in muscle tissue. J. Physiol. (Lond. ) 68, 193–211 (1929).

    CAS  Google Scholar 

  • Elsden, S. R., and J. L. Peel: Metabolism of carbohydrates and related compounds. Ann. Rev. Microbiol. 12, 145–202 (1958).

    CAS  Google Scholar 

  • Emerson, R., and E. C. Cantino: The isolation, growth, and metabolism of Blastocladia in pure culture. Amer. J. Bot. 35, 157–171 (1948).

    CAS  Google Scholar 

  • Entner, N., and H. H. Hamilton: Lactic and succinic acid formation by Endamoeba histolytica in vitro. Exp. Parasit. 3, 234–239 (1954).

    PubMed  CAS  Google Scholar 

  • Entner, N., and M. Doudoroff: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. biol. Chem. 196, 853–862 (1952).

    PubMed  CAS  Google Scholar 

  • Erikson, D., and J. W. Porteous: The cultivation of Actinomyces israelii in a progressively less complex medium. J. gen. Microbiol. 8, 464–474 (1953).

    PubMed  CAS  Google Scholar 

  • Feeney, R. E., and F. M. Strong: Growth stimulating substances for Lactobacillus casci. J. Amer. chem. Soc. 61, 881–884 (1942).

    Google Scholar 

  • Felton, E. A., and C. F. Niven jr. : Production of catalase by the pediococci. J. Bact. 65, 481–482 (1953).

    PubMed  CAS  Google Scholar 

  • Fildes, P., and G. P. Gladstone: Glutamine and the growth of bacteria. Brit. J. exp. Path. 20, 334–341 (1939).

    CAS  Google Scholar 

  • Fogg, G. E. : The metabolism of algae. London: Methuen & Co. 1953.

    Google Scholar 

  • Formica, J. V., and R. O. Brady: The enzymatic carboxylation of acetyl coenzyme A. J. A.er. chem. Soc. 81, 752 (1959).

    CAS  Google Scholar 

  • Fornachon, J. C. M. : The occurrence of malo-lactic fermentation in Australian wines. Aust. J. appl. Sci. 8, 120–129 (1957).

    CAS  Google Scholar 

  • Foster, J. W.: Chemical activities of fungi, S. 282–295. New York: Academic Press 1949.

    Google Scholar 

  • Foster, J. W., W. A. Hardwick and B. Guirard: Antisporulation factors in complex organic media. I. Growth and sporulation studies on Bacillus larvae. J. Bact. 59, 463–470 (1950).

    PubMed  CAS  Google Scholar 

  • Frank, H. A., and C. E. Skinner: The relationship between Actinomyces bovis and Lactobacillus bifidus. Mycologia 46, 728–735 (1954).

    Google Scholar 

  • Franke, W. : Zur Energetik von Dehydrierungsreaktionen biologischen Interesses. Biochem. Z. 258, 280–300 (1933).

    CAS  Google Scholar 

  • Franke, W. : Die Enzyme der Oxydation und Reduktion. Biologische und chemische Grundlagen. In: H. v. Euler, Chemie der Enzyme, Teil II, Abschn. 3, S. 76–364. München: J. F. Bergmann 1934.

    Google Scholar 

  • Franke, W. : Wärmetönungen und maximale Nutzarbeiten biochemisch wichtiger Reaktionen. In: Tabulae biologicae, heraus-geg. von C. Oppenheimer u. L. Pincussen, Bd. XI, S. 120–135. Den Haag: W. Junk 1935.

    Google Scholar 

  • Franke, W. : Berechnung der freien Energie biochemisch wichtiger Reaktionen. In: Die Methoden der Fermentforschung, herausgeg. von E. Bamann u. K. Myrbäck, Bd. I, S. 847–868. Leipzig: Gteorg Thieme 1940.

    Google Scholar 

  • Franke, W. : Fortschritte auf dem Gebiete der bakteriellen Gärungen. I. Ergebn. Enzymforsch. 10, 191–268 (1949).

    CAS  Google Scholar 

  • Franke, W. : Zum Stoffwechsel der Purine und Pyrimidine. Z. Vitamin-, Hormon- u. Fermentforsch. 5, 279–314 (1953).

    CAS  Google Scholar 

  • Franke, W. : Zur vergleichenden Biochemie der Alkoholbildung. Brauwiss. 1954, 81–89.

    Google Scholar 

  • Franke, W., u. W. de Boer: Zur vergleichenden Biochemie der Milchsäuregärung. Brauwiss. 1957, 174–181.

    Google Scholar 

  • Franklin, A. L., E. L. R. Stokstad, C. E. Hoffmann, M. Belt and T. H. Jukes: Inhibition of growth of Escherichia coli by 4-aminopteroylglutamic acid and its reversal. J. Amer. chem. Soc. 71, 3549–3550 (1949).

    CAS  Google Scholar 

  • Fred, E. B., W. H. Peterson and J. A. Anderson: The characteristics of certain pentose-destroying bacteria, especially as concerns their action on arabinose and xylose. J. biol. Chem. 48, 385–412 (1921).

    CAS  Google Scholar 

  • Fred, E. B., W. H. Peterson and A. Davenport: Acid fermentation of xylose. J. biol. Chem. 39, 347–384 (1919).

    CAS  Google Scholar 

  • Fred, E. B., W. H. Peterson and A. Davenport: Fermentation characteristics of certain pentose-destroying bacteria. J. biol. Chem. 42, 175–189 (1920).

    CAS  Google Scholar 

  • Frei, W., L. Riedmüller u. F. Almasy: Über Cytochrom und das Atmungssystem der Bakterien. Biochem. Z. 274, 253–267 (1934).

    CAS  Google Scholar 

  • Frenkel, A. W. : Hydrogen evolution by the flagellate green alga, Chlamydomonas moewusii. Arch. Biochem. 38, 219–230 (1952).

    PubMed  CAS  Google Scholar 

  • Friedemann, T. E. : Metabolism of pathogenic bacteria. I. Bacteriological and chemical methods. J. Bact. 35, 527–546 (1938).

    PubMed  CAS  Google Scholar 

  • Friedemann, T. E. : The carbohydrate metabolism of streptococci. J. biol. Chem. 130, 757–761 (1939).

    CAS  Google Scholar 

  • Friedemann, T. E., and T. C. Kmieciak: Metabolism of pathogenic Clostridia in complex carbohydrate-rich culture media. Proc. Soc. exp. Biol. (N. Y. ) 47, 84–87 (1941).

    CAS  Google Scholar 

  • Fujita, A., u. T. Kodama: Manometrische Bestimmung der Katalase. Biochem. Z. 232, 20–34 (1931).

    CAS  Google Scholar 

  • Fujita, A., u. T. Kodama: Untersuchungen über Atmung und Gärung pathogener Bakterien. I. Bestimmung der Stoffwechselquotienten pathogener Bakterien. Biochem. Z. 269, 367–374 (1934 a).

    CAS  Google Scholar 

  • Fujita, A., u. T. Kodama: III. Über Cytochrom und das Sauerstoffübertragende Ferment sowie die Atmungshemmung der pathogenen Bakterien durch CO und HCN. Biochem. Z. 273, 186–197 (1934b).

    CAS  Google Scholar 

  • Fujita, A., u. T. Kodama: IV. Über die Sauerstoffatmung und Wasserstoffsuperoxyji-produktion von Pneumococcus. Biochem. Z. 277, 17–31 (1935).

    CAS  Google Scholar 

  • Fukui, S., A. Ôi, A. Ôbayashi and K. Kitahara: Studies on pentose metabolism by micro-organisms. I. New type lactic acid fermentation of pentoses by lactic acid bacteria. J. gen. appl. Microbiol. (Tokyo) 3, 258–268 (1957).

    CAS  Google Scholar 

  • Gäumann, E. : Die Pilze. Grundzüge ihrer Entwicklungsgeschichte und Morphologie. Basel: Birkhäuser 1949.

    Google Scholar 

  • Gaffron, H. : Über die Unabhängigkeit der Kohlensäureassimilation der grünen Pflanzen von der Anwesenheit kleiner Sauerstoffmengen und über eine reversible Hemmung der Assimilation durch Kohlenoxyd. Biochem. Z. 280, 337–359 (1935).

    CAS  Google Scholar 

  • Gaffron, H. : Über Anomalien des Atmungsquotienten von Algen aus Zuckerkulturen. Biol. Zbl. 59, 288–302 (1939).

    CAS  Google Scholar 

  • Gaffron, H., and J. Rubin: Fermentative and photochemical production of hydrogen in algae. J. gen. Physiol. 26, 219–240 (1943).

    Google Scholar 

  • Gaines, S., and G. L. Stahly: The growth requirements of Leuconostoc mesenteroides and preliminary studies on its use as an assay for several members of the vitamin B complex. J. Bact. 46, 441–449 (1943).

    PubMed  CAS  Google Scholar 

  • Gale, E. F. : The bacterial amino acid decarboxylases. Advanc. Enzymol. 6, 1–32 (1946).

    CAS  Google Scholar 

  • Garvic, E. I. : Reclassification of Leuconostoc mesenteroides P. 60 as a Pediococcus. Nature (Lond. ) 183, 1411–1412 (1959).

    Google Scholar 

  • Gauhe, A., P. György, J. R. E. Hoover, R. Kuhn, C. S. Rose, H. W. Ruelius and F. Zilliken: Bifidus factor. IV. Preparations obtained from human milk. Arch. Biochem. 48, 214–224 (1954).

    PubMed  CAS  Google Scholar 

  • Gayon, U., et E. Dubourg: Sur les vins mannités. Ann. Inst. Pasteur 8, 108–116 (1894).

    Google Scholar 

  • Gayon, U., et E. Dubourg: Nouvelles recherches sur le ferment mannitique. Ann. Inst. Pasteur 15, 527–569 (1901).

    CAS  Google Scholar 

  • Geddes, M., and G. F. Humphrey: Glycolysis in Paramaecium caudatum. Aust. J. exp. Biol. med. Sci. 29, 187–193 (1951).

    PubMed  CAS  Google Scholar 

  • Genevois, L. : Über Atmung und Gärung in grünen Pflanzen. Biochem. Z. 186, 461–473 (1927).

    Google Scholar 

  • Genevois, L. : Sur la fermentation et sur la respiration chez les végétaux chlorophylliens. IV. La fermentation chez les algues inférieurs. Rev. gén. bot. 41, 157–166 (1929).

    Google Scholar 

  • Gest, H., and J. O. Lampen: Fermentation of l-C14-D-xylose by Lactobacillus pentosus. J. biol. Chem. 194, 555–562 (1952).

    PubMed  CAS  Google Scholar 

  • Gest, H., and H. D. Peck jr. : A study of the hydrogenlyase reaction with systems derived from normal and anaerogenic Coli-Aerogenes bacteria. J. Bact. 70, 326–334 (1955).

    PubMed  CAS  Google Scholar 

  • Gibbs, M. : Distribution of labeled carbon in plant sugars after a short period of photosynthesis in C14O2. J. biol. Chem. 179, 499–500 (1949).

    PubMed  CAS  Google Scholar 

  • Gibbs, M., and R. D. DeMoss: Ethanol formation in Pseudomonas linderi. Arch. Biochem. 34, 478–479 (1951).

    CAS  Google Scholar 

  • Gibbs, M., R. Dumrose, F. A. Bennett and M. R. Bubeck: On the mechanism of bacterial fermentation of glucose to lactic acid studied with C14-glucose. J. biol. Chem. 184, 545–549 (1950).

    PubMed  CAS  Google Scholar 

  • Gibbs, M., and R. Gastel: Glucose dissimilation by Ehizopus. Arch. Biochem. 43, 33–38 (1953).

    PubMed  CAS  Google Scholar 

  • Gibbs, M., J. T. Sokatch and I. C. Gunsalus: Product labeling of glucose-l-C14 fermentation by homofermentative and heterofermentative lactic acid bacteria. J. Bact. 70, 572–576 (1955).

    PubMed  CAS  Google Scholar 

  • Golueke, C. G. : Comparative studies of the physiology of Sapromyces and related genera. J. Bact. 74, 337–343 (1957).

    PubMed  CAS  Google Scholar 

  • Grant, P. T., and J. D. Fulton: The catabolism of glucose by strains of Trypanosoma rhodesiense. Biochem. J. 66, 242–250 (1957).

    PubMed  CAS  Google Scholar 

  • Green, D. E., P. K. Stumpf and K. Zarudnaya: Diacetyl mutase. J. biol. Chem. 167, 811–816 (1947).

    PubMed  CAS  Google Scholar 

  • Greenberg, G. R. : A formylation cofactor. J. Amer. chem. Soc. 76, 1458–1459 (1954).

    CAS  Google Scholar 

  • Greenberg, G. R., and L. Jaenicke: On the activation of the one-carbon unit for the biosynthesis of purine nucleotides. In: Ciba Foundation Symposium on the chemistry and biology of purines (edit. by G. E. W. Wolstenholme and C. M. O’Connor), S. 204–232. London: J. & A. Churchill 1957.

    Google Scholar 

  • Greisen, E. C. , and I. C. Gunsalus: Hydrogen peroxide destruction by streptococci. J. Bact. 45, 16–17 (1943).

    Google Scholar 

  • Greisen, E. C., and I. C. Gunsalus: An alcohol oxidation system in streptococci which functions without hydrogen peroxide accumulation. J. Bact. 49, 515–525 (1944).

    Google Scholar 

  • Grell, K. G. : Protozoologie. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  • Grey, E. C. : The enzymes which are concerned in the decomposition of glucose and mannitol by Bacillus coli communis. I. Proc. roy. Soc. B 87, 472–484 (1914).

    CAS  Google Scholar 

  • Grey, E. C. : II. Experiments of short duration with an emulsion of the organisms. Proc. roy. Soc. B 90, 75–92 (1918).

    CAS  Google Scholar 

  • Grisebach, H. : Chemie und Biochemie der a-Liponsäure. Angew. Chem. 68, 554–559 (1956).

    CAS  Google Scholar 

  • Grisebach, H., C. Fuller and M. Calvin: Metabolism of thioctic acid in algae. Biochim. biophys. Acta 23, 34–42 (1957).

    PubMed  CAS  Google Scholar 

  • Guirard, B. M., E. E. Snell and R. J. Williams: The nutritional role of acetate for lactic acid bacteria. I. The response to substances related to acetate. Arch. Biochem. 9, 361–379 (1946a).

    PubMed  CAS  Google Scholar 

  • Guirard, B. M., E. E. Snell and R. J. Williams: II. Fractionation of extracts of natural materials. Arch. Biochem. 9, 381–386 (1946b).

    PubMed  CAS  Google Scholar 

  • Gunsalus, I. C. : Products of anaerobic glycerol fermentation by Streptococcus faecalis. J. Bact. 54, 239–244 (1947).

    PubMed  CAS  Google Scholar 

  • Gunsalus, I. C. : The chemistry and function of the pyruvate oxidation factor (lipoic acid). J. cell. comp. Physiol. 41 (Suppl. 1), 113–136 (1953).

    CAS  Google Scholar 

  • Gunsalus, I. C. : Group transfer and acyl-generating functions of lipoic acid derivatives. In: A Symposium on the mechanism of enzyme action (edit. by W. D. McElroy and B. Glass), S. 545–580. Baltimore: John Hopkins Press 1954a.

    Google Scholar 

  • Gunsalus, I. C. : Oxidative and transfer reactions of lipoic acid. Fed. Proc. 13, 715–722 (1954b).

    PubMed  CAS  Google Scholar 

  • Gunsalus, I. C., and J. J. R. Campbell: Diversion of the lactic acid fermentation with oxidized substrate. J. Bact. 49, 455–461 (1944).

    Google Scholar 

  • Gunsalus, I. C., M. I. Dolin and L. J. Struglia: Pyruvic acid metabolism. III. A manometric assay for pyruvate oxidation factor. J. biol. Chem. 194, 849–867 (1952).

    PubMed  CAS  Google Scholar 

  • Gunsalus, I. C., and M. Gibbs: The heterolactic fermentation. II. Position of C14 in the products of glucose dissimilation by Leuconostoc ?nesenteroides. J. biol. Chem. 194, 871–875 (1952).

    PubMed  CAS  Google Scholar 

  • Gunsalus, I. C., B. L. Horecker and W. A. Wood: Pathways of carbohydrate metabolism in microorganisms. Bact. Rev. 19, 79–128 (1955).

    PubMed  CAS  Google Scholar 

  • Gunsalus, I. C., and C. F. Niven jr. :The effect of pH on the lactic fermentation. J. biol. Chem. 145, 131–136 (1942).

    CAS  Google Scholar 

  • Gunsalus, I. C., and J. M. Sherman: The fermentation of glycerol by streptococci. J. Bact. 45, 155–162 (1943).

    PubMed  CAS  Google Scholar 

  • Gunsalus, I. C., L. Struglia and D. J. O’Kane: Pyruvic acid metabolism. IV. Occurrence, properties and partial purification of pyruvate oxidation factor. J. biol. Chem. 194, 859–869 (1952).

    PubMed  CAS  Google Scholar 

  • György, P., J. R. E. Hoover, R. Kuhn and C. S. Rose: Bifidus factor. III. The rate of dialysis. Arch. Biochem. 48, 209–213 (1954).

    PubMed  Google Scholar 

  • György, P., R. Kuhn, C. S. Rose and F. Zilliken: Bifidus factor. II. Its occurrence in milk from different species and in other natural products. Arch. Biochem. 48, 202–208 (1954).

    PubMed  Google Scholar 

  • György, P., R. F. Norris and C. S. Rose: Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch. Biochem. 48, 193–201 (1954).

    PubMed  Google Scholar 

  • Hac, L. R., E. E. Snell and R. J. Williams: Microbiological determination of amino acids. II. Assay and utilization of glutamic acid and glutamine by Lactobacillus arabinosus. J. biol. Chem. 159, 273–289 (1945).

    CAS  Google Scholar 

  • Haehn, H.: Biochemie der Gärungen, S. 412f. Berlin: W. de Gruyter & Co. 1952.

    Google Scholar 

  • Hager, L. P., D. M. Geller and F. Lipmann: Flavoprotein-catalyzed pyruvate oxidation in Lactobacillus delbrückii. Fed. Proc. 13, 734–738 (1954).

    PubMed  CAS  Google Scholar 

  • Hager, L. P., and I. C. Gunsalus: Lipoic acid dehydrogenase: the function of E. coli fraction B. J. Amer. chem. Soc. 75, 5767–5768 (1953).

    CAS  Google Scholar 

  • Hanke, M. E., and M. S. H. Siddiqi: Fixation of radioactive carbon dioxide in lysine and tyrosine by decarboxylase-enzymes of these amino acids. Fed. Proc. 9, 181–182 (1950).

    Google Scholar 

  • Hansen, R. G., and E. M. Craine: Lactose metabolism. III. The reversible conversion of galactose-1-phosphate to glucose-1-phosphate. J. biol. Chem. 208, 293–298 (1954).

    PubMed  CAS  Google Scholar 

  • Hanson, A. M., and N. E. Rodgers: Influence of iron concentration and attenuation on the metabolism of Clostridium aceto-butylicum. J. Bact. 51, 568 (1946).

    PubMed  CAS  Google Scholar 

  • Harden, A. : The chemical action of B. coli communis and similar organisms on carbohydrates and allied compounds. J. chem. Soc. 79, 610–628 (1901).

    CAS  Google Scholar 

  • Harden, A., and D. Norris: The bacterial production of acetylmethylcarbinol and 2:3-butyleneglycol from various substances. Proc. roy. Soc. B 84, 492–499 (1912).

    CAS  Google Scholar 

  • Harden, A., and G. S. Walpole: The chemical action of „B. lactis aerogenes“ (Escherich) on glucose and mannitol. Production of 2:3-butyleneglycol and acetylmethylcarbinol. Proc. roy. Soc. B 77, 399–405 (1906).

    CAS  Google Scholar 

  • Harpur, R. P., W. J. Johnson and J. H. Quastel: Conversion of alcoholic fermentation in yeast extracts by animal tissues. Arch. Biochem. 31, 337–350 (1951).

    PubMed  CAS  Google Scholar 

  • Harrison, A. P., and P. A. Hansen: A mobile lactobacillus from the cecal feces of turkeys. J. Bact. 59, 444–446 (1950).

    PubMed  Google Scholar 

  • Harrison, R. W. : Studies on lactobacilli. IV. Changes in immunological specificity associated with changes in fermentation reactions. J. infect. Dis. 70, 77–87 (1942).

    CAS  Google Scholar 

  • Harvey, S. C. : The carbohydrate metabolism of Trypanosoma hippicum. J. biol. Chem. 179, 435–453 (1949).

    PubMed  CAS  Google Scholar 

  • Hassinen, J. B., G. T. Durbin and F. W. Bernhart: Hexadecenoic acid as a growth factor for lactic acid bacteria. Arch. Biochem. 25, 91–96 (1950).

    PubMed  CAS  Google Scholar 

  • Heald, K., and C. Long: Studies involving enzymic phosphorylation. III. The phosphorylation of D-ribose by extracts of Escherichia coli Biochem. J. 59, 316–322 (1955).

    PubMed  CAS  Google Scholar 

  • Heald, P. J., and A. E. Oxford: Fermentation of soluble sugars by anaerobic holotrich ciliate protozoa of the genera Isotricha and Dasytricha. Biochem. J. 53, 506–512 (1953).

    PubMed  CAS  Google Scholar 

  • Heath, E. C., B. L. Horecker, P. Z. Smyrniotis and Y. Takagi: Pentose fermentation by Lactobacillus plantarum. II. l-Arabinose isomerase. J. biol. Chem. 231, 1031–1037 (1958).

    PubMed  CAS  Google Scholar 

  • Heath, E. C., J. Hurwitz and B. L. Horecker: Acetyl phosphate formation in the phosphorolytic cleavage of pentose phosphate. J. Amer. chem. Soc. 78, 5449 (1956).

    CAS  Google Scholar 

  • Heath, E. C., J. Hurwitz, B. L. Horecker and A. Ginsburg: Pentose fermentation by Lactobacillus plantarum. I. The cleavage of xylulose-5-phosphate by phospho-ketolase. J. biol. Chem. 231, 1009–1029 (1958).

    PubMed  CAS  Google Scholar 

  • Hegsted, D. M. : The amino-acid requirements of Lactobacillus arabinosus 17–5. J. biol. Chem. 152, 193–200 (1944).

    CAS  Google Scholar 

  • Henderson, L. M., and E. E. Snell: A uniform medium for determination of amino acids with various microorganisms. J. biol. Chem. 172, 15–29 (1948).

    PubMed  CAS  Google Scholar 

  • Hendlin, D., M. C. Caswell, V. J. Peters and T. R. Wood: The nature of the TJ factor for Lactobacillus lactis Dorner. J. biol. Chem. 186, 647–662 (1950).

    PubMed  CAS  Google Scholar 

  • Hewitt, L. F. : Bacterial metabolism. I. Lactic acid production by haemolytic streptococci. Biochem. J. 26, 208–217 (1932a).

    PubMed  CAS  Google Scholar 

  • Hewitt, L. F. : Bacterial metabolism. II. Glucose breakdown by pneumococcus variants and the effect of phosphate thereon. Biochem. J. 26, 464–471 (1932b).

    PubMed  CAS  Google Scholar 

  • Hill, R. L., and R. C. Mills: The anaerobic glucose metabolism of Bacterium tularense. Arch. Biochem. 53, 173–183 (1954a).

    Google Scholar 

  • Hill, R. L., and R. C. Mills: Lactic dehydrogenase and glycolysis in various micro-organisms. Fed. Proc. 13, 229 (1954b).

    Google Scholar 

  • Hodges, E. A., T. B. Coolidge and R. W. Harrison: Further observations on metabolic changes in oral lactobacilli. J. infect. Dis. 88, 237–240 (1951).

    PubMed  CAS  Google Scholar 

  • Hoff-Jørgensen, E. : Differences in growth-promoting effect of desoxyribosides and vitamin B12 on three strains of lactic acid bacteria. J. biol. Chem. 178, 525–526 (1949).

    PubMed  Google Scholar 

  • Hoff-Jørgensen, E. : Microbiological assay of vitamin B12. In: Methods of biochemical analysis (edit. by D. Glick), Bd. I, S. 81–113. New York: Interscience Publishers Inc. 1954.

    Google Scholar 

  • Hoff-Jörgensen, E., W. L. Williams and E. E. Snell: Preferential utilization of lactose by a strain of Lactobacillus bulgaricus. J. biol. Chem. 168, 773–774 (1947).

    Google Scholar 

  • Hoffmann, C. E., and J. O. Lampen: Products of desoxyribose degradation by Escherichia coli. J. biol. Chem. 198, 885–893 (1952).

    PubMed  CAS  Google Scholar 

  • Hoffmann, C. E., and L. A. Manson: Products of desoxyribose nucleosides degradation by Escherichia coli. Fed. Proc. 10, 198–199 (1951).

    Google Scholar 

  • Hoffmann, C. E., E. L. R. Stokstad, A. L. Franklin and T. H. Jukes: Response of Lactobacillus leichmannii 313 to the antipernicious anemia factor. J. biol. Chem. 176, 1465–1466 (1948).

    PubMed  CAS  Google Scholar 

  • Hoffmann-Ostenhof, O. : Enzymologie. Wien: Springer 1954.

    Google Scholar 

  • Hofmann, K., D. B. Henis and C. Panos: Fatty acid interconversions in lactobacilli. J. biol. Chem. 228, 349–355 (1957).

    PubMed  CAS  Google Scholar 

  • Hofmann, K., C. Y. Hsiao, D. B. Henis and C. Panos: The estimation of the fatty acid composition of bacterial lipides. J. biol. Chem. 217, 49–60 (1955).

    PubMed  CAS  Google Scholar 

  • Hofmann, K., R. A. Lucas and S. M. Sax: Chemical nature of the fatty acids of Lactobacillus arabinosus. J. biol. Chem. 195, 473–485 (1952).

    PubMed  CAS  Google Scholar 

  • Hofmann, K., and C. Panos: The biotin-like activity of lactobacillic acid and related compounds. J. biol. Chem. 210, 687–693 (1954).

    PubMed  CAS  Google Scholar 

  • Hofmann, K., and S. M. Sax: The chemical nature of the fatty acids of Lactobacillus casci. J. biol. Chem. 205, 55–63 (1953).

    PubMed  CAS  Google Scholar 

  • Hofmann, K., and F. Tausig: The chemical nature of the fatty acids of a group C streptococcus species. J. biol. Chem. 213, 415–423 (1955).

    PubMed  CAS  Google Scholar 

  • Holden, J. T., and E. E. Snell: The vitamin B6 group. XVII. The relation of D-alanine and vitamin B6 to growth of lactic acid bacteria. J. biol. Chem. 178, 799–809 (1949).

    PubMed  CAS  Google Scholar 

  • Holden, J. T., R. B. Wildman and E. E. Snell: Growth promotion by keto and hydroxy acids and its relation to vitamin B6. J. biol. Chem. 191, 559–576 (1951).

    PubMed  CAS  Google Scholar 

  • Holland, B. R., W. W. Meinke and M. B. Sample: The serine requirements of Streptococcus faecalis as a function of the basal medium. J. biol. Chem. 178, 7–15 (1949).

    PubMed  CAS  Google Scholar 

  • Holleman, A. F. : Notice sur l’action de l’eau oxygénée sur les acides cétoniques et sur les dicétones 1. 2. Rec. Trav. chim. Pays-Bas 23, 169–172 (1904).

    CAS  Google Scholar 

  • Hollmann, S., and O. Touster: An enzymatic pathway from L-xylulose to D-xylulose. J. Amer. chem. Soc. 78, 3544–3545(1956).

    CAS  Google Scholar 

  • Hölzer, H. : Freie Enthalpien biochemisch wichtiger Gleichgewichte. In: Biochemisches Taschenbuch (herausgeg. von H. M. Rauen), S. 668–679. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  • Holzer, H., u. E. Holzer: Enzyme des Kohlenhydratstoffwechsels in Chlorella. Chem. Ber. 85, 655–663 (1952).

    CAS  Google Scholar 

  • Hood, D. W., and C. M. Lyman: Utilization of allo-isoleucine by Lactobacillus arabinosus. J. biol. Chem. 186, 195–200 (1950).

    PubMed  CAS  Google Scholar 

  • Hopkins, G. G., and E. J. Morgan: Glyoxalase. I. A new factor. Biochem. J. 42, 23–27 (1948).

    CAS  Google Scholar 

  • Horecker, B. L. : The metabolism of pentose phosphate. J. cell comp. Physiol. 41 (Suppl. 1), 137–164 (1953).

    CAS  Google Scholar 

  • Horecker, B. L. : Pentosephosphate und Heptulosephosphat im Kohlenhydratstoffwechsel. In: Neuere Ergebnisse aus Chemie und Stoffwechsel der Kohlenhydrate. 8. Colloquium der Gesellschaft für physiologische Chemie am 2. 4. Mai 1957 in Mosbach/Baden, S. 29–55. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • Horecker, B. L., M. Gibbs, H. Klenow and P. Z. Smyrniotis: The mechanism of pentose phosphate conversion to hexose monophosphate. J. biol. Chem. 207, 393–403 (1954).

    PubMed  CAS  Google Scholar 

  • Horecker, B. L., J. Hurwitz and P. Z. Smyrniotis: Xylulose 5-phosphate and the formation of sedoheptulose 7-phosphate with liver transketo-ase. J. Amer. chem. Soc. 78, 692 (1956).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: The coenzyme function of thiamine pyrophosphate in pentose metabolism. J. Amer. chem. Soc. 75, 1009–1010 (1953).

    CAS  Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis and J. Hurwitz: The role of xylulose 5-phosphate in the transketolase reaction. J. biol. Chem. 223, 1009–1019 (1956).

    PubMed  CAS  Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose phosphate from pentose phosphate. J. biol. Chem. 205, 661–682 (1953).

    PubMed  CAS  Google Scholar 

  • Hornberger, C. S., R. F. Heitmiller, I. C. Gunsalus, G. H. F. Schnakenberg and L. J. Reed: Synthetic preparation of lipoic acid. J. Amer. chem. Soc. 75, 1273–1277 (1953).

    CAS  Google Scholar 

  • Howard, B. H. : The biochemistry of rumen protozoa. I. Carbohydrate fermentation by Dasytricha and Isotricha. Biochem. J. 71, 671–675 (1959).

    PubMed  CAS  Google Scholar 

  • Howell, A., and L. Pine: Studies on the growth of species of Actinomyces. I. Cultivation in a synthetic medium with starch. J. Bact. 71, 47–53 (1956).

    PubMed  CAS  Google Scholar 

  • Huennekens, F. M. : Flavin nucleotides and flavoproteins. Experientia (Basel) 12, 1–6 (1956).

    CAS  Google Scholar 

  • Huennekens, F. M., M. J. Osborn and H. R. Whiteley: Folic acid coenzymes. Science 128, 120–124 (1958).

    PubMed  CAS  Google Scholar 

  • Hugo, W. B. : The preparation of cell-free enzymes from microorganisms. Bact. Rev. 18, 87–105 (1954).

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. : Mutualistic intestinal protozoa. In: S. H. Hutner and A. Lwoff (Edit. ), Biochemistry and physiology of protozoa. II. S. 159–199. New York: Academic Press 1955.

    Google Scholar 

  • Hunt, A. L., and P. M. Nossal: Glucose catalysis in bacterial metabolism. I. Pyruvate metabolism in Lactobacillus arabinosus 17–5. Aust. J. exp. Biol. med. Sci. 32, 533–542 (1954).

    PubMed  CAS  Google Scholar 

  • Hurwitz, J. : Pentose phosphate cleavage by Leuconostoc mesenteroides. Biochim. biophys. Acta 28, 599–602 (1958).

    PubMed  CAS  Google Scholar 

  • Hurwitz, J., and B. L. Horecker: The purification of phosphoketopentoepimerase from Lactobacillus pentosus and the preparation of xylulose phosphate. J. biol. Chem. 223, 993–1008 (1956).

    PubMed  CAS  Google Scholar 

  • Hutchings, B. L., and E. Boggiano: Oleic acid as a growth factor for various lactobacilli. J. biol. Chem. 169, 229–230 (1947).

    PubMed  CAS  Google Scholar 

  • Hutchings, B. L., and W. H. Peterson: Amino-acid requirements of Lactobacillus casci. Proc. Soc. exp. Biol. (N. Y. ) 52, 36–38 (1943).

    CAS  Google Scholar 

  • Hutchings, B. L., N. H. Sloane and E. Boggiano: The nutrition of Lactobacillus gayonii. J. biol. Chem. 162, 737–738 (1946).

    CAS  Google Scholar 

  • Hutner, S. H., and A. Lwoff: Biochemistry and physiology of protozoa. Vol. 11. New York: Academic Press 1955.

    Google Scholar 

  • Hutner, S. H., and L. Provasoli: The phytoflagellates. In: A. Lwoff (Edit. ), Biochemistry and physiology of protozoa, Bd. I, S. 27–128. New York: Academic Press 1951.

    Google Scholar 

  • Hutner, S. H., and L. Provasoli: Comparative biochemistry of flagellates. In: S. H. Hutner and A. Lwoff (Edit. ), Biochemistry and physiology of protozoa, Bd. II, S. 17–43. New York: Academic Press 1955.

    Google Scholar 

  • Ingraham, J. L., and R. Emerson: Studies of the nutrition and metabolism of the aquatic phycomycete, Allomyces. Amer. J. Bot. 41, 146–152 (1954).

    CAS  Google Scholar 

  • Isbell, H. : Effect of p-aminobenzoic acid on the microbiological assay for nicotinic acid. J. biol. Chem. 144, 567–568 (1942).

    CAS  Google Scholar 

  • Jacobsohn, K. P. : Über die biologische Zuckerbestimmung mit Hilfe des Colibacillus und ihre Anwendungen. Biochem. Z. 220, 461–472 (1930).

    CAS  Google Scholar 

  • Jagannathan, V., and R. S. Schweet: Pyruvic acid oxidase of pigeon breast muscle. I. Purification and properties of the enzyme. J. biol. Chem. 196, 551–562 (1952).

    PubMed  CAS  Google Scholar 

  • Janz, G. J. : Estimation of thermodynamic properties of organic compounds. New York: Academic Press 1958.

    Google Scholar 

  • Jensen, E. M., and H. W. Seeley: The nutrition and physiology of the genus Pediococcus. J. Bact. 67, 484–488 (1954).

    PubMed  CAS  Google Scholar 

  • Jerchel, D., P. Flesch u. E. Bauer: Untersuchungen zum Abbau der L-Äpfelsäure durch Bacterium gracile. Justus Liebigs Ann. Chem. 601, 40–60 (1956).

    Google Scholar 

  • Jerchel, D., u. H. -L. Schmidt: Vergleich des Abbaues von L-Äpfelsäure durch Bacterium gracile und Lactobacillus arabinosus. Justus Liebigs Ann. Chem. 613, 198–203 (1958).

    CAS  Google Scholar 

  • Jørgensen, A., and A. Hansen: Micro-organisms and fermentation, S. 405ff. London: Ch. Griffin & Co. 1948.

    Google Scholar 

  • Jørgensen, A., and A. Hansen: Mikroorganismen der Gärungsindustrie, 7. Aufl. , S. 409ff. Nürnberg: H. Carl 1956.

    Google Scholar 

  • Johnson, M. K., and C. S. McCleskey: Studies on the aerobic carbohydrate metabolism of Leuconostoc mesenteroides. J. Bact. 74, 22–25 (1957).

    PubMed  CAS  Google Scholar 

  • Johnson, M. K., and C. S. McCleskey: Further studies on the aerobic metabolism of Leuconostoc mesenteroides. J. Bact. 75, 98–101 (1958).

    PubMed  CAS  Google Scholar 

  • Joslyn, M. A. : The by-products of alcoholic fermentation. Wallerstein Lab. Comm. Sci. Pract. Brewing 3, 30–43 (1940).

    CAS  Google Scholar 

  • Jukes, T. H., H. P. Broquist and E. L. R. Stokstad: Vitamin B12 and “citrovorum factor“ in the nutrition of Lactobacillus leichmannii and Leuconostoc citrovorum. Arch. Biochem. 26, 157–159 (1950).

    CAS  Google Scholar 

  • Jukes, T. H., and E. L. R. Stokstad: The role of vitamin B12 in metabolic processes. Vitam. and Horm. 9, 1–26 (1951).

    CAS  Google Scholar 

  • Juni, E. : α-Acetolactic acid, an intermediate in acetyl-methyl-carbinol formation. Fed. Proc. 9, 396 (1950).

    Google Scholar 

  • Juni, E. : Mechanism of formation of acetoin by bacteria. J. biol. Chem. 195, 715–726 (1952a).

    PubMed  CAS  Google Scholar 

  • Juni, E. : Mechanisms of the formation of acetoin by yeast and mammalian tissue. J. biol. Chem. 195, 727–734 (1952b).

    PubMed  CAS  Google Scholar 

  • Kagan, B. O., S. N. Ljatker u. E. M. Zwasman: Phosphorolyse des Rohrzuckers durch Kulturen von Leuconostoc mesenteroides. Biochimia 7, 93–108 (1942) [Russisch].

    CAS  Google Scholar 

  • Kalckar, H. M. : Uridinediphospho-galactose: metabolism, enzymology and biology. Advanc. Enzymol. 20, 111–134 (1958).

    CAS  Google Scholar 

  • Kalckar, H. M., B. Braganca and A. Munch-Petersen: Uridyl transferase and the formation of uridine diphosphogalactose. Nature (Lond. ) 172, 1038 (1953).

    CAS  Google Scholar 

  • Kalckar, H. M., and E. S. Maxwell: Some considerations concerning the nature of the enzymic galactose-glucose conversion. Biochim. biophys. Acta 22, 588–589 (1956).

    PubMed  CAS  Google Scholar 

  • Kallio, R. E. : Function of pyridoxal phosphate in desulfurase systems of Proteus morganii. J. biol. Chem. 192, 371–377 (1951).

    PubMed  CAS  Google Scholar 

  • Kalnitsky, G., M. F. Utter and C. H. Werkman: Active enzyme preparations from bacteria. J. Bact. 49, 595–602 (1945).

    PubMed  CAS  Google Scholar 

  • Kalnitsky, G., and C. H. Werkman: The anaerobic dissimilation of pyruvate by a cell-free extract of Escherichia coli. Arch. Biochem. 2, 113–124 (1943).

    CAS  Google Scholar 

  • Kanel, E. : Milchsäurebildung in der Kultur eines Pilzes der Gattung Rhizopus. Mikrobiologia 3, 259–265 (1934) [Russisch].

    CAS  Google Scholar 

  • Kanel, E. : Vergleichende Untersuchung des Mechanismus des Atmungsprozesses bei zwei verwandten Rassen von Rhizopus nigricans im Zusammenhang mit der Differenzierung des Thalloms und den Veränderungen der äußeren Bedingungen. Mikrobiologia 4, 636–654 (1935) [Russisch].

    Google Scholar 

  • Karström, H. : Enzymatische Adaptation bei Mikroorganismen. Er-gebn. Enzymforsch. 7, 350–376 (1938).

    Google Scholar 

  • Katagiri, H. , and K. Kitahara: The lactic dehydrogenase of lactic acid bacteria. Biochem. J. 32, 1654–1657 (1938).

    PubMed  CAS  Google Scholar 

  • Kaufman, S., S. Korkes and A. del Campillo: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. V. Further study of the “malic” enzyme of Lactobacillus arabinosus. J. biol. Chem. 192, 301–312 (1951).

    PubMed  CAS  Google Scholar 

  • Kempner, W. : Wirkung von Blausäure und Kohlenoxyd auf die Buttersäuregärung. Biochem. Z. 257, 41–56 (1933).

    CAS  Google Scholar 

  • Kempner, W., u. F. Kubowitz: Wirkung des Lichts auf die Kohlenoxydhemmung der Buttersäuregärung. Biochem. Z. 265, 245–252 (1933).

    CAS  Google Scholar 

  • Kidder, G. W., and V. C. Dewey: Biochemistry of Tetrahymena. V. The chemical nature of factors I and III. Arch. Biochem. 8, 293–301 (1945).

    CAS  Google Scholar 

  • Kidder, G. W., and V. C. Dewey: The biochemistry of ciliates in pure culture. In: A. Lwoff, Biochemistry and physiology of protozoa. I. S. 323–400. New York: Academic Press 1951.

    Google Scholar 

  • Kihara, H., O. A. Klatt and E. E. Snell: Peptides and bacterial growth. III. Utilization of tyrosine and tyrosine peptides by Streptococcus faecalis. J. biol. Chem. 197, 801–807 (1952).

    PubMed  CAS  Google Scholar 

  • Kihara, H., W. G. McCullough and E. E. Snell: Peptides and bacterial growth. I. Purification of a peptide factor required for growth of Lactobacillus casci. J. biol. Chem. 197, 783–789 (1952).

    PubMed  CAS  Google Scholar 

  • Kihara, H., and E. E. Snell: Peptides and bacterial growth. II. L-Alanine peptides and growth of Lactobacillus casci. J. biol. Chem. 197, 791–800 (1952).

    PubMed  CAS  Google Scholar 

  • Kihara, H., and E. E. Snell: Peptides and bacterial growth. VII. Relation to inhibitions by thienylalanine, ethionine, and canavanine. J. biol. Chem. 212, 83–94 (1955).

    PubMed  CAS  Google Scholar 

  • Kihara, H., and E. E. Snell: Spermine and related polyamines as growth stimulants for Lactobacillus casci. Proc. nat. Acad. Sci. (Wash. ) 43, 867–871 (1957).

    CAS  Google Scholar 

  • Kislink, R. W., and W. Sakami: The stimulation of serine biosynthesis in pigeon liver extracts by tetrahydrofolic acid. J. Amer. chem. Soc. 76, 1456–1457 (1954).

    Google Scholar 

  • Kitahara, K. : Enzymes of lactic acid bacteria. II. Lactic dehydrogenase of lactic acid bacteria. J. agric. chem. Soc. Japan 15, 19–24 (1939).

    CAS  Google Scholar 

  • Kitahara, K., and A. Ôbayashi: DL-forming lactic acid bacteria. J. gen. appl. Microbiol. (Tokyo) 1, 237–245 (1955).

    CAS  Google Scholar 

  • Kitahara, K., A. Ôbayashi and S. Fukui: Racemiase. I. Cell-free racemiase. Enzymologia 15, 259–266 (1952).

    PubMed  CAS  Google Scholar 

  • Kitahara, K., A. Ôbayashi and S. Fukui: On the lactic acid racemase (racemiase) of lactic acid bacteria, with special reference to the process of its formation. Proc. Internat. Symposium Enzyme Chem. , Tokyo and Kyoto 1957, S. 460–463.

    Google Scholar 

  • Kitay, E., W. S. McNutt and E. E. Snell: The non-specificity of thymidine as a growth factor for lactic acid bacteria. J. biol. Chem. 177, 993–994 (1949).

    PubMed  CAS  Google Scholar 

  • Kitay, E., W. S. McNutt and E. E. Snell: Desoxyribosides and vitamin B12 as growth factor for lactic acid bacteria. J. Bact. 59, 727–738 (1950).

    PubMed  CAS  Google Scholar 

  • Kitay, E., and E. E. Snell: Some additional nutritional requirements of certain lactic acid bacteria. J. Bact. 60, 49–56 (1950).

    PubMed  CAS  Google Scholar 

  • Kluyver, A. J. : The chemical activities of microorganisms. London: University of London Press 1931.

    Google Scholar 

  • Kluyver, A. J. : Die bakteriellen Zuckervergärungen. Ergebn. Enzymforsch. 4, 230–273 (1935).

    CAS  Google Scholar 

  • Kluyver, A. J., and H. J. L. Donker: The unity in the chemistry of the fermentative sugar dissimilation processes of microbes. Proc. kon. ned. Akad. Wet. 28, 297–313 (1925).

    CAS  Google Scholar 

  • Kluyver, A. J., u. W. J. Hoppenbrouwers: Ein merkwürdiges Gärungsbakterium: Lindners Termo-bacterium mobile. Arch. Mikrobiol. 2, 245–260 (1931).

    Google Scholar 

  • Kneteman, A. : Enrichment and isolation of Streptococcus citrophilus van Beynum et Pette. Antonie v. Leeuwenhoek 18, 275–290 (1952).

    CAS  Google Scholar 

  • Knight, B. C. J. G. : Growth factors in microbiology. Vitam. and Horm. 3, 105–228b (1945).

    CAS  Google Scholar 

  • Koft, B. W., and J. H. Morrison: Symbiotic biosynthesis of folic acid-like growth factors. J. Bact. 72, 705–707 (1956).

    PubMed  CAS  Google Scholar 

  • Koike, M., and L. J. Reed: On the mechanism of oxidative decarboxylation of pyruvate. J. Amer. chem. Soc. 81, 505 (1959).

    CAS  Google Scholar 

  • Koppelman, R., S. Mandeles and M. E. Hanke: Use of enzymes and radiocarbon in estimation of the equilibrium constants for the decarboxylation of lysine and glutamate. J. biol. Chem. 280, 73–80 (1958).

    Google Scholar 

  • Korkes, S., A. del Campdllo, I. C. Gunsalus and S. Ochoa: Enzymatic synthesis of citric acid. IV. Pyruvate as acetyl donor. J. biol. Chem. 193, 721–735 (1951).

    PubMed  CAS  Google Scholar 

  • Korkes, S., A. del Campillo and S. Ochoa: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. IV. Isolation and properties of an adaptive “malic” enzyme from Lactobacillus arabinosus. J. biol. Chem. 187, 891–905 (1950).

    PubMed  CAS  Google Scholar 

  • Korkes, S., and S. Ochoa: Adaptive conversion of malate to lactate and carbon dioxide by Lactobacillus arabinosus. J. biol. Chem. 176, 463–464 (1948).

    PubMed  CAS  Google Scholar 

  • Korkes, S., J. R. Stern, I. C. Gunsalus and S. Ochoa: Enzymatic synthesis of citrate from pyruvate and oxalacetate. Nature (Lond. ) 166, 439–440 (1950).

    CAS  Google Scholar 

  • Kornberg, H. L., and H. A. Krebs: Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature (Lond. ) 179, 988–991 (1957).

    CAS  Google Scholar 

  • Koser, S. A., and J. L. Thomas: Utilization of some D-amino acids by lactobacilli. J. Bact. 73, 477–483 (1957).

    PubMed  CAS  Google Scholar 

  • Koshland, D. E., and F. H. Westheimer: Mechanism of alcoholic fermentation. The fermentation of glucose- 1-C14. J. Amer. chem. Soc. 72, 3383–3388 (1950).

    CAS  Google Scholar 

  • Kostytschew, S., W. Gwaladse u. P. Eliasberg: Bildung von Brenztraubensäure bei der Milchsäuregärung. Hoppe-Seylers Z. physiol. Chem. 188, 127–182 (1930).

    Google Scholar 

  • Kostytschew, S., u. S. Soldatenkov: Brenztraubensäure und Methylglyoxal als Zwischenprodukte der Milchsäuregärung. Hoppe-Seylers Z. physiol. Chem. 168, 124–127 (1927).

    Google Scholar 

  • Kowalsky, A., and D. E. Koshland jr. : The mechanism of the galactose-glucose interconversion in Lactobacillus bulgaricus. Biochim. biophys. Acta 22, 575–577 (1956).

    PubMed  CAS  Google Scholar 

  • Kraght, A. J., and M. P. Starr: Fermentation of galacturonic acid and glucose by a strain of Erwinia carotovora. J. Bact. 64, 259–264 (1952).

    PubMed  CAS  Google Scholar 

  • Krampitz, L. O., G. Greull, C. S. Miller, J. B. Bicking, H. R. Skeggs and J. M. Sprague: An active acetaldehyd-thiamine intermediate. J. Amer. chem. Soc. 80, 5893–5894 (1958).

    CAS  Google Scholar 

  • Krebs, H. A. : Dismutation of pyruvic acid in Gonococcus and Staphylococcus. Biochem. J. 31, 661–671 (1937).

    PubMed  CAS  Google Scholar 

  • Krebs, H. A., and H. L. Kornberg: Energy transformations in living matter. Berlin-Göttingen-Heidelberg: Springer 1957.

    Google Scholar 

  • Krebs, H. A., A. Ruffo, M. Johnson, L. V. Eggleston and R. Hems: Oxidative phosphorylation. Biochem. J. 54, 107–116 (1953).

    PubMed  CAS  Google Scholar 

  • Krehl, W. A., and J. S. Fruton: Utilization of peptides by lactic acid bacteria. J. biol. Chem. 173, 479–485 (1948).

    PubMed  CAS  Google Scholar 

  • Kubowitz, F. : Über die Hemmung der Buttersäuregärung durch Kohlenoxyd. Biochem. Z. 274, 285–298 (1934).

    CAS  Google Scholar 

  • Kubowitz, F. : Kohlenoxyd-Ferroglutathion. Biochem. Z. 282, 277–281 (1935).

    CAS  Google Scholar 

  • Kuhn, R. : Vitamine der Milch. Angew. Chem. 64, 493–500 (1952).

    CAS  Google Scholar 

  • Kuhn, R. : Aminozucker. Angew. Chem. 69, 23–33 (1957).

    CAS  Google Scholar 

  • Kuhn, R., u. H. Tiedemann: Zum Stoffwechsel des Lactobacillus bifidus; die Umsetzung von radioaktiver 14C-1-Glucose. Z. Naturforsch. 8b, 428–436 (1953).

    Google Scholar 

  • Kuiken, K. A., W. H. Norman, C. M. Lyman, F. Hale and L. Blotter: The microbiological determination of amino acids. I. Valine, leucine and isoleucine. J. biol. Chem. 151, 615–626 (1943).

    CAS  Google Scholar 

  • Kun, E., J. L. Bradin jr. and J. M. Dechary: Correlation between CO2 and H2S production by Endamoeba histolytica. Biochim. biophys. Acta 19, 153–159 (1956).

    PubMed  CAS  Google Scholar 

  • Laborde, J. : Sur le ferment de la maladie des vins poussés ou tournés. C. R. Acad. Sci. (Paris) 138, 228–231 (1904).

    CAS  Google Scholar 

  • Lamanna, C., and M. F. Mallette: Basic bacteriology. Its biological and chemical background. Baltimore- Williams & Wilkins Co. 1953.

    Google Scholar 

  • Lampen, J. O. : Formation of ribose phosphate from xylose by extracts of Lactobacillus pentosus. J. biol. Chem. 204, 999–1010 (1953a).

    PubMed  CAS  Google Scholar 

  • Lampen, J. O. : Pentose and desoxypentose metabolism in bacteria. J. cell. comp. Physiol. 41 (Suppl. ), 183–205 (1953b).

    CAS  Google Scholar 

  • Lampen, J. O., H. Gest and J. C. Sowden: Observations on the mechanism of fermentation of 1-C14-d-xylose by Lactobacillus pentosus. J. Bact. 61, 97–98 (1951).

    PubMed  CAS  Google Scholar 

  • Lampen, J. O., and H. R. Peterjohn: Studies on the specificity of the fermentation of pentoses by Lactobacillus pentosus. J. Bact. 62, 281–292 (1951).

    PubMed  CAS  Google Scholar 

  • Lanning, M. C., and S. S. Cohen: The mechanism of ribose formation in Escherichia coli. J. biol. Chem. 207, 193–199 (1954).

    PubMed  CAS  Google Scholar 

  • Lardy, H. A. : The influence of inorganic ions on phosphorylation reactions. In: Phosphorus metabolism (edit. by W. D. McElroy and B. Glass), Bd. 1, S. 477–499. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Lardy, H. A., and R. Peanasky: Metabolic functions of biotin. Physiol. Rev. 33, 560–565 (1953).

    PubMed  CAS  Google Scholar 

  • Lardy, H. A., R. L. Potter and R. H. Burris: Metabolic functions of biotin. I. The rôle of biotin in bicarbonate utilization by Lactobacillus arabinosus studied with C14. J. biol. Chem. 179, 721–731 (1949).

    PubMed  CAS  Google Scholar 

  • Lascelles, J. L., M. J. Cross and D. D. Woods: Leuconostoc citrovorum factor and the synthesis of serine by microorganisms. Biochem. J. 49, LXVI (1951).

    PubMed  CAS  Google Scholar 

  • Lascelles, J. L., M. J. Cross and D. D. Woods: The folic acid and serine nutrition of Leuconostoc mesenteroides P 60 (Streptococcus equinus P 60). J. gen. Microbiol. 10, 267–284 (1954).

    PubMed  CAS  Google Scholar 

  • Lascelles, J. L., and D. D. Woods: Synthesis of serine by microorganisms. Nature (Lond. ) 166, 649–650 (1950).

    CAS  Google Scholar 

  • Lascelles, J. L., and D. D. Woods: The synthesis of serine and Leuconostoc citrovorum factor by cell suspensions of Streptococcus faecalis R. Biochem. J. 58, 486–497 (1954).

    PubMed  CAS  Google Scholar 

  • Leach, F. R., K. Yasunobu and L. J. Reed: Lipoic acid activation of the α-ketobutyrate oxidation system in cell-free extracts of Streptococcus faecalis. Biochim. biophys. Acta 18, 297–298 (1955).

    PubMed  CAS  Google Scholar 

  • Lehmberg, C. : Untersuchungen über die Wirkung von Ascorbinsäure, Stoffwechselgiften und anderen Faktoren auf den Stoffwechsel von Clostridium butyricum Prazm. Arch. Mikrobiol. 24, 323–346 (1956).

    PubMed  CAS  Google Scholar 

  • Lehninger, A. L. : Role of metal ions in enzyme systems. Physiol. Rev. 30, 393–429 (1950).

    PubMed  CAS  Google Scholar 

  • Leloir, L. F. : The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Arch. Biochem. 33, 186–190 (1951).

    PubMed  CAS  Google Scholar 

  • Leloir, L. F. : Enzymic isomerization and related processes. Advanc. Enzymol. 14, 193–218 (1953).

    CAS  Google Scholar 

  • Lemberg, R., J. W. Legge and W. H. Lockwood: Coupled oxidation of ascorbic acid and hemoglobin. II. Formation and properties of choleglobin. Biochem. J. 35, 328–338 (1941a).

    PubMed  CAS  Google Scholar 

  • Lemberg, R., J. W. Legge and W. H. Lockwood: III. Quantitative studies on choleglobin formation. Estimation of hemoglobin and ascorbic acid oxidations. Biochem. J. 35, 339–352 (1941b).

    PubMed  CAS  Google Scholar 

  • Lerner, E. M., and J. H. Mueller: The role of glutamine in the glucose metabolism of Clostridium tetani. J. biol. Chem. 181, 43–45 (1949).

    PubMed  CAS  Google Scholar 

  • Leuthardt, F., et B. Glasson: Formation du glycocolle à partir de la serine. Helv. chim. Acta 25, 245–249 (1942).

    CAS  Google Scholar 

  • Levenberg, B., S. C. Hartman and J. M. Buchanan: Biosynthesis of the purines. X. Further studies in vitro on the metabolic origin of nitrogen atoms 1 and 3 of the purine ring. J. biol. Chem. 220, 379–390 (1956).

    CAS  Google Scholar 

  • Lewis, J. C. : A Lactobacillus assay method for p-aminobenzoic acid. J. biol. Chem. 146, 441–450 (1942).

    CAS  Google Scholar 

  • Lichstein, H. C. : Functions of biotin in enzyme systems. Vitam. and Horm. 9, 27–74 (1951).

    CAS  Google Scholar 

  • Lichstein, H. C. : The presence of bound biotin in purified preparations of oxalacetic carboxylase. J. biol. Chem. 212, 217–222 (1955).

    PubMed  CAS  Google Scholar 

  • Lichstein, H. C., and J. F. Christman: The role of biotin and adenylic acid in amino acid deaminases. J. biol. Chem. 175, 649–662 (1948).

    PubMed  CAS  Google Scholar 

  • Lichstein, H. C., and R. B. Ferguson: On the permeability of Lactobacillus arabinosus to biotin. J. biol. Chem. 233, 243–244 (1958).

    PubMed  CAS  Google Scholar 

  • Lichstein, H. C., and W. W. Umbreit: Biotin activation of certain deaminases. J. biol. Chem. 170, 423–424 (1947).

    CAS  Google Scholar 

  • Lipmann, F. : Fermentation of phosphogluconic acid. Nature (Lond. ) 138, 588–589 (1936).

    CAS  Google Scholar 

  • Lipmann, F. : Die Dehydrierung der Brenz-traubensäure. Enzymologia 4, 65–72 (1937).

    CAS  Google Scholar 

  • Lipmann, F. : An analysis of the pyruvic acid oxidation system. Cold Spr. Harb. Symp. quant. Biol. 7, 248–259 (1939).

    CAS  Google Scholar 

  • Lipmann, F. : A phosphorylated oxidation product of pyruvic acid. J. biol. Chem. 134, 463–464 (1940).

    CAS  Google Scholar 

  • Lipmann, F. : Enzymatic synthesis of acetyl phosphate. J. biol. Chem. 155, 55–70 (1944).

    CAS  Google Scholar 

  • Lipmann, F. : On chemistry and function of coenzyme A. Bact. Rev. 17, 1–16 (1953).

    PubMed  CAS  Google Scholar 

  • Lipmann, F., and L. C. Tuttle: Specific micromethod for the determination of acyl phosphates. J. biol. Chem. 159, 21–28 (1945).

    CAS  Google Scholar 

  • Lister, J. : Lactic fermentation and bearings upon pathology. Lancet 1877, 918–919.

    Google Scholar 

  • Lister, J.: On the lactic fermentation and its bearings on pathology. Trans. path. Soc. Lond. 29, 425–467 (1878).

    Google Scholar 

  • Littauer, U. Z., B. E. Volcani and E. D. Bergmann: Observations on the metabolism of pentoses by Escherichia coli. Biochim. biophys. Acta 18, 523–530 (1955).

    PubMed  CAS  Google Scholar 

  • Lohmann, K., u. P. Schuster: Untersuchungen über die Cocarboxylase. Biochem. Z. 294, 188–214 (1937).

    CAS  Google Scholar 

  • Long, C. : Studies involving enzymic phosphorylation. IV. The conversion of D-ribose into D-ribose-5-phosphate by extracts of Escherichia coli. Biochem. J. 59, 322–329 (1955).

    PubMed  CAS  Google Scholar 

  • Lüthi, H. : La rétrogradation malolactique dans les vins et les cidres. Rev. fermentat, ind. aliment. 12, 15–21 (1957).

    Google Scholar 

  • Lwoff, A. (Edit. ): Biochemistry and physiology of protozoa, Vol. 1. New York: Academic Press 1951.

    Google Scholar 

  • Lyman, C. M., K. A. Kuiken, L. Blotter and F. Hale: Microbiological determination of amino acids. I. Glutamic acid. J. biol. Chem. 157, 395–405 (1945).

    CAS  Google Scholar 

  • Lyman, C. M., O. Moseley, S. Wood, B. Butler and F. Hale: The function of pyridoxine in lactic acid bacteria. J. biol. Chem. 162, 173–174 (1946).

    CAS  Google Scholar 

  • Lyman, C. M., O. Moseley, S. Wood, B. Butler and F. Hale: Some chemical factors which influence the amino acid requirements of the lactic acid bacteria. J. biol. Chem. 167, 177–187 (1947).

    PubMed  CAS  Google Scholar 

  • Lynch, V. H., and M. Calvin: Carbon dioxide fixation by microorganisms. J. Bact. 63, 525–531 (1952).

    PubMed  CAS  Google Scholar 

  • Lynen, F.: Der Fettsäurecyclus. Angew. Chem. 67, 463–470 (1955).

    CAS  Google Scholar 

  • Lynen, F., H. Eggerer, U. Henning u. J. Kessel: Farnesyl-pyrophosphat und 3-Methyl-Δ3-butenyl-1-pyrophosphat, die biologischen Vorstufen des Squalens. (Zur Biosynthese der Terpene. III.) Angew. Chem. 70, 738–742 (1958).

    CAS  Google Scholar 

  • Lynen, F., E. Reichert u. L. Rueff: Zum biologischen Abbau der Essigsäure. IV. „Aktivierte Essigsäure“, ihre Isolierung aus Hefe und ihre chemische Natur. Justus Liebigs Ann. Chem. 574, 1–32 (1951).

    CAS  Google Scholar 

  • MacDonald, J. C.: Synthesis of aspartic acid by Lactobacillus arabinosus. Canad. J. Microbiol. 4, 335–343 (1958).

    CAS  Google Scholar 

  • MacLeod, R. A., and E. E. Snell: Some mineral requirements of the lactic acid bacteria. J. biol. Chem. 170, 351–365 (1947).

    CAS  Google Scholar 

  • MacLeod, R. A., and E. E. Snell: Ion antagonism in bacteria as related to antimetabolites. Ann. N. Y. Acad. Sci. 52, 1249–1259 (1950).

    PubMed  CAS  Google Scholar 

  • Mann, P. J. G., and J. H. Quastel: Nicotinamide, cozymase and tissue metabolism. Biochem. J. 35, 502–517 (1941).

    PubMed  CAS  Google Scholar 

  • Mann, S. O., and A. E. Oxford: Studies of some presumptive lactobacilli isolated from the rumens of young calves. J. gen. Microbiol. 11, 83–90 (1954).

    PubMed  CAS  Google Scholar 

  • Manners, D. J., and J. F. Ryley: The glycogen of the ciliate Tetrahymena pyriformis (Glaucoma piriformis). Biochem. J. 52, 480–482 (1952).

    PubMed  CAS  Google Scholar 

  • Marco, S. J., and K. Hofmann: Structural studies on lactobacillic acid and other long-chain fatty acids containing the cyclopropane ring. Fed. Proc. 15, 308 (1956).

    Google Scholar 

  • Maxwell, E. S.: Diphosphopyridine nucleotide, a cofactor for galacto-waldenase. J. Amer. chem. Soc. 78, 1074 (1956).

    CAS  Google Scholar 

  • Maxwell, E. S. The enzymic interconversion of uridine diphosphogalactose and uridine diphosphoglucose. J. biol. Chem. 229, 139–151 (1957).

    PubMed  CAS  Google Scholar 

  • Mayer, P.: Zur Biochemie des Asymmetrieproblems. Biochem. Z. 174, 420–424 (1926).

    CAS  Google Scholar 

  • McCleskey, C. S.: The identity of strain P. 60 of Leuconostoc mesenteroides. J. Bact. 64, 140–141 (1952).

    PubMed  CAS  Google Scholar 

  • McIlwain, H.: Metabolism and functioning of vitammlike compounds. I. Ammonia formation from glutamine by hemolytic streptococci; its reciprocal connection with glycolysis. Biochem. J. 40, 67–78 (1946).

    CAS  Google Scholar 

  • McIlwain, H., P. Feldes, G. P. Gladstone and B. C. J. G. Knight: Glutamine and the growth of Streptococcus hemolyticus. Biochem. J. 33, 223–229 (1939).

    PubMed  CAS  Google Scholar 

  • McIlwain, H., J. A. Roper and D. E. Hughes: Relationships in streptococci between growth and metabolism of glutamine. Bio-chem. J. 42, 492–508 (1948).

    CAS  Google Scholar 

  • McKee, R. W.: Biochemistry of Plasmodium and the influence of antimalarials. In: A. Lwoff, Biochemistry and physiology of protozoa. I. S. 251–322. New York: Academic Press 1951.

    Google Scholar 

  • McKee, R. W., R. A. Ormsbee, Ch. B. Anfinsen, Q. M. Geiman and E. G. Ball: Studies on malarial parasites. VI. The chemistry and metabolism of normal and parasitized (P. knowlesi) monkey blood. J. exp. Med. 84, 569–582 (1946).

    PubMed  CAS  Google Scholar 

  • McLean, R. A., and W. L. Sulzbacher: Microbacterium thermosphactum, spec, nov.; a non-heat resistant bacterium from fresh pork sausage. J. Bact. 65, 428–433 (1953).

    PubMed  CAS  Google Scholar 

  • McMahan, J. R., and E. E. Snell: The microbiological determination of amino acids. I. Valine and arginine. J. biol. Chem. 152, 83–95 (1944).

    CAS  Google Scholar 

  • McNutt, W. S.: Exchange between free purines and pyrimidines and the aglucones of deoxyribosyl purines and deoxyribosyl pyrimidines. Nature (Lond.) 166, 444 (1950).

    Google Scholar 

  • McNutt, W. S. Enzymically catalyzed transfer of the deoxyribosyl group from one purine or pyrimidine to another. Biochem. J. 50, 384–397 (1952).

    Google Scholar 

  • McNutt, W. S., and E. E. Snell: Phosphates of pyridoxal and pyridoxamine as growth factors for lactic acid bacteria. J. biol. Chem. 173, 801–802 (1948).

    PubMed  CAS  Google Scholar 

  • McNutt, W. S., and E. E. Snell: Pyridoxal phosphate and pyridoxamine phosphate as growth factors for lactic acid bacteria. J. biol. Chem. 182, 557–567 (1950).

    CAS  Google Scholar 

  • Meinhart, J. O., and S. Simmonds: Serine metabolism in a mutant strain of Escherichia coli strain K-12. J. biol. Chem. 213, 329–341 (1955).

    PubMed  CAS  Google Scholar 

  • Meister, A.: Utilization and transamination of the stereoisomers and keto analogs of isoleucine. J. biol. Chem. 195, 813–826 (1952).

    PubMed  CAS  Google Scholar 

  • Meister, A.: Transamination. Advanc. Enzymol. 16, 185–246 (1955).

    CAS  Google Scholar 

  • Melnick, J. L.: Photochemical spectrum of cytochrome oxidase in heart muscle. Science 94, 118–119 (1941).

    PubMed  CAS  Google Scholar 

  • Metzler, D. E., and E. E. Snell: Deamination of serine. I. Catalytic deamination of serine and cysteine by pyridoxal and metal salts. J. biol. Chem. 198, 353–361 (1952a).

    PubMed  CAS  Google Scholar 

  • Metzler, D. E., and E. E. Snell: Deamination of serine. II. D-Serine dehydrase, a vitamin B6 enzyme from Escherichia coli. J. biol. Chem. 198, 363–373 (1952b).

    PubMed  CAS  Google Scholar 

  • Mevius, W.: Taschenbuch der Botanik (begründet von H.Miehe). II. Systematik. Stuttgart: Georg Thieme 1958.

    Google Scholar 

  • Meyerhof, O.: Über den Einfluß des Sauerstoffs auf die alkoholische Gärung der Hefe. Biochem. Z. 162, 43–86 (1925).

    CAS  Google Scholar 

  • Meyerhof, O.:Über die Intermediärvorgänge bei der biologischen Kohlenhydrat Spaltung. Ergebn. Enzymforsch. 4, 208–229 (1935).

    CAS  Google Scholar 

  • Meyerhof, O., u. P. Finkle: Über die Beziehungen des Sauerstoffs zur bakteriellen Milchsäuregärung. Chem. Zelle 12, 157–175 (1926).

    Google Scholar 

  • Michels, H.: Über die Hemmung der Photosynthese bei Grünalgen nach Sauerstoffentzug. Z. Bot. 35, 241–270 (1940).

    CAS  Google Scholar 

  • Mickelson, M., H. Reynolds and C. H. Werkman: Fermentation of pyruvic acid by bacteria of the Colon-Aerogenes group. Proc. Soc. exp. Biol. (N.Y.) 34, 748–750 (1936).

    CAS  Google Scholar 

  • Miller, A. K., J. J. R. Campbell and I. C. Gunsalus: Pyruvic acid metabolism of streptococci. J. Bact. 54, 22 (1947).

    PubMed  CAS  Google Scholar 

  • Miller, H. K., and H. Waelsch: The utilization of glutamine and asparagine peptides by microorganisms. Arch. Biochem. 35, 184–194 (1952a).

    PubMed  CAS  Google Scholar 

  • Miller, H. K., and H. Waelsch: Utilization of glutamine and asparagine and their peptides by microorganisms. Nature (Lond.) 169, 30–31 (1952b).

    CAS  Google Scholar 

  • Mitoma, C., and E. E. Snell: The role of purine bases as histidine precursors in Lactobacillus casci. Proc. nat. Acad. Sci. (Wash.) 41, 891–894 (1955).

    CAS  Google Scholar 

  • Mitsuhashi, S., and J. O. Lampen: Conversion of D-xylose to D-xylulose in extracts of Lactobacillus pentosus. J. biol. Chem. 204, 1011–1018 (1953).

    PubMed  CAS  Google Scholar 

  • M’Leod, J. W., and J. Gordon: The production of hydrogen peroxide by bacteria. Biochem. J. 16, 499–506 (1922).

    Google Scholar 

  • M’Leod, J. W., and J. Gordon: Catalase production and sensitiveness to hydrogen peroxide amongst bacteria: with a scheme of classification based on these properties. J. Path. Bact. 26, 326–331 (1923a).

    Google Scholar 

  • M’Leod, J. W., and J. Gordon: The problem of intolerance of oxygen by anaerobic bacteria. J. Path. Bact. 26, 332–343 (1923b).

    Google Scholar 

  • Moat, A. G., and H. C. Lichstein: Factors affecting the formation of acetylmethylcarbinol by Lactobacillus arabinosus. J. Bact. 66, 324–327 (1953).

    PubMed  CAS  Google Scholar 

  • Möller, E.F.: Vitamin B6 (Adermin) als Wuchsstoff für Milchsäurebakterien. Hoppe-Seylers Z. physiol. Chem. 254, 285–286 (1938).

    Google Scholar 

  • Möller, E.F.: Das Wuchsstoffsystem der Milchsäurebakterien. Hoppe-Seylers Z. physiol. Chem. 260, 246–256 (1939).

    Google Scholar 

  • Moyed, H. S., and B. Magasanik: The role of purines in histidine biosynthesis. J. Amer. chem. Soc. 79, 4812–4813 (1957).

    CAS  Google Scholar 

  • Moyed, H. S., and D. J. O’Kane: The enzymes of the pyruvate oxidase system of Proteus vulgaris. Arch. Biochem. 39, 457–458 (1952a).

    PubMed  CAS  Google Scholar 

  • Moyed, H. S., and D. J. O’Kane: Fractionation of the pyruvate oxidase of Proteus vulgaris. J. biol. Chem. 195, 375–381 (1952 b).

    PubMed  CAS  Google Scholar 

  • Moyed, H. S., and D. J. O’Kane: Enzymes and coenzymes of the pyruvate oxidase of Proteus. J. biol. Chem. 218, 831–840 (1956).

    PubMed  CAS  Google Scholar 

  • Mücke, D.: Einführung in mikrobiologische Bestimmungsverfahren. Quantitative Bestimmung von Aminosäuren und Vitaminen des B-Komplexes. Leipzig: Thieme 1955.

    Google Scholar 

  • Müller-Thurgau, H., u. A. Osterwalder: Die Bakterien im Wein und Obstwein und die dadurch verursachten Veränderungen. Zbl. Bakt., II. Abt. 36, 129–338 (1913).

    Google Scholar 

  • Müller-Thurgau, H., u. A. Osterwalder: Weitere Beiträge zur Kenntnis der Mannitbakterien im Wein. Zbl. Bakt., II. Abt. 48, 1–35 (1917).

    Google Scholar 

  • Najjar, V. A.: The role of metal ions in enzyme systems. In: Phosphorus metabolism (edit. bei W. D. McElroy and B. Glass), Bd. 1, S. 500–520. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Narrod, S. A., and W. A. Wood: Evidence for a glutamic acid racemase in Lactobacillus arabinosus. Arch. Biochem. 35, 462–463 (1952).

    PubMed  CAS  Google Scholar 

  • Neal, A. L., and F. M. Strong: Microbiological determination of pantothenic acid. Further studies. Ind. Eng. Chem., Analyt. Ed. 15, 654–657 (1943).

    CAS  Google Scholar 

  • Neidle, A., and H. Waelsch: Participation of glut-amine in the biogenesis of histidine. J. Amer. chem. Soc. 78, 1767–1768 (1956).

    CAS  Google Scholar 

  • Neish, A. C.: Studies on the anaerobic dissimilation of glucose by Bacillus subtilis (Ford’s type). Canad. J. Bot. 31, 265–276 (1953).

    CAS  Google Scholar 

  • Neish, A.C., and A.C. Blackwood: The anaerobic dissimilation of sedoheptulose-2-C14 and sedoheptulose-3-C14 by Aerobacter aerogenes. Canad. J. Biochem. 33, 323–331 (1955).

    PubMed  CAS  Google Scholar 

  • Neish, A. C., A. C. Blackwood and G. A. Ledingham: Dissimilation of glucose by Bacillus subtilis (Ford’s strain). Canad. J. Res., B 23, 290–296 (1945).

    CAS  Google Scholar 

  • Neish, A. C., A. C. Blackwood, F. M. Robertson and G. A. Ledingham: Production and properties of 2, 3-butanediol. XVIII. Dissimilation of glucose by Serratia marcescens. Canad. J. Res., B 25, 65–69 (1947).

    PubMed  CAS  Google Scholar 

  • Neish, A. C., and F. J. Simpson: The anaerobic dissimilation of D-glucose-1-C14, D-arabinose-1-C14, and L-arabinose-1-C14 by Aerobacter aerogenes. Canad. J. Biochem. 32, 147–153 (1954).

    PubMed  CAS  Google Scholar 

  • Nelson, M. E., and C. H. Werkman: Dissimilation of glucose by heterofermentative lactic acid bacteria. J. Bact. 30, 547–557 (1935a).

    PubMed  CAS  Google Scholar 

  • Nelson, M. E., and C. H. Werkman: Dissimilation of pyruvic acid by Lactobacillus lycopersici. Proc. Soc. exp. Biol. (N. Y.) 32, 1622–1623 (1935b).

    Google Scholar 

  • Nelson, M. E., and C. H. Werkman: Diversion of the normal heterolactic dissimilation by addition of hydrogen acceptors. J. Bact. 31, 603–610 (1936).

    PubMed  CAS  Google Scholar 

  • Nelson, M. E., and C. H. Werkman: The dissimilation of lévulose by heterofermentative lactic acid bacteria. Iowa State Coll. J. Sci. 14, 359–365 (1940).

    CAS  Google Scholar 

  • Neuberg, C.: Weitere Untersuchungen über die biochemische Umwandlung von Methylglyoxal in Milchsäure nebst Bemerkungen über die Entstehung der verschiedenen Milchsäuren in der Natur. Biochem. Z. 51, 484–508 (1913).

    Google Scholar 

  • Neuberg, C.: Einige Beobachtungen über Hefefermente. Biochem. Z. 152, 203–206 (1924).

    CAS  Google Scholar 

  • Neuberg, C., u. J. Hirsch: Über ein Kohlenstoffketten knüpfendes Ferment (Carboligase). Biochem. Z. 115, 282–310 (1921).

    CAS  Google Scholar 

  • Neuberg, C., u. J. Jamakawa: Das Verhalten der a-Ketosäuren zu Mikroorganismen. I. Die Fäulnis von Brenz-traubensäure und Oxalessigsäure. Biochem. Z. 67, 90–101 (1914).

    CAS  Google Scholar 

  • Neuberg, C., u. M. Kobel: Ergänzung zur vorstehenden Veröffentlichung und zu unserer früheren Mitteilung über vermeintliche Abfangung von Methylglyoxal bei der alkoholischen Gärung. Biochem. Z. 199, 230–231 (1928 a).

    CAS  Google Scholar 

  • Neuberg, C., u. M. Kobel: Über die Frage nach der Identität vonMutase und Ketonaldehydmutase. Kinetische Untersuchungen. Z. phys. Chem. A 139, 631–646 (1928b).

    CAS  Google Scholar 

  • Neuberg, C., u. M. Kobel: Die desmolytische Bildung von Methylglyoxal durch Hefeenzyme. Biochem. Z. 203, 463–468 (1928c).

    CAS  Google Scholar 

  • Neuberg, C., u. M. Kobel: Die Isolierung von Methylglyoxal bei der Milchsäuregärung. Biochem. Z. 207, 232–262 (1929).

    CAS  Google Scholar 

  • Neuberg, C., u. M. Kobel: Überführung der synthetischen Glycerin-monophosphorsäure in Brenztraubensäure mittels Hefe und Milchsäurebakterien. Biochem. Z. 260, 241–246 (1933).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Simon: Über die quantitative Dismutation des Methylglyoxals zu Milchsäure durch den Bacillus delbrückii sowie durch das Bacterium lactis aerogenes nebst Versuchen über das abweichende stereochemische Verhalten des Phenylglyoxals bei dieser Reaktion. Biochem. Z. 186, 331–336 (1927).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Simon: Über chemische Vorgänge und über energetische Verhältnisse beim physiologischen Ab- und Umbau der Kohlenhydrate und ihrer Spaltungsprodukte. Ergebn. Enzymforsch. 2, 118–138 (1933).

    CAS  Google Scholar 

  • Niederpruem, D. J., and D. P. Hackett: The oxygen affinity of a flavin oxidase involved in the respiration of Streptococcus faecalis. Plant Physiol. 33, 113–115 (1958).

    PubMed  CAS  Google Scholar 

  • Niel, C. B. van, A. J. Kluyver u. H. G. Derx: Über das Butteraroma. Biochem. Z. 210, 234–251 (1929).

    Google Scholar 

  • Niel, C. B. van, J. O. Thomas, S. Ruben and M. Kamen: Radioactive carbon as an indicator of carbon dioxide utilization. IX. The assimilation of carbon dioxide by protozoa. Proc. nat. Acad. Sci. (Wash.) 28, 157–161 (1942).

    Google Scholar 

  • Nieman, C.: Influence of trace amounts of fatty acids on the growth of microorganisms. Bact. Rev. 18, 147–163 (1954).

    PubMed  CAS  Google Scholar 

  • Ninomiya, H., and Suzuoki-Ziro: The metabolism of Trichomonas vaginalis, with comparative aspects of Trichomonads. J. Biochem. 39, 321–331 (1952).

    CAS  Google Scholar 

  • Niven, C. F.: The nutrition of Streptococcus lactis. J. Bact. 47, 343–350 (1944).

    PubMed  CAS  Google Scholar 

  • Niven, C. F., and J. M. Sherman: Nutrition of enterococci. J. Bact. 47, 335–342 (1944).

    PubMed  CAS  Google Scholar 

  • Norris, R. F., T. Flanders, R. M. Tomarelli and P. György: The isolation and cultivation of Lactobacillus bifidus: a comparison of branched and unbranched strains. J. Bact. 60, 681–696 (1950).

    PubMed  CAS  Google Scholar 

  • Nossal, P. M.: The decarboxylation of malic acid by Lactobacillus arabinosus. Biochem. J. 49, 407–413 (1951a).

    PubMed  CAS  Google Scholar 

  • Nossal, P. M. Acetoin: formation from pyruvate in Lactobacillus arabinosus. Biochem. J. 49, XLIV (1951 b).

    PubMed  CAS  Google Scholar 

  • Nossal, P. M.: The effects of glucose and potassium on the metabolism of pyruvate in Lactobacillus arabinosus. Biochem. J. 50, 591–595 (1952).

    PubMed  CAS  Google Scholar 

  • Novelli, G.D.: Metabolic functions of pantothenic acid. Physiol. Rev. 33, 525–543 (1953).

    PubMed  CAS  Google Scholar 

  • Nurmikko, V.: Chemical factors affecting associations of lactic acid bacteria. Acta chem. scand. 6, 1258–1264 (1952).

    CAS  Google Scholar 

  • Nurmikko, V. Studies on the biosynthesis of p-aminobenzoic acid by symbiosis experiments. Acta chem. scand. 7, 942–950 (1953).

    CAS  Google Scholar 

  • Nurmikko, V.: The dialysis technique in the study of the vitamins and amino acids affecting associations of micro-organisms. Acta chem. scand. 9, 1317–1322 (1955).

    CAS  Google Scholar 

  • Nurmikko, V.: Biochemical factors affecting symbiosis among bacteria. Experientia (Basel) 12, 245–249 (1956).

    CAS  Google Scholar 

  • Nutting, I. A., and S. F. Carson: Lactic acid fermentation of xylose by Escherichia coli. I. Fermentation studies. J. Bact. 63, 575–580 (1952a). II. Tracer studies: evidence for C2 + C1 condensation. J. Bact. 63, 581–589 (1952b).

    PubMed  CAS  Google Scholar 

  • O’Barr, T. P., H. Levin and H. Reynolds: Some interrelationships of amino acids in the nutrition of Leuconostoc mesenteroides. J. Bact. 75, 429–435 (1958).

    PubMed  Google Scholar 

  • Ochoa, S.: Enzymic mechanisms of carbon dioxide assimilation. In: Currents in biochemical research (edit. by D. E. Green), S. 165–185. New York: Interscience Publishers 1946.

    Google Scholar 

  • Ochoa, S: Biological mechanisms of carboxylation and decarboxylation. Physiol. Rev. 31, 56–106 (1951).

    PubMed  CAS  Google Scholar 

  • Ochoa, S., A. Mehler, M. L. Blanchard, T. H. Jukes, C. E. Hoffmann and M. Regan: Biotin and carbon dioxide fixation of liver. J. biol. Chem. 170, 413–414 (1947).

    CAS  Google Scholar 

  • Ochoa, S., A. Mehler and A. Kornberg: Reversible oxidative decarboxylation of malic acid. J. biol. Chem. 167, 871–872 (1947).

    PubMed  CAS  Google Scholar 

  • Ochoa, S., A. Mehler and A. Kornberg: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. I. Isolation and properties of an enzyme from pigeon liver catalyzing the reversible oxidative decarboxylation of 1-malic acid. J. biol. Chem. 174, 979–1000 (1948).

    PubMed  CAS  Google Scholar 

  • Ogston, A. G., and O. Smithies: Some thermodynamic and kinetic aspects of metabolic phosphorylation. Physiol. Rev. 28, 283–303 (1948).

    PubMed  CAS  Google Scholar 

  • O’Kane, D. J.: Influences of the pyruvate oxidation factor on the oxidative metabolism of glucose by Streptococcus faecalis. J. Bact. 60, 449–467 (1950).

    PubMed  Google Scholar 

  • O’Kane, D. J., and I. C. Gunsalus: Accessory factor requirement for pyruvate oxidation. J. Bact. 54, 20–21 (1947).

    PubMed  Google Scholar 

  • O’Kane, D. J., and I. C. Gunsalus: Pyruvic acid metabolism. I. A. factor required for oxidation by Streptococcus faecalis. J. Bact. 56, 499–506 (1948).

    PubMed  Google Scholar 

  • O’Kane, D. J., and W. W. Umbreit: Transformations of phosphorus during glucose fermentation by living cells of Streptococcus faecalis. J. biol. Chem. 142, 25–30 (1942).

    Google Scholar 

  • Orla-Jensen, S.: The lactic acid bacteria. Kgl. danske Vidensk. Selks. Skr., naturvidensk.-math. Afdel., Ser. VIII, 5, 51–196 (1919).

    Google Scholar 

  • Orla-Jensen, S.: The main lines of the natural bacterial system. J. Bact. 6, 263–273 (1921).

    PubMed  CAS  Google Scholar 

  • Orla-Jensen, S.: Dairy bacteriology, 2nd ed. Philadelphia: P. Blakiston’s Son & Company 1931.

    Google Scholar 

  • Orla-Jensen, S.: The lactic acid bacteria. (Erg.-Bd.) Kgl. danske Vidensk. Selsk., biol. Skr. 2, Nr 3, 1–145 (1943).

    Google Scholar 

  • Orla-Jensen, S., A.D. Orla-Jensen u. O. Winter: Bacterium bifidum und Thermobacterium intestinale., Zbl. Bakt., II. Abt., 93, 321–343 (1936).

    Google Scholar 

  • Orla-Jensen, S., N. C. Otte u. A. Snog-Kjær: Der Vitaminbedarf der Milchsäurebakterien. Zbl. Bakt. II. Abt., 94, 434–447 (1936a).

    CAS  Google Scholar 

  • Orla-Jensen, S., N. C. Otte u. A. Snog-Kjær: The vitamin and nitrogen requirements of the lactic acid bacteria. Kgl. danske Vidensk. Selsk. Skr., naturvidensk.-math. Afdel., Ser. IX, 6, Nr 5, 1–52 (1936b).

    Google Scholar 

  • Orla-Jensen, S., u. A. Snog-Kjær: Über Faktoren, welche aktivierend oder hemmend auf die Entwicklung der Milchsäurebakterien wirken. Woraus besteht das Milchbios? Kgl. danske Vidensk. Selsk., biol. Skr. 1, Nr 2, 1–32 (1940).

    Google Scholar 

  • Ory, R.L., D. W. Hood and C. M. Lyman: The rôle of glutamine in the synthesis of arginine by Lactobacillus arabinosus. J. biol. Chem. 207, 267–273 (1954).

    PubMed  CAS  Google Scholar 

  • Osburn, O. L., R. W. Brown and C. H. Werkman: The butyl alcohol-isopropyl alcohol fermentation. J. biol. Chem. 121, 685–695 (1937).

    CAS  Google Scholar 

  • Paege, L. M., M. Gibbs and R. C. Bard: Fermentation of C14-labeled glucose by Clostridium perfringens. J. Bact. 72, 65–67 (1956).

    PubMed  CAS  Google Scholar 

  • Pappenheimer, jr. A. M., and E. Shaskan: Effect of iron on carbohydrate metabolism of Clostridiumwelchii. J. biol. Chem. 155, 265–275 (1944).

    CAS  Google Scholar 

  • Pasteur, L.: Mémoire sur la fermentation appelée lactique. C. R. Acad. Sci. (Paris) 45, 913–916 (1857).

    Google Scholar 

  • Pasteur, L.: Mémoire sur la fermentation appelée lactique. Ann. Chim. Physique (3) 52, 404–418 (1858).

    Google Scholar 

  • Peck, jr. H. D. and H. Gest: Formic dehydrogenase and the hydrogenlyase enzyme complex in Coli-Aerogenes bacteria. J. Bact. 73, 706–721 (1957).

    PubMed  CAS  Google Scholar 

  • Peck, R. L., D. E. Wolf and K. Folkers: Structure determination of biocytin as ε-N-biotinyl-L-lysine. J. Amer. chem. Soc. 74, 1999–2001 (1952).

    CAS  Google Scholar 

  • Pederson, C. S.: The fermentation of glucose, fructose and arabinose by organisms from spoiled tomato products. New York State agric. Exp. Stat., techn. Bull. Nr. 151, 1–22 (1929).

    Google Scholar 

  • Pederson, C. S.: The genus Pediococcus. Bact. Rev. 13, 225–232 (1949).

    PubMed  CAS  Google Scholar 

  • Pederson, C. S.: The systematic relationships of the lactic acid bacteria. In: Symposium on the lactic acid bacteria. Bact. Rev. 16, 228–235 (1952).

    Google Scholar 

  • Pennington, D.: Assay of p-aminobenzoic acid. Science 103, 397 (1946).

    CAS  Google Scholar 

  • Peters, J. M., and D. M. Greenberg: Studies on the conversion of citrovorum factor to a serine aldolase cofactor. J. biol. Chem. 226, 329–338 (1957).

    PubMed  CAS  Google Scholar 

  • Peters, V. J., J. M. Prescott and E. E. Snell: Peptides and bacterial growth. IV. Histidine peptides as growth factors for Lactobacillus delbrückii 9649. J. biol. Chem. 202, 521–532 (1953).

    PubMed  CAS  Google Scholar 

  • Peterson, W. H., and E. B. Fred: Fermentation of fructose by Lactobacillus pentoaceticus, n. sp. J. biol. Chem. 41, 431–450 (1920a).

    CAS  Google Scholar 

  • Peterson, W. H., and E. B. Fred: The fermentation of glucose, galactose, and mannose by Lactobacillus pentoaceticus, n. sp. J. biol. Chem. 42, 273–287 (1920b).

    CAS  Google Scholar 

  • Peterson, W. H., and E. B. Fred: The production of acetaldehyde by certain pentose-fermenting bacteria. J. biol. Chem. 44, 29–46 (1920c).

    CAS  Google Scholar 

  • Peterson, W. H., E. B. Fred and J. A. Anderson: The fermentation of hexoses and related compounds by certain pentose-fermenting bacteria. J. biol. Chem. 53, 111–123 (1922).

    CAS  Google Scholar 

  • Petuely, F.: Der Bifidusfaktor, ein neuer vitaminartiger Stoff. Naturwiss. 40, 349–352 (1953).

    CAS  Google Scholar 

  • Petuely, F.: Biochemische Untersuchungen zur Regulation der Dickdarmflora des Säuglings. (Über den Bifidusfaktor.) Wien: Notring d. wissenschaftl. Verbände Österreichs 1957.

    Google Scholar 

  • Petuely, F.: Das sogenannte Bifidus-Problem. Naturwiss. Rdsch. 11, 455–458 (1958).

    Google Scholar 

  • Peynaud, E.: Neue Gegebenheiten bezüglich des biologischen Säureabbaus. Mitt. Klosterneuburg, Ser. A, 5, 183–191 (1955).

    CAS  Google Scholar 

  • Pine, L.: Fixation of carbon dioxide by Actinomyces and Lactobacillus bifidus. Proc. Soc. exp. Biol. Med. 93, 468–472 (1956).

    PubMed  CAS  Google Scholar 

  • Pine, L., and H. A. Barker: Tracer experiments on the mechanism of acetate formation from carbon dioxide by Butyribacterium rettgeri. J. Bact. 68, 216–226 (1954).

    PubMed  CAS  Google Scholar 

  • Pine, L., V. Haas and H. A. Barker: Metabolism of glucose by Butyribacterium rettgeri. J. Bact. 68, 227–230 (1954).

    PubMed  CAS  Google Scholar 

  • Pine, L., and A. Howell jr.: Comparison of physiological and biochemical characters of Actinomyces species with those of Lactobacillus bifidus. J. gen. Microbiol. 15, 428–445 (1956).

    PubMed  CAS  Google Scholar 

  • Platt, T. B., and E. M. Foster: Products of glucose metabolism by homofermentative streptococci under anaerobic conditions. J. Bact. 75, 453–459 (1958).

    PubMed  CAS  Google Scholar 

  • Plaut, G. W. E., and H.A. Lardy: The oxalacetate decarboxylase of Azotobacter vinelandii. J. biol. Chem. 180, 13–27 (1949).

    PubMed  CAS  Google Scholar 

  • Pohland, A., E. H. Flynn, R. G. Jones and W. Shive: A proposed structure for folinic acid-SF, a growth factor derived from pteroylglutamic acid. J. Amer, chem. Soc. 73, 3247–3252 (1951).

    CAS  Google Scholar 

  • Pollack, M. A., and M. Lindner: Glutamine and glutamic acid as growth factors for lactic acid bacteria. J. biol. Chem. 143, 655–661 (1942).

    CAS  Google Scholar 

  • Prescott, J. M., B. S. Schweigert, C. M. Lyman and K. A. Kuiken: Effect of D-tryptophan on the utilization of the L-isomer by some lactic acid bacteria. J. biol. Chem. 178, 727–732 (1949).

    PubMed  CAS  Google Scholar 

  • Prescott, S. C., and C. G. Dunn: Industrial microbiology, 2nd ed., S. 404ff. New York-Toronto-London: McGraw-Hill 1949.

    Google Scholar 

  • Prescott, S. C., and C. G. Dunn: Industrielle Mikrobiologie. (Deutsche Übersetzung bearbeitet von G. Drews, M. Girbardt, R. Müller u. U. Tauben-eck). S. 343ff. Berlin: VEB Deutscher Verlag der Wissenschaften 1958.

    Google Scholar 

  • Prodinger, W.: Organic reagents used in quantitative inorganic analysis. New York: Nordeman 1940.

    Google Scholar 

  • Quastel, J. H.: Ruhende Bakterien. In: C. Oppenheimer u. L. Pincussen, Die Methodik der Fermente, S. 1154–1159. Leipzig: Thieme 1929.

    Google Scholar 

  • Racker, E.: The mechanisms of action of glyoxalase. J. biol. Chem. 190, 685–696 (1951).

    PubMed  CAS  Google Scholar 

  • Racker, E.: Alternate pathways of glucose and fructose metabolism. Advane. Enzymol. 15, 141–182 (1954).

    CAS  Google Scholar 

  • Racker, E.: Mechanism of action and properties of pyridine-nucleotide-linked enzymes. Physiol. Rev. 35, 1–56 (1955).

    PubMed  CAS  Google Scholar 

  • Racker, E., G. de la Haba and J. C. Leder: Thiamine pyrophosphate, a coenzyme of transketolase. J. Amer. chem. Soc. 75, 1010–1011 (1953).

    CAS  Google Scholar 

  • Racker, E., G. de la Haba and J. C. Leder: Transketolase-catalyzed utilization of fructose-6-phosphate and its significance in a glucose-6-phosphate oxidation cycle. Arch. Biochem. 48, 238–240 (1954).

    PubMed  CAS  Google Scholar 

  • Racker, E., and E. Schroeder: Formation and utilization of octulose-8-phosphate by transaldolase and transketolase. Arch. Biochem. 66, 241–243 (1957).

    PubMed  CAS  Google Scholar 

  • Radler, F.: Experimenteller Abbau der Äpfelsäure in Traubenmost. Naturwiss. 44, 232–233 (1957).

    CAS  Google Scholar 

  • Radler, F.: Untersuchung des biologischen Säureabbaus im Wein. I. Isolierung und Charakterisierung von äpfel-säure-abbauenden Bakterien. Arch. Mikrobiol. 30, 64–72 (1958a).

    Google Scholar 

  • Radler, F.: II. Der Nähr- und Wuchsstoffbedarf an äpfelsäure-abbauenden Bakterien. Arch. Mikrobiol. 32, 1–15 (1958b).

    PubMed  CAS  Google Scholar 

  • Radler, F.: III. Die Energiequelle der äpfelsäure-abbauenden Bakterien. Arch. Mikrobiol. 31, 224–230 (1958 c).

    Google Scholar 

  • Radler, F.: IV. Über Faktoren, die das Wachstum der äpfelsäure-abbauenden Bakterien beeinflussen. Vitis 1, 288–297 (1958d).

    CAS  Google Scholar 

  • Radler, F.: Bakterieller Säureabbau zur Weinverbesserung. Umschau 59, 113–115 (1959).

    Google Scholar 

  • Rahn, O., C. P. Hegarty and R. E. Deuel: Factors influencing the rate of fermentation of Streptococcus lactis. J. Bact. 35, 547–558 (1938).

    PubMed  CAS  Google Scholar 

  • Rappoport, D. A., H. A. Barker and W. Z. Hassid: Fermentation of L-arabinose-1-C14 by Lactobacillus pentoaceticus. Arch. Biochem. 31, 326 (1951).

    CAS  Google Scholar 

  • Rauen, H. M.: Vergleichende Biochemie der C1-Körper. In: Vergleichend biochemische Fragen. 6. Colloquium der Ges. für Physiol. Chemie am 20.— 22. Apr. 1955 in Mosbach/Baden. S. 134–164. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  • Ravel, J. M., M. L. Grona, J. S. Humphreys and W. Shive: The function of biotin in carbamylation reactions. J. Amer. chem. Soc. 80, 2344 (1958).

    CAS  Google Scholar 

  • Ravel, J. M., M. L. Grona, J. S. Humphreys and W. Shive: Properties and biotin content of purified preparations of the ornithine-citrulline enzyme of Streptococcus lactis. J. biol. Chem. 234, 1452–1455 (1959).

    PubMed  CAS  Google Scholar 

  • Reazin, jr. G. H.: The metabolism of glucose by the alga Ochromonas malhamensis. Plant Physiol. 31, 299–303 (1956).

    PubMed  CAS  Google Scholar 

  • Reed, L. J.: Metabolic functions of thiamine and lipoic acid. Physiol. Rev. 33, 544–559 (1953).

    PubMed  CAS  Google Scholar 

  • Reed, L. J.: The chemistry and function of lipoic acid. Advanc. Enzymol. 18, 319–347 (1957).

    CAS  Google Scholar 

  • Reed, L. J., and B. G. DeBusk: Lipothiamide and its relation to a thiamine coenzyme required for oxidative decarboxylation of α-ketoacids. J. Amer. chem. Soc. 74, 3457 (1952a).

    CAS  Google Scholar 

  • Reed, L. J., and B. G. DeBusk: Chemical nature of α-lipoic acid conjugate required for oxidation of pyruvate and oc-keto-glutarate by an Escherichia colimutant. J. biol. Chem. 199, 881–888 (1952b).

    PubMed  CAS  Google Scholar 

  • Reed, L. J., and B. G. DeBusk: Lipothiamide pyrophosphate: coenzyme for oxidative decarboxylation of a-ketoacids. J. Amer. chem. Soc. 74, 3964–3965 (1952c).

    CAS  Google Scholar 

  • Reed, L. J., and B. G. DeBusk: Mechanism of enzymatic oxidative decarboxylation of pyruvate. J. Amer. chem. Soc. 75, 1261–1262 (1953).

    Google Scholar 

  • Reed, L. J., and B. G. DeBusk: Enzymic synthesis of a lipoic acid coenzyme. Fed. Proc. 13, 723–731 (1954).

    PubMed  CAS  Google Scholar 

  • Reed, L. J., B. G. DeBusk, I. C. Gunsalus and C. S. Hornberger: Crystalline a-lipoic acid: a catalytic agent associated with dehydrogenase. Science 114, 93–94 (1951).

    PubMed  CAS  Google Scholar 

  • Reed, L. J., B. G. DeBusk, P.M. Johnston and M. E. Getzendaner: Acetate-replacing factors for lactic acid bacteria. I. Nature, extraction, and distribution. J. biol. Chem. 192, 851–858 (1951).

    PubMed  CAS  Google Scholar 

  • Reed, L. J., M. J. Getzendaner, B. G. DeBusk and P. M. Johnson: Acetate-replacing factors for lactic acid bacteria. II. Purification and properties. J. biol. Chem. 192, 859–865 (1951).

    PubMed  CAS  Google Scholar 

  • Reed, L. J., M. Koike, M. E. Levitch and F. R. Leach: Studies on the nature and reactions of protein-bound lipoic acid. J. biol. Chem. 232, 143–158 (1958).

    PubMed  CAS  Google Scholar 

  • Reed, L. J., F. R. Leach and M. Koike: Studies on a lipoic acid-activating system. J. biol. Chem. 232, 123–142 (1958).

    PubMed  CAS  Google Scholar 

  • Reichard, P.: Biosynthesis of purines and pyrimidines. In: The nucleic acids (edit. by E. Chargaff and J. N. Davidson), II, S. 277–308. New York: Academic Press 1955.

    Google Scholar 

  • Reichard, P., and G. Hanshoff: Synthesis of ureido-succinic acid with soluble enzymes from liver mitochondria and Escherichia coli. Acta chem. scand. 9, 519–530 (1955).

    CAS  Google Scholar 

  • Reichard, P., and G. Hanshoff: Aspartate carbamyl transferase from Escherichia coli. Acta chem. scand. 10, 548–566 (1956).

    CAS  Google Scholar 

  • Reichenow, E.: Einzeller, Protozoen. In: Das Tierreich, herausgeg. von H. v. Lengerken. (Sammlung Göschen Bd. 444.) Berlin: W. de Gruyter 1956.

    Google Scholar 

  • Reiner, L., C. V. Smythe and J. T. Pedlow: On the glucose metabolism of trypanosomes (Trypanosoma equiperdum and Trypanosoma lewisi). J. biol. Chem. 113, 75–88 (1935).

    Google Scholar 

  • Reischer, H. S.: Growth of Saprolegniaceae in synthetic media. II. Nitrogen requirements and the role of the Krebs cycle acids. Mycologia 43, 319–328 (1951).

    Google Scholar 

  • Reissig, J. L.: Pyridoxal phosphate as a cofactor for serine and threonine deaminase of Neurospora. Arch. Biochem. 36, 234–235 (1952).

    CAS  Google Scholar 

  • Reynolds, H., and C. H. Werkman: The fermentation of xylose by the Coli-Aerogenes group of bacteria. Iowa State Coll. J. Sci. 11, 373–378 (1937a).

    CAS  Google Scholar 

  • Reynolds, H., and C. H. Werkman: The intermediate dissimilation of glucose by Aerobacter indologenes. J. Bact. 33, 603–614 (1937b).

    PubMed  CAS  Google Scholar 

  • Richter, G.: Nachweis und quantitative Bestimmung einiger Enzvme des Kohlenhydrat-Stoffwechsels in Grünalgen. Z. Naturforsch. 12b, 662–663 (1957).

    Google Scholar 

  • Rilling, H., T. T. Tchen and K. Bloch: On the mechanism of squalene biogenesis. Proc. nat. Acad. Sci. (Wash.) 44, 167–173 (1958).

    CAS  Google Scholar 

  • Rippel, K.: Der biologische Säureabbau im Wein. Arch. Mikrobiol. 14, 509–530 (1950).

    Google Scholar 

  • Rippel-Baldes, A.: Grundriß der Mikrobiologie, 3. Aufl. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Roberts, E. C., and E. E. Snell: An improved medium for microbiological assays with Lactobacillus casci. J. biol. Chem. 163, 499–509 (1946).

    PubMed  CAS  Google Scholar 

  • Rodwell, A. W., and E. S. Rodwell: Pathway for glucose oxidation in Asterococcus mycoides. Nature (Lond.) 172, 254–255 (1953).

    CAS  Google Scholar 

  • Rona, P., u. H. W. Nicolai: Über den Fermentstoffwechsel der Bakterien. I. Atmung und Glykolyse bei Bacterium coli. Biochem. Z. 172, 82–104 (1926).

    CAS  Google Scholar 

  • Rose, D.: Production and properties of 2, 3-butanediol. XV. The occurrence of acetone as a product of the Aerobacillus polymyxa fermentation. Canad. J. Res. F 24, 320–326 (1946).

    CAS  Google Scholar 

  • Rowatt, E.: The metabolism of pyruvate by Lactobacillus plantarum. Biochem. J. 49, 453–462 (1951).

    PubMed  CAS  Google Scholar 

  • Rubin, S. H., and J. Scheiner: Antibiotin effect of homologs of biotin and biotin sulfone. Arch. Biochem. 23, 400–410 (1949).

    PubMed  CAS  Google Scholar 

  • Russell, C., R. R. Bhandari and T. K. Walker: Vitamin requirements of 34 lactic acid bacteria associated with brewery products. J. gen. Microbiol. 10, 371–376 (1954).

    PubMed  CAS  Google Scholar 

  • Rutter, W. J., and R. G. Hansen: Lactose metabolism. I. Carbohydrate metabolism of Lactobacillus bulgaricus strain Gere A. J. biol. Chem. 202, 311–321 (1953a).

    CAS  Google Scholar 

  • Rutter, W. J., and R. G. Hansen: Lactose metabolism. II. The conversion of galactose to glucose derivatives in Lactobacillus bulgaricus strain Gere A. J. biol. Chem. 202, 323–330 (1953b).

    PubMed  CAS  Google Scholar 

  • Ryley, J. F.: Studies on the metabolism of the protozoa. I. Metabolism of the parasitic flagellate, Trypanosoma lewisii. Biochem. J. 49, 577–585 (1951). III. Metabolism of the ciliate, Tetrahymena pyriformis (Glaucoma piriformis). Biochem. J. 52, 483–492 (1952). IV. Metabolism of the parasitic flagellate, Strigomonas oncopelti. Biochem. J. 59, 353–361 (1955a). V. Metabolism of the parasitic flagellate, Trichomonas foetus. Biochem. J. 59, 361–369 (1955 b). VII. Comparative carbohydrate metabolism of eleven species of trypanosome. Biochem. J. 62, 215–222 (1956).

    PubMed  CAS  Google Scholar 

  • Sakaguchi, K., T. Asai and H. Munekata: On the chemistry of the acid fermentation by Rhizopus species. Zbl. Bakt., II. Abt. 105, 161–165 (1942).

    Google Scholar 

  • Sakami, W.: The conversion of formate and glycine to serine and glycogen in the intact rat. J. biol. Chem. 176, 995–996 (1948).

    PubMed  CAS  Google Scholar 

  • Sakami, W.: The conversion of glycine into serine in the intact rat. J. biol. Chem. 178, 519–520 (1949).

    PubMed  CAS  Google Scholar 

  • Sakami, W.: The biochemical relationship between glycine and serine. In: Symposium on amino acid metabolism (edit. by W. D. McElroy and H. B. Glass), S. 658–683. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Sanadi, D. R., J. W. Littlefield and R. M. Bock: α-Ketoglutaric acid oxidase. II. Purification and properties. J. biol. Chem. 197, 851–862 (1952).

    PubMed  CAS  Google Scholar 

  • Santer, M., and S. Ajl: Metabolic reactions of Pasteurella pestis. II. The fermentation of glucose. J. Bact. 69, 298–302 (1955a).

    PubMed  CAS  Google Scholar 

  • Santer, M., and S. Ajl: Metabolic reactions of Pasteurella pestis. III. The hexose monophosphate shunt in the growth of Pasteurella pestis. J. Bact. 69, 713–718 (1955b).

    PubMed  CAS  Google Scholar 

  • Sarett, H. P.: Vitamin interrelationships in lactobacilli. Arch. Biochem. 22, 54–62 (1949).

    PubMed  CAS  Google Scholar 

  • Säuberlich, H. E., and C. A. Baumann: A factor required for the growth of Leuconostoc mesenteroides. J. biol. Chem. 176, 165–173 (1948).

    PubMed  Google Scholar 

  • Schade, A. L., and K. V. Thimann: The metabolism of the water-mold Leptomitus lacteus. Amer. J. Bot. 27, 659–670 (1940).

    CAS  Google Scholar 

  • Schanderl, H.: Die Mikrobiologie des Weines. Stuttgart, z. Zt. Ludwigsburg: Ulmer 1950.

    Google Scholar 

  • Schlenk, F.: Enzymatic reactions involving nicotin amide and its related compounds. Advanc. Enzymol. 5, 207–236 (1945).

    CAS  Google Scholar 

  • Schmalfuss, H., u. H. Barthmeyer: Diacetyl als Aromabestandteil von Lebens- und Genußmitteln. Biochem. Z. 216, 330–335 (1929).

    CAS  Google Scholar 

  • Schönfeld, H.: Über die Beziehungen der einzelnen Bestandteile der Frauenmilch zur Bifidus-Flora. Jb. Kinderheilk. 113, 19–60 (1926).

    Google Scholar 

  • Schopmeyer, H.H.: Lactic acid. In: Industrial fermentations (edit. by L. A. Underkofler and R. J. Hickey), Bd. I, S. 391–419. New York: Chemical Publishing Co., Inc. 1954.

    Google Scholar 

  • Schütz, F., u. H. Theorell: Über das gelbe Ferment bei verschiedenen Bakterien. Biochem. Z. 295, 246–251 (1938).

    Google Scholar 

  • Schweigert, B. S., and E. E. Snell: Microbiological methods for the estimation of amino acids. Nutr. Abstr. Rev. 16, 497–510 (1947).

    CAS  Google Scholar 

  • Scott, D. R. M., and S. S. Cohen: The oxidative pathway of carbohydrate metabolism in Escherichia coli. I. The isolation and properties of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Biochem. J. 55, 23–33 (1953a).

    PubMed  CAS  Google Scholar 

  • Scott, D. R. M., and S. S. Cohen: II. Quantitative studies of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Biochem. J. 55, 33–36 (1953b).

    PubMed  CAS  Google Scholar 

  • Seaman, G. R.: Enzyme systems in Tetrahymena geleii S. I. Anaerobic dehydrogenases concerned with carbohydrate oxidation. J. gen. Physiol. 34, 775–783 (1951a).

    PubMed  CAS  Google Scholar 

  • Seaman, G. R.: Enzyme systems in Tetrahymena geleii S. III. Aerobic utilization of hexoses. J. biol. Chem. 191, 439–446 (1951b).

    PubMed  CAS  Google Scholar 

  • Seaman, G. R.: Metabolism of free-living ciliates. In: S. H. Hutner and A. Lwoff (edit.), Biochemistry and physiology of protozoa. II. S. 91–158. New York: Academic Press 1955.

    Google Scholar 

  • Seeley, H. W., and C. del Rio-Estrada: The role of riboflavin in the formation and disposal of hydrogen peroxide by Streptococcus faecalis. J. Bact. 62, 649–656 (1951).

    PubMed  CAS  Google Scholar 

  • Seeley, H. W., and P. J. Vandemark: An adaptive peroxidation by Streptococcus faecalis. J. Bact. 61, 27–35 (1951).

    PubMed  CAS  Google Scholar 

  • Semenza, G., L. S. Prestidge, D. Ménard-Jeker u. M. Bette x-Galland: Oxalacetat-carboxylase und Biotin. Helv. chim. Acta 42, 669–678 (1959).

    CAS  Google Scholar 

  • Sevag, M. G.: Über den Atmungsmechanismus der Pneumokokken. I. Justus Liebigs Ann. Chem. 507, 92–110 (1933a).

    CAS  Google Scholar 

  • Sevag, M. G: Über den Atmungsmechanismus der Pneumokokken. II. Biochem. Z. 267, 211–237 (1933b).

    CAS  Google Scholar 

  • Sevag, M. G., and M. Shelburne: Cyanide-sensitive bacterial respiratory systems different from the usual cytochrome-cytochrome oxidase system. J. gen. Physiol. 26, 1–9 (1942).

    PubMed  CAS  Google Scholar 

  • Shankar, K., and R. C. Bard: Effect of metallic ions on the growth, morphology, and metabolism of Clostridium perfringens. I. Magnesium. J. Bact. 69, 436–443 (1955a).

    CAS  Google Scholar 

  • Shankar, K., and R. C. Bard: II. Cobalt. J. Bact. 69, 444–448 (1955b).

    CAS  Google Scholar 

  • Shankman, S.: Amino acid nutrition of Lactobacillus arabinosus. J. biol. Chem. 150, 305–310 (1943).

    CAS  Google Scholar 

  • Shemin, D. : The biological conversion of L-serine to glycine. J. biol. Chem. 162, 297–307 (1946).

    PubMed  CAS  Google Scholar 

  • Shimwell, J. L.: A rational nomenclature for the brewery lactic acid bacteria. J. Inst. Brewing 54 (N. S. 45), 100–104 (1948).

    Google Scholar 

  • Shive, W.: The functions of B-vitamins in the biosynthesis of purines and pyrimidines. Vitam. and Horm. 9, 75–130 (1951).

    CAS  Google Scholar 

  • Shive, W., J. M. Ravel and R. E. Eakin: Interrelationship of thymidine and vitamin B12. J. Amer. chem. Soc. 70, 2614–2615 (1948).

    CAS  Google Scholar 

  • Shorb, M.S.: Activity of vitamin B12 for the growth of Lactobacillus lactis. Science 107, 397–398 (1948).

    PubMed  CAS  Google Scholar 

  • Shunk, C. H., B. O. Lynn, J. W. Huff, J. L. Gilfillan, H. R. Skeggs and K. Folkers: DL-Mevalonic acid and the synthesis and biological activities of DL-3-hydroxy-3-methylglutaraldehydic acid. J. Amer. chem. Soc. 79, 3294–3295 (1957).

    CAS  Google Scholar 

  • Siedler, A. J., F. A. Nayder and B. S. Schweigert: Studies on improvements in the medium for Lactobacillus acidophilus in the assay for deoxyribonucleic acid. J. Bact. 73, 670–675 (1957).

    PubMed  CAS  Google Scholar 

  • Silverman, M., J. Ceithaml, L. G. Taliaferro and E. A. Evans jr.: The in vitro metabolism of Plasmodium gallinaceum. J. infect. Dis. 75, 212–230 (1944).

    CAS  Google Scholar 

  • Silverman, M., J. C. Keresztesy, G. J. Koval and R. C. Gardiner: Citrovorum factor and the synthesis of formylglutamic acid. J. biol. Chem. 226, 83–94 (1957).

    PubMed  CAS  Google Scholar 

  • Simon, E.: Ketonaldehydmutase und Glykolase bei echten Milchsäurebakterien. Zbl. Bakt., II. Abt. 85, 269–276 (1932).

    CAS  Google Scholar 

  • Simon, E.: The formation of lactic acid by Clostridium acetobutylicum (Weiz-mann). Arch. Biochem. 13, 237–243 (1947).

    PubMed  CAS  Google Scholar 

  • Simon, E. W.: Mechanisms of dinitro-phenol toxicity. Biol. Rev. 28, 453–479 (1953).

    CAS  Google Scholar 

  • Singer, T. P., and E. B. Kearney: Chemistry, metabolism, and scope of the pyridine nucleotide coenzymes. Advanc. Enzymol. 15, 79–139 (1954).

    CAS  Google Scholar 

  • Simpson, F. J., M. J. Wolin and W. A. Wood: Degradation of L-arabinose by Aerobacter aerogenes. I. A pathway involving phosphorylated intermediates. J. biol. Chem. 230, 457–472 (1958).

    PubMed  CAS  Google Scholar 

  • Simpson, F. J., and W. A. Wood: Degradation of L-arabinose by Aerobacter aerogenes. II. Purification and properties of L-ribulokinase. J. biol. Chem. 230, 473–486 (1958).

    PubMed  CAS  Google Scholar 

  • Skeggs, H.R.: Microbiological systems involving nucleic acid derivatives. J. cell. comp. Physiol. 38 (Suppl. 1) 227–245 (1951).

    CAS  Google Scholar 

  • Skeggs, H. R., H. M. Nepple, K. A. Valentik, J. W. Huff and L. D. Wright: The use of Lactobacillus leichmannii 4797 in the microbiological assay of vitamin B12. J. biol. Chem. 184, 211–221 (1950).

    PubMed  CAS  Google Scholar 

  • Skeggs, H. R., L. D. Wright, E. L. Cresson, G. D. E. MacRae, C. H. Hoffman, D. E. Wolf and K. Folkers: Discovery of a new acetate-replacing factor. J. Bact. 72, 519–524 (1956).

    PubMed  CAS  Google Scholar 

  • Slade, H. D., and C. H. Werkman: The anaerobic dissimilation of citric acid by cell suspensions of Streptococcus paracitrovorus. J. Bact. 41, 675–684 (1941).

    PubMed  CAS  Google Scholar 

  • Slade, H. D., H. G. Wood, A. O. Nier, A. Hemingway and C. H. Werkman: Assimilation of heavy carbon dioxide by heterotrophic bacteria. J. biol. Chem. 143, 133–145 (1942).

    CAS  Google Scholar 

  • Sloane, N. H., W. F. Barg, jr., E. Boggiano, B. Coulomb and B. L. Hutchings: Glutamine requirement for the inosinic acid transformylase reaction. J. Amer. chem. Soc. 78, 4497–4498 (1956).

    CAS  Google Scholar 

  • Smit, J.: Bakteriologische und chemische Untersuchungen über die Milchsäuregärung. Diss. Amsterdam 1913 [Holländisch].

    Google Scholar 

  • Smith, E. L.: Vitamin B12. Brit. med. Bull. 12, 52–56 (1956).

    CAS  Google Scholar 

  • Smith, E. L.: Biochemical functioning of vitamin B12. Nature (Lond.) 181, 305–306 (1958).

    CAS  Google Scholar 

  • Snell, E. E.: Effect of heat sterilization on growth-promoting activity of pyridoxine for Streptococcus lactis R. Proc. Soc. exp. Biol. (N. Y.) 51, 356–358 (1942).

    CAS  Google Scholar 

  • Snell, E. E.: The vitamin B6 group. VI. The comparative stabilities of pyridoxine, pyridox-amine, and pyridoxal. J. biol. Chem. 158, 497–503 (1945 a).

    CAS  Google Scholar 

  • Snell, E. E.: Microbiological assay of amino acids. Advanc. Protein Chem. 2, 85–118 (1945b).

    CAS  Google Scholar 

  • Snell, E. E.: The nutritional requirements of the lactic acid bacteria and their application to biochemical research. J. Bact. 50, 373–382 (1945 c).

    CAS  Google Scholar 

  • Snell, E. E.: Microbiological methods in amino acid analysis. Ann. N. Y. Acad. Sci. 47, 161–179 (1946).

    PubMed  CAS  Google Scholar 

  • Snell, E. E.: Nutritional requirements of the lactic acid bacteria. Wallerstein Lab. Comm. Sci. Pract. Brewing 11, 81–104 (1948a).

    CAS  Google Scholar 

  • Snell, E. E.: Use of microorganisms for assay of vitamins. Physiol. Rev. 28, 255–282 (1948b).

    PubMed  CAS  Google Scholar 

  • Snell, E. E.: Microbiological methods in vitamin research. In: Vitamin methods (edit. by P. György). I. S. 327–505. New York: Academic Press 1950.

    Google Scholar 

  • Snell, E. E.: Bacterial nutrition-chemical factors. In: Bacterial physiology (edit. by C. H. Werkman and P. W. Wilson), S. 214–255. New York: Acadamic Press 1951.

    Google Scholar 

  • Snell, E. E.: The nutrition of the lactic acid bacteria. In: Symposium on the lactic acid bacteria. Bact. Rev. 16, 235–241 (1952).

    Google Scholar 

  • Snell, E. E.: Summary of known functions of nicotinic acid, riboflavin and vitamin B6. Physiol. Rev. 33, 510–524 (1953).

    Google Scholar 

  • Snell, E. E.: Some aspects of vitamin and growth factor research. In: Currents in biochemical research 1956 (edit. by D. E. Green), S. 87–114. New York: Interscience Publishers 1956.

    Google Scholar 

  • Snell, E. E., and H. P. Broqtjist: On the probable identity of several unidentified growth factors. Arch. Biochem. 23, 326–328 (1949).

    PubMed  CAS  Google Scholar 

  • Snell, E. E., and G. M. Brown: Pantethine and related forms of the Lactobacillus bulgaricus factor (LBF). Advanc. Enzymol. 14, 49–71 (1953).

    CAS  Google Scholar 

  • Snell, E. E., G. M. Brown, V. J. Peters, J. A. Craig, E. L. Wittle, J. A. Moore, V. M. McGlohon and O. D. Bird: Chemical nature and synthesis of the Lactobacillus bulgaricus factor. J. Amer. chem. Soc. 72, 5349–5350 (1950).

    CAS  Google Scholar 

  • Snell, E. E., and B. M. Guirard: Some interrelationships of pyridoxine, alanine and glycine in their effect on certain lactic acid bacteria. Proc. nat. Acad. Sci. (Wash.) 29, 66–73 (1943).

    CAS  Google Scholar 

  • Snell, E. E., E. Kitay and E. Hoff-Jqrgensen: Carbohydrate utilization by a strain of Lactobacillus bulgaricus. Arch. Biochem. 18, 495–510 (1948).

    PubMed  CAS  Google Scholar 

  • Snell, E. E., E. Kitay and W. S. McNutt: Thymine deoxyriboside as an essential growth factor for lactic acid bacteria. J. biol. Chem. 175, 473–474 (1948).

    PubMed  CAS  Google Scholar 

  • Snell, E. E., and H. K. Mitchell: Purine and pyrimidine bases as growth substances for lactic acid bacteria. Proc. nat. Acad. Sci. (Wash.) 27, 1–7 (1941).

    CAS  Google Scholar 

  • Snell, E. E., and H. K. Mitchell: Some sulfanilamide antagonists as growth factors for lactic acid bacteria. Arch. Biochem. 1, 93–101 (1942).

    CAS  Google Scholar 

  • Snell, E.E., N. S. Radin and M. Ikawa: The nature of d-alanine in lactic acid bacteria. J. biol. Chem. 217, 803–818 (1955).

    PubMed  CAS  Google Scholar 

  • Snell, E. E., and A. N. Rannefeld: The vitamin B6 group. III. The vitamin activity of pyridoxal and pyridoxamine for various organisms. J. biol. Chem. 151, 475–489 (1945).

    Google Scholar 

  • Snell, E. E., F. M. Strong and W. H. Peterson: Growth factors for bacteria. VI. Fractionation and properties of an accessory factor for lactic acid bacteria. Biochem. J. 31, 1789–1799 (1937).

    PubMed  CAS  Google Scholar 

  • Snell, E. E., F. M. Strong and W. H. Peterson: Pantothenic and nicotinic acids as growth factors for lactic acid bacteria. J. Amer. chem. Soc. 60, 2825 (1938).

    CAS  Google Scholar 

  • Snell, E. E., F. M. Strong and W. H. Peterson: Growth factors for bacteria. VIII. Pantothenic and nicotinic acids as essential growth factors for lactic and propionic acid bacteria. J. Bact. 38, 293–308 (1939).

    CAS  Google Scholar 

  • Snell, E. E., E. L. Tatum and W. H. Peterson: Growth factors for bacteria. III. Some nutritive requirements for Lactobacillus del-brückii. J. Bact. 33, 207–225 (1937).

    PubMed  CAS  Google Scholar 

  • Sokatch, J. T., and I. C. Gunsalus: Aldonic acid metabolism. I. Pathway of carbon in an inducible gluconate fermentation by Streptococcus faecalis. J. Bact. 73, 452–460 (1957).

    PubMed  CAS  Google Scholar 

  • Solomon, A. K., B. Vennesland, F. W. Klem-perer, J. M. Buchanan and A. B. Hastings: The participation of carbon dioxide in the carbohydrate cycle. J. biol. Chem. 140, 171–182 (1941).

    CAS  Google Scholar 

  • Sonne, J. C., I. Lin and J. M. Buchanan: Biosynthesis of the purines. IX. Precursors of the nitrogen atoms of the purine ring. J. biol. Chem. 220, 369–378 (1956).

    PubMed  CAS  Google Scholar 

  • Speck, J. F., and E. A. Evans jr.: The biochemistry of the malaria parasite. II. Glycolysis in cell-free preparations of the malaria parasite. J. biol. Chem. 159, 71–81 (1945a). III. The effects of quinine and atabrine on glycolysis. J. biol. Chem. 159, 83–96 (1945b).

    CAS  Google Scholar 

  • Speck, J. F., J. W. Moulder and E. A. Evans jr.: The biochemistry of the malaria parasite. V. Mechanism of pyruvate oxidation in the malaria parasite. J. biol. Chem. 164, 119–144 (1946).

    CAS  Google Scholar 

  • Spicer, I. S., K. V. Liebert, L. D. Wright and J. W. Huff: Study of ureidosuccinic acid and related compounds in pyrimidine synthesis by Lactobacillus bulgaricus 09. Proc. Soc. exp. Biol. (N.Y.) 79, 587–588 (1952).

    CAS  Google Scholar 

  • Sprince, H., and D. W. Woolley: Relationship of a new growth factor required by certain hemolytic streptococci to growth phenomena in other bacteria. J. exp. Med. 80, 213–217 (1944).

    PubMed  CAS  Google Scholar 

  • Sprince, H., and D. W. Woolley: Occurrence of the growth factor strepogenin in purified proteins. J. Amer. chem. Soc. 67, 1734–1736 (1945).

    CAS  Google Scholar 

  • Srere, P. A., J. R. Cooper, V. Klybas and E. Racker: Xylulose 5-phosphate, a new intermediate in the pentose phosphate cycle. Arch. Biochem. 59, 535–538 (1955).

    PubMed  CAS  Google Scholar 

  • Srinivasan, P. R., M. Katagiri and D. B. Sprinson: The enzymatic synthesis of shikimic acid from D-erythrose 4-phosphate and phosphoenolpyruvate. J. Amer. chem. Soc. 77, 4943–4944 (1956).

    Google Scholar 

  • Stadtman, E. R.: Coenzyme A-dependent transacetylation and transphosphorylation. Fed. Proc. 9, 233 (1950).

    Google Scholar 

  • Stadtman, E. R., G. D. Novelli and F. Lipmann: Coenzyme A function in acetyl transfer by the phosphotransacetylase system. J. biol. Chem. 191, 365–376 (1951).

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y., and G. A. Adams: The nature of the Aeromonas fermentation. Biochem. J. 38, 168–171 (1944).

    PubMed  CAS  Google Scholar 

  • Steele, R. H., A. G. C. White and W. A. Pierce jr.: The fermentation of galactose by Streptococcus pyogenes. J. Bact. 67, 86–89 (1954).

    PubMed  CAS  Google Scholar 

  • Stephenson, M.: Bacterial metabolism, 3rd ed. London-New York Toronto: Longmans, Green & Co. 1949.

    Google Scholar 

  • Stern, K. G., J. L. Melnick and D. DuBois: The photochemical spectrum of the Pasteur enzyme in retina. J. biol. Chem. 139, 301–323 (1941).

    CAS  Google Scholar 

  • Stern, J. R., B. Shapiro and S. Ochoa: Synthesis and breakdown of citric acid with crystalline condensing enzyme. Nature (Lond.) 166, 403–404 (1950).

    CAS  Google Scholar 

  • Sternfeld, L., and F. Saunders: The utilization of various sugars and their derivatives by bacteria. J. Amer. chem. Soc. 59, 2653–2658 (1937).

    CAS  Google Scholar 

  • Stokes, J. L.: Substitution of thymine for “folic acid” in the nutrition of lactic acid bacteria. J. Bact. 48, 201–209 (1944).

    PubMed  CAS  Google Scholar 

  • Stokes, J. L.: Fermentation of glucose by suspensions of Escherichia coli. J. Bact. 57, 147–158 (1949).

    PubMed  CAS  Google Scholar 

  • Stokes, J. L., L. K. Koditschek, E. L. Rickes and T. R. Wood: Factors effecting the rate of growth of Lactobacillus casci. J. biol. Chem. 178, 93–101 (1949).

    PubMed  CAS  Google Scholar 

  • Stokes, J. L., A. Larsen and M. Gunness: Biotin and the synthesis of aspartic acid by microorganisms. J. biol. Chem. 167, 613–614 (1947a).

    PubMed  CAS  Google Scholar 

  • Stokes, J. L., A. Larsen and M. Gunness: Biotin and the synthesis of aspartic acid by microorganisms. J. Bact. 54, 219–230 (1947 b).

    PubMed  CAS  Google Scholar 

  • Stokstad, E. L. R.: Isolation of a nucleotide essential for the growth of Lactobacillus casci. J. biol. Chem. 139, 475–476 (1941).

    CAS  Google Scholar 

  • Stockstad, E. L. R., C. E. Hoffmann, M. A. Regan, D. Fordham and T. H. Jukes: An unknown growth factor essential for Tetrahymena geleii. Arch. Biochem. 20, 75–82 (1949).

    Google Scholar 

  • Stone, R. W., and C. H. Werkman: The occurrence of phosphoglyceric acid in the bacterial dissimilation of glucose. Biochem. J. 31, 1516–1523 (1937).

    PubMed  CAS  Google Scholar 

  • Strecker, H. J., and I. Harary: Bacterial butylene glycol dehydrogenase and diacetyl reductase. J. biol. Chem. 211, 263–270 (1954).

    PubMed  CAS  Google Scholar 

  • Strecker, H. J., and S. Ochoa: Pyruvate oxidation system and acetoin formation. J. biol. Chem. 209, 313–326 (1954).

    PubMed  CAS  Google Scholar 

  • Strong, F. M., and L. E. Carpenter: Preparation of samples for microbiological determination of riboflavin. Ind. Eng. Chem., Analyt. Ed. 14, 909–913 (1942).

    CAS  Google Scholar 

  • Stumpf, P. K.: Pyruvic acid oxidase of Proteus vulgaris. J. biol. Chem. 159, 529–544 (1945).

    CAS  Google Scholar 

  • Stumpf, P. K., and B. L. Horecker: The rôle of xylulose 5-phosphate in xvlose metabolism of Lactobacillus pentosus. J. biol. Chem. 218, 753–768 (1956).

    PubMed  CAS  Google Scholar 

  • Sund, R. F., J. M. Ravel and W. Shive: Ornithine-citrulline enzyme synthesis in biot in-deficient cells of Streptococcus lactis. J. biol. Chem. 231, 807–811 (1958).

    PubMed  CAS  Google Scholar 

  • Sutton, W. B.: Sulfhydryl and prosthetic groups of lactic oxidative decarboxylase from Mycobacterium phlei. J. biol. Chem. 216, 749–761 (1955).

    PubMed  CAS  Google Scholar 

  • Sutton, W. B.: Mechanism of action and crystallization of lactic oxidative decarboxylase from Mycobacterium phlei. J. biol. Chem. 226, 395–405 (1957).

    PubMed  CAS  Google Scholar 

  • Sutton, W. B., F. Schlenk and C. H. Werkman: Glycine as a precursor of bacterial purines. Arch. Biochem. 32, 85–88 (1951).

    PubMed  CAS  Google Scholar 

  • Sutton, W. B., and C. H. Werkman: The carbon and nitrogen precursors of bacterial purines. Arch. Biochem. 47, 1–7 (1953).

    PubMed  CAS  Google Scholar 

  • Suzuoki-Ziro and Suzuoki-Tuneko: Carbohydrate metabolism of Trichomonas foetus. J. Biochem. 38, 237–254 (1951).

    Google Scholar 

  • Svanberg, O.: Über die Wachstumsgeschwindigkeit der Milchsäurebakterien bei verschiedenen H’-Konzentrationen. Hoppe-Seylers Z. physiol. Chem. 108, 120–146 (1919).

    CAS  Google Scholar 

  • Szulmajster, J., M. Grunberg-Manago et C. Delavier-Klutchko: Propriétés d’une lacticodéshydrogénase isolée du “particules” de Escherichia coli. Bull. Soc. Chim. biol. (Paris) 35, 1381–1393 (1953).

    CAS  Google Scholar 

  • Takahashi, T., u. T. Asai: Über die Produkte der Gärung durch die Gattung Mucor. II. Die Produkte der Gärung in Gegenwart von Calciumcarbonat. Zbl. Bakt., II. Abt. 89, 81–84 (1933).

    CAS  Google Scholar 

  • Takahashi, T., and K. Sakaguchi: Properties of acids produced by Rhizopus. J. agric. chem. Soc. Japan 1, 344–355 (1925).

    Google Scholar 

  • Tarassowa, N. W.: Veränderung der heterofermentativen Milchsäuregärung durch die Kulturverhältnisse von Lactobacterium pentoaceticum. Mikrobiologia 27, 294–301 (1958) [Russisch].

    Google Scholar 

  • Tasman, A.: The formation of hydrogen from glucose and formic acid by the so-called “resting” B. coli. II. Biochem. J. 29, 2446–2457 (1935).

    PubMed  CAS  Google Scholar 

  • Tavormina, P. A., M. H. Gibbs and J. W. Huff: The utilization of β-hydroxy-β-methyl-δ-valerolactone in cholesterol biosynthesis. J. Amer. chem. Soc. 78, 4498–4499 (1956).

    CAS  Google Scholar 

  • Tchen, T. T.: On the formation of a phosphorylated derivative of mevalonic acid. J. Amer. chem. Soc. 79, 6344–6345 (1957).

    CAS  Google Scholar 

  • Teply, L. J., and C. A. Elvehjem: Titrimetric determination of “Lactobacillus casei factor” and folic acid. J. biol. Chem. 157, 303–309 (1945).

    CAS  Google Scholar 

  • Theorell, H.: Über Hemmung der Reaktionsgeschwindigkeit durch Phosphat in Warburg und Christians System. Biochem. Z. 275, 416–421 (1934).

    Google Scholar 

  • Thimann, K. V.: The life of bacteria. New York: MacMillan Co. 1955.

    Google Scholar 

  • Thoma, R. W., and W. H. Peterson: Biotin and arginine replacements in the nutrition of Clostridium sporogenes. J. Bact. 60, 39–48 (1950).

    PubMed  CAS  Google Scholar 

  • Thomas, R. C., and L. J. Reed: Synthesis and properties of high specific activity DL-α-lipoic acid-(Math). J. Amer. chem. Soc. 77, 5446–5448 (1955).

    CAS  Google Scholar 

  • Thunberg, T.: Zur Kenntnis des intermediären Stoffwechsels und der dabei wirksamen Enzyme. Skand. Arch. Physiol. 40, 1–91 (1920).

    CAS  Google Scholar 

  • Tiedemann, H.: Über den anaeroben Abbau von Kohlenhydraten, insbesondere bei Bakterien. Chemiker-Ztg 79, 3–8 (1955).

    CAS  Google Scholar 

  • Tikka, J.: Über den Mechanismus der Glucosever-gärung durch B. coli. Biochem. Z. 279, 264–288 (1935).

    CAS  Google Scholar 

  • Tissières, A.: Oxidation of glucose by a cell-free preparation of Aerobacter aerogenes. Nature (Lond.) 169, 880–881 (1952).

    Google Scholar 

  • Tomarelli, R. M., J. B. Hassinen, E. R. Eckhart, R. H. Clark and F. W. Bernhart: The isolation of a crystalline growth factor for a strain of Lactobacillus bifidus. Arch. Biochem. 48, 225–232 (1954).

    PubMed  CAS  Google Scholar 

  • Tomarelli, R. M., R. F. Norris, P. György, J. B. Hassinen and F. W. Bernhart: Nutrition of variants of Lactobacillus bifidus. J. biol. Chem. 181, 879–888 (1949).

    PubMed  CAS  Google Scholar 

  • Trager, W.: The effects of lysolecithin on the growth of Lactobacillus casei in relation to biotin, pantothenic acid, and fat-soluble materials with biotin activity. J. Bact. 56, 195–199 (1948).

    PubMed  CAS  Google Scholar 

  • Traub, A., and H. C. Lichstein: Cell permeability: a factor in the biotin-oleate relationship in Lactobacillus arabinosus. Arch. Biochem. 62, 222–233 (1956).

    PubMed  CAS  Google Scholar 

  • Trucco, R. E., R. Caputto, L. F. Leloir and N. Mittelman: Galacto-kinase. Arch. Biochem. 18, 137–146 (1948).

    PubMed  CAS  Google Scholar 

  • Tung, T., K. Ling, W. L. Byrne and H. A. Lardy: Substrate specificity of muscle aldolase. Biochim. biophys. Acta 14, 488–494 (1954).

    PubMed  CAS  Google Scholar 

  • Tychowski, A., u. M. Kobel: Über eine schnell verlaufende Umwandlung von Hexose-diphosphat in Lactat unter dem Einfluß des typischen Milchsäurebildners Bacillus delbrücki. Biochem. Z. 209, 134–141 (1929).

    CAS  Google Scholar 

  • Umbreit, W. W.: The “direct method” for carbon dioxide. In: Manometric techniques and tissue metabolism (edit. by W. W. Umbreit, R. H. Burris and J. F. Stauffer), S. 17–20. Minneapolis: Burgess Publishing Co. 1949.

    Google Scholar 

  • Umbreit, W. W., W. A. Wood and I. C. Gun-salus: Activity of pyridoxal phosphate in tryptophan formation by cell-free enzyme preparations. J. biol. Chem. 165, 731–732 (1946).

    PubMed  CAS  Google Scholar 

  • Underkofler, L. A., and R. J. Hickey (Editors): Industrial fermentations. I and II. New York: Chemical Publishing Co. 1954.

    Google Scholar 

  • Utter, M. F., G. Kalnitsky and C. H. Werkman: Enzymatic nature of cell-free extracts from bacteria. Arch. Biochem. 9, 407–417 (1946).

    PubMed  CAS  Google Scholar 

  • Vandemark, P. J., and W. A. Wood: The pathways of glucose dissimilation by Micro-bacterium lacticum. J. Bact. 71, 385–392 (1956).

    PubMed  CAS  Google Scholar 

  • Vankova, J.: Motile catalase-producing strains of Lactobacillus delbrilckii. Nature (Lond.) 179, 204 (1957).

    CAS  Google Scholar 

  • Vaugn, R. H.: Lactic acid fermentation of cucumbers, sauerkraut and olives. In: Industrial fermentations (edit. by L. A. Underkofler and R. J. Hickey), Bd. II, S. 417–478. New York: Chemical Publishing Co. 1954.

    Google Scholar 

  • Virtanen, A. I.: Enzymatische Studien an Milchsäurebakterien. I. Hoppe-Seylers Z. physiol. Chem. 134, 300–319 (1924a).

    Google Scholar 

  • Virtanen, A. I.: Enzymatische Studien an Milchsäurebakterien. II. Hoppe-Seylers Z. physiol. Chem. 138, 136–143 (1924b).

    CAS  Google Scholar 

  • Virtanen, A. I.: Über die Milchsäuregärung. I. Hoppe-Seylers Z. physiol. Chem. 143, 71–78 (1925).

    CAS  Google Scholar 

  • Virtanen, A. I.: Über die Bildung des Butteraromas bei der Rahmsäuerung. Angew. Chem. 54, 491–494 (1941).

    CAS  Google Scholar 

  • Virtanen, A. I., u. H. Karström: Über die Milchsäuregärung. V. Hoppe-Seylers Z. physiol. Chem. 174, 1–27 (1928).

    CAS  Google Scholar 

  • Virtanen, A. I., u. J. Tikka: Neue Phosphorsäureester bei der Milchsäuregärung. Biochem. Z. 228, 407–408 (1930).

    CAS  Google Scholar 

  • Virtanen, A. I., E. Wichmann u. B. Lindström: Über die Milchsäuregärung. IV. Hoppe-Seylers Z. physiol. Chem. 166, 21–38 (1927).

    CAS  Google Scholar 

  • Vloedman, jr. D. A., J. Berech jr., W. Jeffries and W. J. van Wagten-donk: Carbohydrate metabolism of Paramaecium aurelia, variety 4, stock 47.8 (sensitive). J. gen. Microbiol. 16, 628–641 (1957).

    PubMed  CAS  Google Scholar 

  • Vogt, E.: Weinchemie und Weinanalyse, S. 116–120. Stuttgart, z. Z. Ludwigsburg: E. Ulmer 1953.

    Google Scholar 

  • Wacker, A., S. Kirschfeld u. L. Träger: Die Biosynthese der Desoxyribose bei Bakterien. Z. Naturforsch. 14b, 145–150 (1959).

    Google Scholar 

  • Wacker, A., D. Pfahl u. J. Schröder: Beziehungen zwischen Vitamin B12 und der Desoxyribonucleinsäure. Z. Naturforsch. 12b, 510–518 (1957).

    Google Scholar 

  • Waelsch, H.: Certain aspects of intermediary metabolism of glutamine, asparagine, and glutathione. Advanc. Enzymol. 13, 237–319 (1952).

    CAS  Google Scholar 

  • Waelsch, H., P. Owades, H. K. Miller and E. Borek: Glutamic acid antimetabolites: the sulfoxide derived from methionine. J. biol. Chem. 166, 273–281 (1946).

    PubMed  CAS  Google Scholar 

  • Wagner-Jauregg, T., u. E. F. Möller: Aktivierung der enzymatischen Dehydrierung des Alkohols durch Glutathion. Hoppe-Seylers Z. physiol. Chem. 236, 222–227 (1935).

    CAS  Google Scholar 

  • Wahba, A. J., and W. Shive: A rôle of aspartic acid in purine biosynthesis. J. biol. Chem. 211, 155–161 (1954).

    PubMed  CAS  Google Scholar 

  • Wakil, S. J.: A malonic acid derivative as an intermediate in fatty acid synthesis. J. Amer. chem. Soc. 80, 6465 (1958).

    CAS  Google Scholar 

  • Wakil, S. J., and J. Ganguly: On the mechanism of fatty acid synthesis. Fed. Proc. 18, 346 (1959a).

    Google Scholar 

  • Wakil, S. J., and J. Ganguly: On the mechanism of fatty acid synthesis. J. Amer. chem. Soc. 81, 2597–2598 (1959b).

    CAS  Google Scholar 

  • Waksman, S. A., and J. W. Foster: Respiration and lactic acid production by a fungus of the genus Rhizopus. J. agric. Res. 57, 873–899 (1938).

    CAS  Google Scholar 

  • Waksman, S. A., and I. J. Hutchings: Lactic acid production by species of Rhizopus. J. Amer. chem. Soc. 59, 545–547 (1937).

    CAS  Google Scholar 

  • Walker, D. A., and J. M. A. Brown: Physiological studies on acid metabolism. V. Effects of carbon dioxide concentration on phosphoenolpyruvic carboxylase activity. Biochem. J. 67, 79–83 (1957).

    PubMed  CAS  Google Scholar 

  • Walker, J. R. L.: Pyruvate metabolism in Lactobacillus brevis. Biochem. J. 72, 188–192 (1959).

    PubMed  CAS  Google Scholar 

  • Walper, J. F., and R. M. Fink: The utilization of dihydrothymine by Streptococcus faecalis in the absence of folic acid and thymine. J. Bact. 72, 105–107 (1956).

    PubMed  CAS  Google Scholar 

  • Warburg, O.: Stoffwechsel der Tumoren. Berlin: Springer 1926.

    Google Scholar 

  • Warburg, O.: Photosynthesis. Science 128, 68–73 (1958).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Über Aktivierung der Robisonschen Hexose-momophosphorsäure in roten Blutzellen und die Gewinnung aktivierender Fermentlösungen. Biochem. Z. 242, 206–227 (1931).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Über ein neues Oxydationsferment und sein Absorptionsspektrum. Biochem. Z. 254, 438–458 (1932).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Sauerstoffübertragendes Ferment in Milchsäurebazillen. Biochem. Z. 260, 499–501 (1933a).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Über das gelbe Ferment und seine Wirkungen. Biochem. Z. 266, 377–411 (1933b).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Verbrennung von Robison-Ester durch Triphosphopyridin-nucleotid. Biochem. Z. 287, 440–441 (1936).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Abbau von Robison-Ester durch Triphosphopyridin-nucleotid. Biochem. Z. 292, 287–295 (1937).

    CAS  Google Scholar 

  • Warburg, O., H-S. Gewitz u. W. Völker: d-(—)-Milchsäure in Chlorella. Z. Naturforsch. 12b, 722–724 (1957).

    Google Scholar 

  • Warburg, O., H. Klotzsch u. G. Krippahl: Glutaminsäure in Chlorella. Z. Naturforsch. 12b, 622–628 (1957).

    Google Scholar 

  • Warburg, O., u. G. Krippahl: Beweis der Notwendigkeit der Glutaminsäure für die Photosynthèse. Z. Naturforsch. 13b, 63–65 (1958).

    Google Scholar 

  • Warburg, O., u. E. Negelein: Über den Einfluß der Wellenlänge auf die Verteilung des Atmungsferments (Absorptionsspektrum des Atmungsferments). Biochem. Z. 193, 339–346 (1928).

    CAS  Google Scholar 

  • Warburg, O., u. E. Negelein: Über das Absorptionsspektrum des Atmungsferments. Biochem. Z. 214, 64–100 (1929).

    CAS  Google Scholar 

  • Warburg, O., u. E. Negelein: Direkter spektroskopischer Nachweis des Sauerstoff übertragenden Ferments in Essigbakterien. Biochem. Z. 262, 237–238 (1933).

    CAS  Google Scholar 

  • Ward, G. E., L. B. Lockwood, O. E. May and H. T. Herrick: Biochemical studies in the genus Rhizopus. I. The production of dextro-lactic acid. J. Amer. chem. Soc. 58, 1286–1288 (1936).

    CAS  Google Scholar 

  • Ward, G. E., L. B. Lockwood, B. Tabenkin and P. A. Wells: Rapid fermentation process for dextro-lactic acid. Ind. Eng. Chem. 30, 1233–1235 (1938).

    CAS  Google Scholar 

  • Waring, W. S., and C. H. Werkman: Growth of bacteria in an iron-free medium. Arch. Biochem. 1, 303–310 (1942).

    CAS  Google Scholar 

  • Waring, W. S., and C. H. Werkman: Iron deficiency in bacterial metabolism. Arch. Biochem. 4, 75–87 (1944).

    CAS  Google Scholar 

  • Warner, A. C. I.: The actual nitrogen sources for growth of heterotrophic bacteria in non-limiting media. Biochem. J. 64, 1–6 (1956).

    PubMed  CAS  Google Scholar 

  • Watt, D., and L. O. Krampitz: α-Acetolactic acid, an intermediate in acetylmethylcarbinol formation. Fed. Proc. 6, 301–302 (1947).

    PubMed  CAS  Google Scholar 

  • Weis, D. S., and H. Mukerjee: Algal fermentations. Plant Physiol. 33, Proc. VIII (1958).

    Google Scholar 

  • Weiss, J. E., and L. F. Rettger: Lactobacillus bifidus. J. Bact. 28, 501–521 (1934).

    PubMed  CAS  Google Scholar 

  • Weiss, J. E., and L. F. Rettger: Taxonomic relationships of Lactobacillus bifidus (B. bifidus Tissier) and Bacteroides bifidus. J. infect. Dis. 62, 105–129 (1938).

    Google Scholar 

  • Welch, A. D., and Ch. A. Nichol: Water-soluble vitamins concerned with one- and two-carbon intermediates. Ann. Rev. Biochem. 21, 633–686 (1952).

    PubMed  CAS  Google Scholar 

  • Wendel, W. B.: Respiratory and carbohydrate metabolism of malaria parasites (Plasmodium knowlesi). J. biol. Chem. 148, 21–34 (1943).

    Google Scholar 

  • Werkman, C. H., and A. A. Andersen: d-Lactic acid fermentation. J. Bact. 35, 69–70 (1938).

    CAS  Google Scholar 

  • White, A. G. C., R. H. Steele and W. A. Pierce jr.: The effect of pH on the fermentation of glucose and galactose by Streptococcus pyogenes. J. Bact. 70, 82–86 (1955).

    PubMed  CAS  Google Scholar 

  • Whitehill, A. R., J. J. Oleson and Y. Subbarow: A lactobacillus of cecal origin requiring oleic acid. Arch. Biochem. 15, 31–37 (1947).

    PubMed  CAS  Google Scholar 

  • Wieland, H.: Über den Mechanismus der Oxydationsvorgänge. Ergebn. Physiol. 20, 477–518 (1922).

    Google Scholar 

  • Wieland, H.: Über den Verlauf der Oxydationsvorgänge. Stuttgart: F. Enke 1933.

    Google Scholar 

  • Wieland, O. P., J. Avener, E. M. Boggiano, N. Bohonos, B. L. Hutchings and J. H. Williams: Orotic acid in the nutrition of a strain of Lactobacillus bulgaricus. J. biol. Chem. 186, 737–742 (1950).

    PubMed  CAS  Google Scholar 

  • Wieland, Th., u. H. Köppe: Synthese von S-Lactyl- und S-β-Oxy-butyryl-glutathion. Justus Liebigs Ann. Chem. 581, 1–10 (1953).

    Google Scholar 

  • Wieland, Th., G. Pfleiderer u. H. H. Lau: Zur Kenntnis der Glyoxalasen. Biochem. Z. 327, 393–406 (1956).

    PubMed  CAS  Google Scholar 

  • Wilkinson, J. F.: The pathway of the adaptive fermentation of galactose by yeast. Biochem. J. 44, 460–467 (1949).

    PubMed  CAS  Google Scholar 

  • Williams, R. J. P.: Metal ions in biological systems. Biol. Rev. 28, 381–415 (1953).

    CAS  Google Scholar 

  • Wieland, Th., G. Pfleiderer u. H. H. Lau: Zur Kenntnis der Glyoxalasen. Biochem. Z. 327, 393–406 (1956).

    PubMed  CAS  Google Scholar 

  • Williams, V. R., and E. A. Fieger: Oleic acid as a growth stimulant for Lactobacillus casci. J. biol. Chem. 166, 335–343 (1946).

    PubMed  CAS  Google Scholar 

  • Williams, V. R., and E. A. Fieger: Further studies on lipide stimulation of Lactobacillus casci. I. J. biol. Chem. 170, 399–411 (1947).

    CAS  Google Scholar 

  • Williams, V. R., and E. A. Fieger: Further studies on lipide stimulation of Lactobacillus casci. II. J. biol. Chem. 177, 739–744 (1949).

    CAS  Google Scholar 

  • Williams, V. R., and E. A. Fieger: Surface activity of biotin. J. biol. Chem. 177, 745–750 (1949).

    PubMed  CAS  Google Scholar 

  • Williams, W. L., H. P. Broquist and E. E. Snell: Oleic acid and related compounds as growth factors for lactic acid bacteria. J. biol. Chem. 170, 619–630 (1947).

    CAS  Google Scholar 

  • Williams, W. L., E. Hoff-Jørgensen and E. E. Snell: Determination and properties of an unidentified growth factor required by Lactobacillus bulgaricus. J. biol. Chem. 177, 933–940 (1949).

    PubMed  CAS  Google Scholar 

  • Wilson, L., L. O. Krampitz and C. H. Werkman: Reversibility of a phosphoroclastic reaction. Biochem. J. 42, 598–600 (1948).

    PubMed  CAS  Google Scholar 

  • Windisch, F., W. Nordheim and W. Heumann: Ein in Hefezellsaft enthaltenes thermostabiles Agens von biologisch Sauerstoff substituierender Funktion. Hoppe-Seylers Z. physiol. Chem. 306, 195–200 (1957).

    CAS  Google Scholar 

  • Wolf, D. E., C. H. Hoffman, P. E. Aldrich, H. R. Skeggs, L. D. Wright and K. Folkers: β-Hydroxy-β-methyl-δ-valerolactone (divalonic acid), a new biological factor. J. Amer. chem. Soc. 78, 4499 (1956).

    CAS  Google Scholar 

  • Wolf, D. E., J. Valiant, R. L. Peck and K. Folkers: Synthesis of biocytin. J. Amer. chem. Soc. 74, 2002–2003 (1952).

    CAS  Google Scholar 

  • Wolin, M. J., F. J. Simpson and W. A. Wood: L-Ribulose 5-phosphate D-xylulose 5-phos-phate stereoisomerase and its role in L-arabinose fermentation. Biochim. biophys. Acta 24, 635–638 (1957).

    PubMed  CAS  Google Scholar 

  • Wolin, M. J., F. J. Simpson and W. A. Wood: Degradation of L-arabinose by Aerobacter aerogenes. III. Identification and properties of L-ribulose 5-phosphate 4-epimerase. J. biol. Chem. 232, 559–575 (1958).

    PubMed  CAS  Google Scholar 

  • Wood, H. G.: Fermentation of 3, 4-C14- and l-C14-labeled glucose by Clostridium thermo-aceticum. J. biol. Chem. 199, 579–583 (1952).

    PubMed  CAS  Google Scholar 

  • Wood, H. G., N. Lifson and V. Lorber: The position of fixed carbon in glucose from rat liver glycogen. J. biol. Chem. 159, 475–489 (1945).

    CAS  Google Scholar 

  • Wood, W. A.: Pathways of carbohydrate degradation in Pseudomonas fluorescens. Bact. Rev. 19, 222–233 (1955).

    PubMed  CAS  Google Scholar 

  • Wood, W. A.: Symposium on microbial amino acid metabolism. Bact. Rev. 20, 285–288 (1956).

    PubMed  CAS  Google Scholar 

  • Wood, W. A., and I. C. Gunsaltts: D-Alanine formation: a racemase in Streptococcus faecalis. J. biol. Chem. 190, 403–416 (1951).

    PubMed  CAS  Google Scholar 

  • Wood, W. A., I. C. Gunsalus and W. W. Umbreit: Function of pyridoxal phosphate: resolution and purification of the tryptophanase enzyme of Escherichia coli. J. biol. Chem. 170, 313–321 (1947).

    CAS  Google Scholar 

  • Woods, L., J. M. Ravel and W. Shive: Relationship of aspartic acid to pyrimidine biosynthesis. J. biol. Chem. 209, 559–567 (1954).

    PubMed  CAS  Google Scholar 

  • Woolley, D. W.: New growth factor required by certain hemolytic streptococci. J. exp. Med. 73, 487–492 (1941).

    PubMed  CAS  Google Scholar 

  • Woolley, D. W.: Strepogenin activity of seryl glycyl glutamic acid. J. biol. Chem. 166, 783–784 (1946).

    PubMed  CAS  Google Scholar 

  • Woolley, D. W.: Strepogenin activity of derivatives of glutamic acid. J. biol. Chem. 172, 71–81 (1948a).

    PubMed  CAS  Google Scholar 

  • Woolley, D. W.: Studies on the structure of lycomarasmin. J. biol. Chem. 176, 1291–1298 (1948b).

    PubMed  CAS  Google Scholar 

  • Woolley, D. W.: Synthesis and determination of lycomarasmin activity of some derivatives of aspartic acid. J. biol. Chem. 176, 1299–1308 (1948c).

    PubMed  CAS  Google Scholar 

  • Woolley, D. W., and R. B. Merrifield: Specificity of peptides. Science 128, 238–240 (1958).

    PubMed  CAS  Google Scholar 

  • Wright, B. E.: The rôle of polyglutamyl pteridine coenzymes in serine metabolism. II. A comparison of various pteridine derivatives. J. biol. Chem. 219, 873–883 (1956).

    PubMed  CAS  Google Scholar 

  • Wright, B. E., and Th. C. Stadtman: The rôle of polyglutamyl pteridine coenzymes in serine metabolism. I. Cof actor requirements in the conversion of serine to glycine. J. biol. Chem. 219, 863–871 (1956).

    PubMed  CAS  Google Scholar 

  • Wright, H. D.: Direct fermentation of disaccharides and variation in sugar utilization by Streptococcus thermophilus. J. Path. Bact. 43, 487–501 (1936).

    CAS  Google Scholar 

  • Wright, L. D., E. L. Cresson, H. R. Skeggs, G. D. E. MacRae, C. H. Hoffman, D. E. Wolf and K. Folkers: Isolation of a new acetate-replacing factor. J. Amer. chem. Soc. 78, 5273–5275 (1956).

    CAS  Google Scholar 

  • Wright, L. D., E. L. Cresson, H. R. Skeggs, Th. R. Wood, R. L. Peck, D. E. Wolf and K. Folkers: Biocytin, a naturally-occurring complex of biotin. J. Amer. chem. Soc. 72, 1048 (1950).

    CAS  Google Scholar 

  • Wright, L. D., E. L. Cresson, H. R. Skeggs, Th. R. Wood, R. L. Peck, D. E. Wolf and K. Folkers: Isolation of crystalline biocytin from yeast extract. J. Amer. chem. Soc. 74, 1996–1999 (1952).

    CAS  Google Scholar 

  • Wright, L. D., J. W. Huff, H. R. Skeggs, K. A. Valentik and D. K. Bosshardt: Orotic acid, a growth factor for Lactobacillus bulgaricus. J. Amer. chem. Soc. 72, 2312–2313 (1950).

    CAS  Google Scholar 

  • Wright, L. D., C. S. Miller, H. R. Skeggs, J. W. Huff, L. I. Weed and D. W. Wilson: Biological precursors of the pyrimidines. J. Amer. chem. Soc. 73, 1898–1899 (1951).

    CAS  Google Scholar 

  • Wright, L. D., and H. R. Skeggs: The growth factor requirements of certain streptococci. J. Bact. 48, 117–118 (1944).

    PubMed  CAS  Google Scholar 

  • Wright, L. D., and H. R. Skeggs: Determination of biotin with Lactobacillus arabinosus. Proc. Soc. exp. Biol. Med. 56, 95–98 (1944).

    CAS  Google Scholar 

  • Wright, L. D., and H. R. Skeggs, S. H. Rubin and E. de Ritter: Microbiological methods in vitamin research. In: Vitamin methods (edit. by P. György). II. S. 683–712. New York: Academic Press 1951.

    Google Scholar 

  • Wright, L. D., K. A. Valentik, D. S. Spicer, J. W. Huff and H. R. Skeggs: Orotic acid and related compounds in the nutrition of Lactobacillus bulgaricus 09. Proc. Soc. exp. Biol. (N. Y.) 75, 293–297 (1950).

    CAS  Google Scholar 

  • Wynne, E. S., and J. W. Foster: Studies on the effects of C18 unsaturated fatty acids on growth and respiration of Micrococcus pyogenes var. aureus. J. infect. Dis. 86, 33–37 (1950).

    PubMed  CAS  Google Scholar 

  • Yamamura, Y., M. Kusunose and E. Kusunose: Lactic oxidases of Mycobacterium tuberculosis avium. J. Biochem. 39, 227–238 (1952).

    CAS  Google Scholar 

  • Yamanaka, K.: Studies on pyruvate metabolism by lactic acid bacteria. I. Aerobic metabolism of pyruvate. J. agric. chem. Soc. Japan 30, 264–268 (1956 a). II. Dismutation system of sugars and pyruvate by Lactobacillus fermentum. J. agric. chem. Soc. Japan 30, 269–274 (1956b).

    CAS  Google Scholar 

  • Yamashita, J., T. Horio and K. Okunuki: Terminal oxidation system in respiring yeast. II. Re-evaluation of role of action of cytochrome b2 in dehydrogenations of lactate and malate. J. Biochem. 45, 707–715 (1958).

    CAS  Google Scholar 

  • Young, G., R. I. Krasner and P. L. Yudkofsky: Interactions of oral strains of Candida albicans and lactobacilli. J. Bact. 72, 525–529 (1956).

    PubMed  CAS  Google Scholar 

  • Zelitch, I.: Oxidation and reduction of glycolic and glyoxylic acids in plants. II. Glyoxy-lic acid reductase. J. biol. Chem. 201, 719–726 (1953).

    PubMed  CAS  Google Scholar 

  • Zelitch, I., and S. Ochoa: Oxidation and reduction of glycolic and glyoxylic acids in plants. I. Glycolic acid oxidase. J. biol. Chem. 201, 707–718(1953).

    PubMed  CAS  Google Scholar 

  • Adam: Z. Österr. Apoth.-Ver. 43, 797 (1905).

    Google Scholar 

  • Zit. nach C. Wehmer, Die Pflanzenstoffe. Jena: Gustav Fischer 1929.

    Google Scholar 

  • Baldwin, E.: Dynamic aspects of biochemistry. Cambridge: University Press 1953.

    Google Scholar 

  • Barber, D. A.: Lactic acid formation and carbon dioxide formation. Nature (Lond.) 180, 1053 (1957).

    CAS  Google Scholar 

  • Babker, J., and A. F. El Saifi: Studies in the respiratory and carbohydrate metabolism of plant tissues. I. Experimental studies of the formation of carbon dioxide, lactic acid and other products in potato tubers under anaerobic conditions. Proc. Roy. Soc. Lond., Ser. B 140, 362–385 (1953a).

    Google Scholar 

  • Babker, J., and A. F. El Saifi: Studies in the respiratory and carbohydrate metabolism of plant tissues. II. Interrelationship between the rates of production of carbon dioxide, lactic acid and of alcohol in potato tubers under anaerobic conditions. Proc. Roy. Soc. Lond., Ser. B 140, 385–403 (1953b).

    Google Scholar 

  • Babker, J., and A. F. El Saifi: Studies in the respiratory and carbohydrate metabolism of plant tissues. III. Experimental studies of the formation of carbon dioxide and of the changes in lactic acid and other products in potato tubers in air following anaerobic conditions. Proc. Roy. Soc. Lond., Ser. B 140, 508–522 (1953c).

    Google Scholar 

  • Babker, J., and A. F. El Saifi: Studies in the respiratory and carbohydrate metabolism of plant tissues. IV. The relation between the rate of carbon dioxide production in potato tubers in air following anaerobic conditions, and the accompanying changes in lactic acid content and sugar concentration. Proc. Roy. Soc. Lond., Ser. B 140, 522–555 (1953d).

    Google Scholar 

  • Babker, J., and L. W. Mapson: Studies in the respiratory and carbohydrate metabolism of plant tissues. V. Experimental studies of the formation of carbon dioxide and of the changes in lactic acid, sucrose and in certain fractions of keto-acids in potato tubers in air following anaerobic conditions. Proc. Roy. Soc. Lond., Ser. B 141, 321–337 (1953a).

    Google Scholar 

  • Babker, J., and L. W. Mapson: Studies in the respiratory and carbohydrate metabolism of plant tissues. VI. Analysis of the interrelationships between the rate of carbon dioxide production and the changes in the contents of lactic acid, sucrose and of certain fractions of keto-acids in potato tubers in air following anaerobic conditions. Proc. Roy. Soc. Lond., Ser. B 141, 338–362 (1953b).

    Google Scholar 

  • Barron, E. S. G., G. K. K. Link, R. M. Klein and B. E. Michel: The metabolism of potato slices. Arch, of Biochem. 28, 377–398 (1950).

    CAS  Google Scholar 

  • Bartels, H.: Enzyme in keimenden Samen von Pinus nigra Arn. Naturwiss. 45,495 (1958).

    CAS  Google Scholar 

  • Bentley, L. E.: Occurence of malonic acid in plants. Nature (Lond.) 170, 847–848 (1952).

    CAS  Google Scholar 

  • Boser, H.: Einfluß pflanzlicher Virosen auf Stoffwechselfunktionen des Wirtes. I. Glykolyse und Atmung gesunder und roll-, strichel- und mosaikkranker Kartoffeln. Biochem. Z. 328, 458–464 (1957).

    PubMed  CAS  Google Scholar 

  • Boswell, J. G.: Metabolic systems in the „roof“ of Brassica napus L. Ann. of Bot., N. S. 14, 521–543 (1950).

    CAS  Google Scholar 

  • Bryant, F., and B. T. Overell: Quantitative chromatographic analysis of organic acids in plant tissue extracts. Biochim. et Biophysica Acta 10, 471–476 (1953).

    CAS  Google Scholar 

  • Btjlen, W. A., J. E. Varner and R. C. Burrell: Separation of organic acids from plant tissues. Chromatographic technique. Analyt. Chemistry 24, 187–190 (1952).

    Google Scholar 

  • Burmeister, H.: Milchsäure und flüchtige Säure als Qualitätskriterium von Süßmosten. Ind. Obst- u. Gemüseverwertg 39, 301–303 (1954).

    CAS  Google Scholar 

  • Carañgal jr., A. R., E. K. Aban, J. E. Varner and R. C. Burrell: The influence of mineral nutrition on the organic acids of the tomato, Lycopersicum esculentum. Plant Physiol. 29, 355–360 (1954).

    PubMed  Google Scholar 

  • Clagett, C. O., N. E. Tolbert and R. H. Btjrris: Oxidation of α-hydroxy acids by enzymes from plant. J. of Biol. Chem. 178, 977–987 (1949).

    CAS  Google Scholar 

  • Crombie née Wood, W. M. L.: Oxalic acid metabolism in Begonia semperflorens. J. of Exper. Bot. 5, 173–183 (1954).

    Google Scholar 

  • Czapek, F.: Biochemie der Pflanzen, Bd. 3. Jena: Gustav Fischer 1925.

    Google Scholar 

  • Dame jr., Ch., S. J. Leonard, B. S. Luh and G. L. Marsh: The influence of ripeness on the organic acids, sugars and pectin of canned Bartlett pears. Food Technol. (Lond.) 10, 28–33 (1956).

    CAS  Google Scholar 

  • Davies, C. W., and R. B. Hughes: Organic acids of grass extracts. J. Sci. Food Agricult. 5, 200–205 (1954).

    CAS  Google Scholar 

  • Deleano, N. T.: Recherches chimique sur la germination. Zbl. Bakter. 24, 130–146 (1909).

    CAS  Google Scholar 

  • Desveaux, R., et Kogane: Note sur les acides formés au cours de la germination du ricin. VIII. Congrès internat, botan., Paris. Rapports et communications, Sect. 11/12, 37, 1954.

    Google Scholar 

  • Dott: Pharm. J. Tr. 1877, 221. Zit. nach F. Czapek, Biochemie der Pflanzen, Bd. 3, S. 93. Jena: Gustav Fischer 1925.

    Google Scholar 

  • Duperon, R.: Influence du froid sur l’évolution des acides organiques hydro-solubles, non volatils, au cours de la germination des graines de Brassica oleracea var. acephala. C. R. Acad. Sci. (Paris) 243, 1139–1141 (1956).

    CAS  Google Scholar 

  • Eichenberger, E.: Über die Atmung lebender Tabakblätter. Ber. Schweiz. bot. Ges. 62, 123–163 (1952).

    CAS  Google Scholar 

  • Elliott, D. C.: Detection of glycolic acid in etiolated barley shoots. J. of Exper. Bot. 5, 353–356 (1954).

    CAS  Google Scholar 

  • Eymard: J. Pharmacie (5) 21 (1890). Zit. nach F. Czapek, Biochemie der Pflanzen, Bd. 3, S. 93. Jena: Gustav Fischer 1925.

    Google Scholar 

  • Faludi-Dániel, A.: Changes in the organic-acid and amino-nitrogen contents of peas and maize during germination. Acta bot. (Budapest) 3, 243–251 (1957).

    Google Scholar 

  • Franzen, H., u. F. Helwert: Über die chemischen Bestandteile grüner Pflanzen. 20. Mittig. Über die Säuren der Kirschen. Hoppe-Seylers Z. 122, 46–85 (1922a).

    CAS  Google Scholar 

  • Franzen, H., u. F. Helwert: Über die chemischen Bestandteile grüner Pflanzen. 22. Mittig. Über das Vorkommen von Bernsteinsäure und Oxalsäure in den Johannisbeeren (Ribes rubrum). Hoppe-Seylers Z. 124, 65–74 (1922b).

    Google Scholar 

  • Franzen, H., u. F. Helwert: Über die chemischen Bestandteile grüner Pflanzen. 25. Mitt. Über die Säuren der Äpfel (Pirus malus). Hoppe-Seylers Z. 127, 14–38 (1923).

    CAS  Google Scholar 

  • Franzen, H., u. E. Keyssner: Über die chemischen Bestandteile grüner Pflanzen. 17. Mitt. Über das Vorkommen von Äthylidenmilchsäure in den Blättern der Brombeere (Rubus fruticosus). Hoppe-Seylers Z. 116, 166–168 (1921).

    CAS  Google Scholar 

  • Franzen, H., u. F. Helwert: Über die chemischen Bestandteile grüner Pflanzen. 29. Mitt. Über einige wasserlösliche Bestandteile der Blätter der Brombeere (Rubus fruticosus). Hoppe-Seylers Z. 129, 309–319 (1923).

    CAS  Google Scholar 

  • Franzen, H., u. E. Stern: Über die chemischen Bestandteile grüner Pflanzen. 15. Mitt. Über das Vorkommen von Äthylidenmilchsäure in den Blättern der Himbeere (Rubus idaeus). Hoppe-Seylers Z. 115, 270–283 (1921).

    CAS  Google Scholar 

  • Franzen, H., u. E. Stern: Über die chemischen Bestandteile grüner Pflanzen. 19. Mitt. Über das Vorkommen von Milchsäure und Bernsteinsäure in den Blättern der Himbeere (Rubus idaeus). Hoppe-Seylers Z. 121, 195–220 (1922).

    CAS  Google Scholar 

  • Gentile, A., and A. W. Naylor: The metabolism of Rumex virus tumors. Respiration of tissue slices. Arch. Biochem. 58, 270–275 (1955).

    PubMed  CAS  Google Scholar 

  • Gustafson, F. G.: Production of alcohol and acetaldehyd by tomatoes. Plant Physiol. 9, 359–367 (1934).

    PubMed  CAS  Google Scholar 

  • Habermann, J.: Chemiker-Ztg 1906, 40. Zit. nach F. Czapek, Biochemie der Pflanzen, Bd. 3, S. 93. Jena: Gustav Fischer 1925.

    Google Scholar 

  • Hassid, W. Z., E. W. Putman and V. Ginsburg: Metabolism of galactose in Canna leaves and wheat seedlings. Biochim. biophys. Acta 20, 17–22 (1956).

    CAS  Google Scholar 

  • Hildebrandt, A., A. Riker and J. Watertor: Growth and inhibition of tissue cultures on media with different concentrations of organic acids. Phytopathology 44, 422–428 (1954).

    CAS  Google Scholar 

  • Hulme, A. C.: An action of strongly basic anion-exchange resins and solutions containing sugars. Nature (Lond.) 171, 610–611 (1953).

    CAS  Google Scholar 

  • Izawo, S., and A. Tsukamoto: The oxidation mechanism of glycolic and L-lactic acids by the enzyme from leaves. J. of Biochem. (Tokyo) 41, 187–198 (1954).

    Google Scholar 

  • Jacquin, P., et J. Tavernier: L’acidité organique des moûts de pommes et de poires. Industr. agricult. et aliment. 66, 513–530 (1949).

    CAS  Google Scholar 

  • James, W. O., and J. M. Cragg: The ascorbic acid system as an agent in barley respiration. New Phytologist 42, 28–44 (1943).

    CAS  Google Scholar 

  • James, W. O., C. R. C. Heard and G. M. James: On the oxidative decomposition of hexosediphosphate by barley. The role of ascorbic acid. New Phytologist 43, 62–74 (1944).

    Google Scholar 

  • James, W. O., and A. L. James: The respiration of barley germinating in the dark. New Phytologist 39, 145–176 (1940).

    CAS  Google Scholar 

  • James, W. O., and I. F. Norval: The respiratory decomposition of pyruvic acid by barley. New Phytologist 37, 455–473 (1938).

    CAS  Google Scholar 

  • James, W.O., and A. F. Ritchie: The anaerobic respiration of carrot tissue. Proc. roy. Soc. B 143, 302–310 (1954).

    Google Scholar 

  • Karrer, P., u. E. Matter: Eine Untersuchung der sauren Bestandteile von Digitalis purpurea. Helvet. chim. Acta 31, 799–802 (1948).

    PubMed  CAS  Google Scholar 

  • Renten, R. H., and P. J. G. Mann: Hydrogen peroxide formation in oxidations catalyzed by plant a-hydroxyacid oxidase. Biochemic. J. 52, 130–134 (1952).

    Google Scholar 

  • Knabe, J.: Über die gegenseitigen Beziehungen des Gas- und Fettstoffwechsels etiolierter Senfkeimlinge. Planta (Berl.) 33, 388–423 (1942).

    Google Scholar 

  • Koch, J.: Zur Frage des Gehaltes der Süßmoste an flüchtigen Säuren und Milchsäure. Flüssiges Obst 21, H. 10, 7 (1954).

    Google Scholar 

  • Krotkow, G., P. V. Vittorio and G. B. Reed: Synthesis of glucose and starch by tobacco leaves from formic acid —C14, acetic acid —1 C14, lactic acid —1 C14, lactic acid —1,2 C14 and benzoic acid —C14 OOH. Arch, of Biochem. a. Biophysics 51, 147–154 (1954).

    Google Scholar 

  • Link, G. K. K., R. M. Klein and E. S. G. Barron: Metabolism of slices of the tomato stem. J. of Exper. Bot. 3, 216–236 (1952).

    CAS  Google Scholar 

  • Mader, P. P., G. Cann and L. Palmer: Effects of polluted atmospheres on organic acid composition in plant tissue. Plant Physiol. 30, 318–323 (1955).

    PubMed  CAS  Google Scholar 

  • McGeorge, Wm.: The occurence of lactic acid in sisal. J. Amer. Chem. Soc. 34, 1625–1627 (1912).

    Google Scholar 

  • Mehlitz, A., u. H. Ballschmieter: Zur Frage des Gehaltes an Milchsäure und flüchtiger Säure in Apfelsüßmosten. Ind. Obst- u. Gemüseverwertg 39, 222–231 (1954).

    CAS  Google Scholar 

  • Mehlitz, A., u. B. Matzik: Zur Frage des Vorkommens von Milchsäure in Süßmosten. Ind. Obst.-u. Gemüseverwertg 40, 59–62 (1955).

    CAS  Google Scholar 

  • Miller jr., J. H., and R. H. Burris: Effect of plant growth substances upon oxidation of ascorbic acid and glycolic acids by cell-free enzymes from barley. Amer. J. Bot. 38, 547–549 (1951).

    Google Scholar 

  • Muenk, G.: Beiträge zur Kenntnis der Bestandteile und Wirkungen der Lupinensamen. Landw. Versuchsstat. 85, 393–416 (1914).

    CAS  Google Scholar 

  • Nelson, E. K.: The non-volatile acids of the blackberry. J. Amer. Chem. Soc. 47, 568–572 (1925).

    CAS  Google Scholar 

  • Nelson, E. K.: The acids of figs. J. Amer. Chem. Soc. 50, 2012–2013 (1928).

    CAS  Google Scholar 

  • Nelson, E. K., and H. Hasselbring: Some organic acids of wheat plants. J. Amer. Chem. Soc. 53, 1040–1043 (1931a).

    CAS  Google Scholar 

  • Nelson, E. K., and H. H. Mottern: Some organic acids in barley, maize, oat and rye plants. J. Amer. Chem. Soc. 53, 3046–3048 (1931b).

    CAS  Google Scholar 

  • Neuberg, C., u. G. Gorr: Untersuchungen über den Mechanismus der Milchsäurebildung bei Phanerogamen. II. Biochem. Z. 173, 358–362 (1926).

    CAS  Google Scholar 

  • Noll, C.R.: Dehydrogenation of glycolic and lactic acids by plant enzymes. Doct. thesis, Univers, of Wisconsin, Madison, 1952.

    Google Scholar 

  • Zit. nach R. H. Burris, Annual Rev. Plant Physiol. 4, 91–114 (1953).

    Google Scholar 

  • Ochoa, S., and W. Vishniac: Carboxylation reaction and photosynthesis. Science (Lancaster, Pa.) 115, 297–301 (1952).

    CAS  Google Scholar 

  • Oota, Y., R. Fujn and Y. Stjnobe: Studies on the connexion between sucrose formation and respiration in germinating bean cotyledons. Physiol. Plantarum (Cph.) 9, 38–50 (1956).

    Google Scholar 

  • Owens, H., A. Goodban and B. Stark: Fractionation of organic acids in sugar beets by ion-exchange resins. Analyt. Chemistry 25, 1507–1511 (1953).

    CAS  Google Scholar 

  • Paech, K.: Experimentelle Studien über die Anaerobiose höherer Pflanzen. Planta (Berl.) 24, 529–551 (1935).

    CAS  Google Scholar 

  • Peynattd, E.: Contribution à l’étude biochimique de la maturation du raisin et de la composition des vins. Thèse de la Faculté des Sciences de Bordeaux, 1946.

    Google Scholar 

  • Phillips, J. D., and A. Pollard: Degradation of sugars on ion-exchange columns. Nature (Lond.) 171, 41–42 (1953).

    CAS  Google Scholar 

  • Phillips, J. W.: Studies on fermentation in rice and barley. Amer. J. Bot. 34, 62–72 (1947).

    CAS  Google Scholar 

  • Putman, E. W., and W. Z. Hassid: Sugar transformation in leaves of Canna indica I. Synthesis and inversion of sucrose. J. of Biol. Chem. 207, 885–902 (1954).

    CAS  Google Scholar 

  • Reutter de Rosemont: Schweiz. Apoth.-Ztg 56, 55 (1918).

    Google Scholar 

  • Zit. nach C. Wehmer, Die Pflanzenstoffe, Bd. 1, S. 381. Jena: Gustav Fischer 1929.

    Google Scholar 

  • Ruhland, W., u. K. Ramshorn: Aerobe Gärung in aktiven pflanzlichen Meristemen. Planta (Berl.) 28, 471–514 (1938).

    CAS  Google Scholar 

  • Schmalfuss, H.: Über Pflanzensäuren aus Glaucium und dessen Blütenfarbstoffe. Vorl. Mitt, Hcppe-Seylers Z. 131, 166–167 (1923).

    CAS  Google Scholar 

  • Schmid, H., u. P. Karrer: Über wasserlösliche Inhaltsstoffe von Papaver somniferum. Helvet. chim. Acta 28, 722–740 (1945).

    CAS  Google Scholar 

  • Schneider, A.: Untersuchungen über das Auftreten der Milchsäure in höheren Pflanzen. Planta (Berl.) 29, 747–749 (1939).

    CAS  Google Scholar 

  • Schneider, A.: Über das Auftreten der Milchsäure in höheren Pflanzen, insbesondere während der Keimung. Planta (Berl.) 32, 234–267 (1941).

    CAS  Google Scholar 

  • Scott, R. W., R. H. Burris and A. J. Riker: Nonvolatile organic acids of crown galls, crown gall tissue cultures and normal stem tissue. Plant Physiol. 30, 355–360 (1955).

    PubMed  CAS  Google Scholar 

  • Smith, E. P.: The effect of lactic acid on the respiration of wheat. Amer. J. Bot. 9, 307–310 (1922).

    CAS  Google Scholar 

  • Stark, J. B., A. E. Goodban and H. S. Owens: Paper chromatography of organic acids. Analyt. Chemistry 23, 413–415 (1951).

    CAS  Google Scholar 

  • Stoklasa, J.: Der Kohlenhydrat-umsatz in der Pflanzenzelle. Ber. dtsch. bot. Ges. 44, 248–262 (1926).

    Google Scholar 

  • Tavernier, J., et P. Jacquin: Sur la composition de l’acidité organique du moût de pommes. C. r. Acad. Sci. Paris 225, 1373 (1947).

    CAS  Google Scholar 

  • Thomas, M., and J. C. Fidler: Studies in zymasis. VI. Zymasis by apples in relation to oxygen concentration. Biochemie. J. 27, 1629–1642 (1933).

    CAS  Google Scholar 

  • Tolbebt, N. E., and R. H. Bubbis: Light activation of the plant enzyme which oxidizes glycolic acid. J. of Biol. Chem. 186, 791–804 (1950).

    Google Scholar 

  • Tolbebt, N. E., C. O. Clagett and R.H. Bubbis: Products of the oxidation of glycolic and L-lactic acid by enzymes from tobacco leaves. J. of Biol. Chem. 181, 906–914 (1949).

    Google Scholar 

  • Ullbich, H.: Zur Physiologie der organischen Säuren in grünen Pflanzen. II. Tagesschwankungen und anderweitig bedingte Schwankungen des Gehaltes an verschiedenen organischen Säuren in einigen grünen Pflanzen. Planta (Berl.) 1, 565–568 (1925).

    Google Scholar 

  • Vavbuch, L.: Chromatographische Untersuchungen an Zuckerrüben. II. Stickstofffreie organische Säuren (Tschechisch). Chem. Listy 48, 442–445 (1954).

    Google Scholar 

  • Vishniac, W., and S. Ochoa: Phosphorylation coupled to photochemical reduction of pyridine nucleotides by chloroplast preparations. J. of Biol. Chem. 198, 501–506 (1952).

    CAS  Google Scholar 

  • Wagenknecht, A. C., A. J. Rikeb, T. C. Allen and R. H. Bubbis: Plant growth substances and the activity of cell free respiratory enzymes. Amer. J. Bot. 38, 550–554 (1951).

    CAS  Google Scholar 

  • Watanabe, H., and T. Takano: Components of Digenea simplex. J. Pharma-ceut. Soc. Japan 73, 529–530 (1953).

    CAS  Google Scholar 

  • Wehmeb, C., W. Thies u. M. Haddebs: Systematische Verbreitung und Vorkommen der organischen Säuren. In Kleins Handbuch der Pflanzenanalyse, Teil 1, Bd. 2, S. 496–545. Wien: Springer 1932.

    Google Scholar 

  • Wetzel, K.: Zur Physiologie der anaeroben Atmung höherer Pflanzen. Ber. dtsch. bot. Ges. 31, (46)–(51) (1933).

    Google Scholar 

  • Windisch, W., u. W. Dietbich: Über Art, Entstehung und physiologische Bedeutung der Acidität beim Keimen der Gerste. Wschr. Brauer 1918, 159, 168, 176, 182, 189, 195.

    Google Scholar 

  • Wolf, J.: Nichtflüchtige Mono-, Di- und Tricarbonsäure. In Paech-Tbacey, Moderne Methoden der Pflanzenanalyse, Bd. II, S. 478–538. Berlin: Springer 1955.

    Google Scholar 

  • Zelitch, J., and S. Ochoa: Oxidation and reduction of glycolic and glyoxylic acids in plants. I. Glycolic acid oxidase. J. of Biol. Chem. 201, 706–718 (1953).

    Google Scholar 

  • Babel, F. J., and B. W. Hammer: Bacteriology of cheese. IV. Factors affecting the ripening of Swiss-type cheese made from pasteurized milk. Iowa Agricult. Exper. Stat. Res. Bull. 1939, No 264, 52 pp.

    Google Scholar 

  • Barban, S., and S. J. Ajl: Interconversion of propionate and succinate via the succinic decarboxylase enzyme of Propionibacterium pentosaceum. Bacter. Proc. 1951, 134.

    Google Scholar 

  • Barker, H.A., and E. Lipmann: On lactic acid metabolism in propionic acid bacteria and the problem of oxido-reduction in the system fatty-hydroxy-keto-acid. Arch. of Biochem. 4, 361–370 (1944).

    Google Scholar 

  • Barker, H.A., and E. Lipmann: The role of phosphate in the metabolism of Propionibacterium pentosaceum. J. of Biol. Chem. 179, 247–257 (1949).

    CAS  Google Scholar 

  • Berger, J., M. J. Johnson and W. H. Peterson: The proteolytic enzymes of bacteria. II. The peptidases of some common bacteria. J. Bacter. 36, 521–545 (1938).

    CAS  Google Scholar 

  • Braak, H. R.: Onderzoekingen over vergisting van glycerine. Thesis. Delft, Netherlands: W. D. Meinema 1928.

    Google Scholar 

  • Cardon, B. P., and H. A. Barker: Two new amino acid fermenting bacteria, Clostridium propionicum and Diplococcus glycinophilus. J. Bacter. 52, 629–634 (1936).

    Google Scholar 

  • Cardon, B. P., and H. A. Barker: Amino acids fermentations by Clostridium propionicum and Diplococcus glycinophilus. Arch. of Biochem. 12, 165–180 (1947).

    CAS  Google Scholar 

  • Carson, S. F.: Studies on the mechanism of the propionic acid fermentation. Atomic Energy Commission (U.S.A.) Abstr. of Declass. Docum. 2 (6), 172 (1948a).

    Google Scholar 

  • Carson, S. F.: Design and interpretation of carbon isotope experiments in bacterial metabolism. Cold Spring Harbor Symp. Quant. Biol. 13, 75–80 (1948b).

    CAS  Google Scholar 

  • Carson, S. F., D. S. Anthony, M. Kuna, B. J. Bachmann and M. Long: Studies on the mechanism of the propionic acid fermentation. Bacter. Proc. 1948, 12.

    Google Scholar 

  • Carson, S. F., and E. A. Delwiche: Oxidative reactions in the propionic acid fermentation. Federat. Proc. 11, 194–195 (1952 a).

    Google Scholar 

  • Carson, S. F., and E. A. Delwiche: Oxidative reactions in the propionic acid fermentation. Nuclear Sci. Abstr. 6 (4), 135 (1952b).

    Google Scholar 

  • Carson, S. F., J.W. Foster, S. Ruben and H.A. Barker: Radioactive carbon as an indicator of carbon dioxide utilization. V. Studies on the propionic acid bacteria. Proc. Nat, Acad. Sci. U.S.A. 27, 229–235 (1941).

    CAS  Google Scholar 

  • Carson, S. F., J. W. Foster, S. Ruben and M. D. Kamen: Radioactive carbon as a tracer in the synthesis of propionic acid from carbon dioxide by the propionic acid bacteria. Science (Lancaster, Pa.) 92, 433–434 (1940).

    CAS  Google Scholar 

  • Carson, S. F., and S. Ruben: Carbon dioxide assimilation by the propionic acid bacteria studied by the use of radioactive carbon. Proc. Nat. Acad. Sci. U.S.A. 26, 422–426 (1940).

    CAS  Google Scholar 

  • Chaix, P.: Sur la cinétique de l’attaque du glucose et de l’acide lactique par de petites masses bactériennes. La notion de masse active minima. C. r. Acad. Sci. Paris 201, 626–628 (1935a).— Action de quelques dérivés sulfurés sur la fermentation du glucose par des bactéries propioni-ques. C. r. Acad. Sci. Paris 201, 857–858 (1935b).

    CAS  Google Scholar 

  • Chaix, P.: Sur le mécanisme de l’action des substances sulfurées dans la glycose par Propionibacterium pentosaceum. C. r. Acad. Sci. Paris 203, 1396–1398 (1936).

    CAS  Google Scholar 

  • Chaix, P.: Influence de traces d’oxygéne sur la glycioyse par Propionibacterium pentosaceum. C. r. Acad. Sci. Paris 204, 911–913 (1937 a).

    CAS  Google Scholar 

  • Chaix, P.: Sur l’oxydation et la fermentation du glucose par Propionibacterium pentosaceum. C. r. Acad. Sci. Paris 204, 1005–1008 (1937 b).

    CAS  Google Scholar 

  • Chaix, P.: Influence de la cystine traitee sur l’effet Pasteur chez Propionibacterium pentosaceum lavé. C. r. Acad. Sci. Paris 206, 1053–1054 (1939).

    Google Scholar 

  • Chaix, P., et C. Fromageot: Sur un activateur du métabolisme des bacteries propioniques. II. Bull. Soc. Chim. biol. Paris 17, 874–892 (1935).

    CAS  Google Scholar 

  • Chaix, P.: Action de quelques dérivés sulfures sur la fermentation du glucose par les bacteries propioniques. Bull. Soc. Chim. biol. Paris 18, 1436–1453 (1936a).

    CAS  Google Scholar 

  • Chaix, P.: Nouvelles expériences sur l’action des dérivés sulfurées vis-à-vis de la fermentation du glucose par des bacteries propioniques. C. r. Acad. Sci. Paris 202, 983–984 (1936b).

    CAS  Google Scholar 

  • Chaix, P.: Sur la nécessité de substances sulfurées pour la réalisation de la glycolyse bactérienne. Enzymologia (Den Haag) 1, 321–327 (1937).

    CAS  Google Scholar 

  • Chaix, P.: Action du groupe -SH sur la fermentation et la respiration des bacteries propioniques en présence de glucose. Suppression de l’effet Pasteur. Enzymologia (Den Haag) 6, 33–45 (1939 a).

    CAS  Google Scholar 

  • Chaix, P.: Influence du fluorure de sodium et de l’acide mono-iodoacétique sur les dégradation anaérobie et aérobie de quelques substrats par Propionibacterium pentosaceum. Enzymologia (Den Haag) 7, 353–361 (1939b).

    CAS  Google Scholar 

  • Chaix, P.: Les cytochromes de Propionibacterium pentosaceum. Trav. Soc. Chim. biol. 24, 1125–1127 (1942 a).

    CAS  Google Scholar 

  • Chaix, P.: Influence de l’oxyde de carbone sur la respiration de Propionibacterium pentosaceum. Trav. Soc. Chim. biol. 24, 1128–1131 (1942b).

    CAS  Google Scholar 

  • Chaix, P.: Chaix-Audemard: Sur les relations existent entre respiration et fermentation chez Propionibacterium pentosaceum. Lyon 1940.

    Google Scholar 

  • Chambers, E. H., and E. A. Delwiche: Biotin and succinate decarboxylation. J. Bacter. 68, 131–132 (1954).

    CAS  Google Scholar 

  • Delwiche, E. A.: Mechanism of propionic acid formation by Propionibacterium pentosaceum. J. Bacter. 56, 811–820 (1948).

    CAS  Google Scholar 

  • Chaix, P.: Vitamin requirements of the genus Propionibacterium. J. Bacter. 58, 395–398 (1949).

    Google Scholar 

  • Chaix, P.: A biotin function in succinic acid decarboxylation by Propionibacterium pentosaceum. J. Bacter. 59, 439–442 (1950).

    Google Scholar 

  • Delwiche, E. A., and S. F. Carson: A citric acid cycle in Propionibacterium pentosaceum. J. Bacter. 65, 318–321 (1953).

    CAS  Google Scholar 

  • Delwiche, E. A., E. F. Phares and S. F. Carson: Succinate decarboxylation reaction in Propionibacterium. Federat. Proc. 12 (1), 194–195 (1953).

    Google Scholar 

  • Chaix, P.: Succinate decarboxylation systems in Propionibacterium and Veillonella. Federat. Proc. 13 (1), 198 (1954).

    Google Scholar 

  • Desnuelle, P., E. Wookey and C. Fromageot: Sur la dégradation anaérobie de la cysteine et de la cystine par Propionibacterium pentosaceum. Enzymologia (Den Haag) 8, 225–240 (1940).

    CAS  Google Scholar 

  • Domke, F.: Beitrag zur Kenntnis der Propionsäurebakterien. Milchwirtsch. Forsch. 15, 480–500 (1933).

    CAS  Google Scholar 

  • Dorner, W.: Recherches sur les bacteries propioniques. Lait 19, 897–918 (1939).

    CAS  Google Scholar 

  • Dorner, W., u. M. Thöni: Untersuchungen über kokkenförmige Propionsäurebakterien. Landwirtsch. Jb. Schweiz 53, 86–96 (1939).

    Google Scholar 

  • Douglas, H. C., and S. E. Gunter: The taxonomic position of Corynebacterium acnes. J. Bacter. 52, 15–23 (1946).

    Google Scholar 

  • Erb, C.: Respiratory behavior of the propionic acid bacteria. Thesis. Iowa State College 1935.

    Google Scholar 

  • Erb, C., H. G. Wood, R. W. Stone and C. H. Werkman: Intermediate behavior of succinic acid and acetic acids in the propionic fermentation. J. Bacter. 29, 85–86 (1935).

    CAS  Google Scholar 

  • Erb, C., H. G. Wood and C. H. Werkman: The aerobic dissimilation of lactic acid by the propionic acid bacteria. J. Bacter. 31, 595–602 (1936).

    CAS  Google Scholar 

  • Erkama, J.: The fumarase effect of propionic acid bacteria. Suomen Kemistilehti B 11, 28 (1938).

    Google Scholar 

  • Fitz, A.: Über die Gährung des Glycerins. Ber. dtsch. chem. Ges. 9, 1348–1352 (1876).

    Google Scholar 

  • Fitz, A.: Über Spaltpilzgährungen. IV. Ber. dtsch. chem. Ges. 11, 1890–1899 (1878).

    Google Scholar 

  • Fitz, A.: Über Spalt-pilzgährungen. V. Ber. dtsch. chem. Ges. 12, 474–481 (1879).

    Google Scholar 

  • Foote, M., E. B. Fred u. W. H. Peterson: The fermentation of pentoses by certain propionic acid bacteria. Zbl. Bakter. II 82, 379–389 (1930).

    CAS  Google Scholar 

  • Foote, M., W. H. Peterson and E. B. Fred: Fermentation of pentoses by certain propionic acid bacteria. J. Bacter. 19, 17 (1930).

    Google Scholar 

  • Foubert jr. E. L., and H. C. Douglas: Studies on the anaerobic micrococci. I. Taxonomic considerations. J. Bacter. 56, 25–34 (1948 a).

    Google Scholar 

  • Fitz, A.: Studies on the anaerobic micrococci. The fermentation of lactate by Micrococcus lactilyticus. J. Bacter. 56, 35–36 (1948b).

    Google Scholar 

  • Freudenreich, E.V., u. Orla-Jensen: Über die im Emmentalerkäse stattfindende Propionsäuregärung. Zbl. Bakter. II 17, 529–546 (1906).

    Google Scholar 

  • Fromageot, C., et G. Bost: Sur la comportement de quelques espèces de bacteries propioniques dans des moûts de mais non saccharidiés. Ann. Ferment. Paris 4, 449–462 (1938 a).

    CAS  Google Scholar 

  • Fromageot, C., et G. Bost: Production d’acide propionique par fermentation de moûts a base demais. Ann. Ferment. Paris 4, 463–488 (1938b).

    CAS  Google Scholar 

  • Fromageot, C., et G. Bost: La fermentation du glucose par quelques bacteries propioniques croissant en «milieux définis». Enzymologia (Den Haag) 2, 225–240 (1938c).

    CAS  Google Scholar 

  • Fromageot, C., u. P. Chaix: Kespiration et fermentation chez Propionibacterium pentosaceum. Enzymologia (Den Haag) 3, 288–300 (1937d).

    CAS  Google Scholar 

  • Fromageot, C., et P. Laroux: Sur la nutrition azotée des bacteries propioniques. I. Bull. Soc. Chim. biol. Paris 18, 797–811 (1936a).

    CAS  Google Scholar 

  • Fromageot, C., et G. Bost: Sur la nutrition azotée des bacteries propioniques. II. Utilisation de l’azote ammoniacal. Bull. Soc. Chim. biol. Paris 18, 812–819 (1936b)

    CAS  Google Scholar 

  • Fromageot, C., u. E. L. Piret: Sur la nutrition azotée de quelques espèces de bacteries propioniques. Arch. Mikrobiol. 7, 551–570 (1936).

    CAS  Google Scholar 

  • Fromageot, C., u. R. Safavi: Fermentations liees aux syntheses et fermentations independentes. I. Fermentation propionique de l’acide pyruvique. Enzymologia (Den Haag) 6, 57–63 (1939).

    CAS  Google Scholar 

  • Fromageot, C., u. E. L. Tatum: Über einen Aktivator des Stoffwechsels der Propionsäurebakterien. Biochem. Z. 267, 360–375 (1933).

    CAS  Google Scholar 

  • Hartelius, V.: Über die Verarbeitung von Kohlensäure durch Propionibacterium pentosa-ceum. Biochem. Z. 305, 396–404 (1940).

    CAS  Google Scholar 

  • Hitchner, E. R.: Some physiological characteristics of the propionic acid bacteria. J. Bacter. 28, 473–479 (1934).

    CAS  Google Scholar 

  • Ichikawa, Y.: Microbiological studies on propionic acid bacteria. Part 1. Isolation of propionic acid bacteria from cow milk. J. Agricult. Chem. Soc. Japan 29 (3), 241–245 (1955a).

    Google Scholar 

  • Ichikawa, Y.: Microbiological studies on propionic acid bacteria. Part 2. Anaerobic decomposition of the substrates by Propionibacterium arabinosum. J. Agricult. Chem. Soc. Japan 29 (5), 353–357 (1955b).

    CAS  Google Scholar 

  • Ichikawa, Y.: Microbiological studies on propionic acid bacteria. Part 3. Formation of propionate from succinate. J. Agricult. Chem. Soc. Japan 29 (5), 357–361 (1955c).

    CAS  Google Scholar 

  • Ichikawa, Y.: Microbiological studies on propionic acid bacteria. Part 4. On the aerobic decomposition revealed by Propionibacterium arabinosum. J. Agricult. Chem. Soc. Japan 29 (5), 361–363 (1955d).

    CAS  Google Scholar 

  • Janicki, J.: Formation of vitamin B12p and vitamin B12 in aerobic and anaerobic metabolism of Propionibacterium shermanii. Third Internat. Congr. Biochem. Abstr. of Papers 1955, 100.

    Google Scholar 

  • Johns, A. T.: The production of propionic acid by decarboxylation of succinic acid in a bacterial fermentation. Biochemic. J. 42, ii–iii (1948).

    CAS  Google Scholar 

  • Johns, A. T.: Mechanism of propionic acid formation in bacterial fermentation. Nature (Lond.) 164, 620–621 (1949).

    CAS  Google Scholar 

  • Johns, A. T.: Isolation of a bacterium, producing propionic acid, from the rumen of sheep. J. Gen. Microbiol. 5, 317–325 (1951a).

    PubMed  CAS  Google Scholar 

  • Johns, A. T.: The mechanism of propionic acid formation by Veillonella gazogenes. J. Gen. Microbiol. 5, 326–336 (1951b).

    PubMed  CAS  Google Scholar 

  • Johns, A. T.: The mechanism of propionic acid formation by Propionibacteria. J. Gen. Microbiol. 5, 337–345 (1951c).

    PubMed  CAS  Google Scholar 

  • Kalckar, H. M.: The nature of energetic coupling in biological syntheses. Chem. Rev. 28, 71–178 (1941).

    CAS  Google Scholar 

  • Kalnitsky, G., H.G. Wood and C. H. Werkman: CO2-fixation and succinic acid formation by a cell-free enzyme preparation of Escherichia coli. Arch. of Biochem. 2, 269–281 (1943).

    CAS  Google Scholar 

  • Katagiri, H., and Y. Ichikawa: Studies on the Propionibacterium. II. Bull. Inst. Chem. Res., Kyoto U. 26, 100 (1951b).

    Google Scholar 

  • Katagiri, H., and Y. Ichikawa: Studies on the Propionibacterium. TV. Bull. Inst. Chem. Res., Kyoto U. 31, 65–67 (1953).

    CAS  Google Scholar 

  • Kendall, S. E., and C. H. Werkman: Physiological behavior of the propionic acid group of bacteria. Proc. Iowa Acad. Sci. 36, 111 (1929).

    CAS  Google Scholar 

  • Kiuri, V. J. T.: Studies on the propionic acid fermentation and redox potential in Emmenthaler cheese. Suomen Kemistilehti B 20, 55–59 (1947).

    Google Scholar 

  • Kiuri, V. J. T.: Factors affecting the velocity of propionic acid fermentation. Twelfth Internat. Dairy Congress 2, II, 499–508 (1949).

    Google Scholar 

  • Kohlmiller jr., E. F., and H. Gest: A comparative study of the light and dark fermentations of organic acids by Rhodospirillum rubrum. J. Bacter. 61, 269–282 (1951).

    Google Scholar 

  • Krauskopf, E. J., E. E. Snell and E. McCoy: Growth factors for bacteria. XI. A survey of the pantothenic acid and riboflavin requirements of various groups of bacteria. Enzymologia (Den Haag) 7, 327–330 (1939).

    CAS  Google Scholar 

  • Krebs, H. A.: The formation of succinic acid by propionic acid bacteria. Chem. a. Ind. 18, 849 (1940).

    Google Scholar 

  • Kiuri, V. J. T.: The intermediary stages in the biological oxidation of carbohydrates. Adv. Enzymol. 3, 191–252 (1943).

    Google Scholar 

  • Krebs, H. A., and L. V. Eggleston: Biological synthesis of oxaloacetic acid from pyruvic acid and carbon dioxide. 2. The mechanism of carbon dioxide fixation in propionic acid bacteria. Biochemic. J. 35, 676–687 (1941).

    CAS  Google Scholar 

  • Lava, V. G., R. Ross and K. C. Blanchard: Is vitamin B2 the accelerating factor in the fermentation of sugar by propionic acid organisms? Philippine J. Sci. 59, 493–504 (1936).

    CAS  Google Scholar 

  • Leaver, F. W.: The utilization of formaldehyde by propionic acid bacteria. J. Amer. Chem. Soc. 72, 5326–5327 (1950).

    CAS  Google Scholar 

  • Leaver, F. W.: Formation of formaldehyde from glycerol-C14 by Propionibacterium. J. Amer. Chem. Soc. 73, 2974–2975 (1951).

    CAS  Google Scholar 

  • Leaver, F. W.: Formaldehyde metabolism in propionic acid fermentation. Federat. Proc. 11, 246 (1952).

    Google Scholar 

  • Leaver, F. W.: Formation of propionic acid from lactic acid by Clostridium propionicum and by Propionibacterium arabinosum. Federat. Proc. 12, 471 (1953).

    Google Scholar 

  • Leaver, F. W., and H. G. Wood: Evidence from fermentation of labeled substrates which is inconsistent with present concepts of the propionic acid fermentation. J. Cellul. a. Comp. Physiol. 41, Suppl. 1, 225–240 (1953).

    Google Scholar 

  • Leaver, F. W., H. G. Wood and R. Stjernholm: The fermentation of three carbon substrates by Clostridium propionicum and Propionibacterium. J. Bacter. 70, 521–530 (1955).

    CAS  Google Scholar 

  • Leviton, A., and R. E. Hargrove: Microbiological synthesis of vitamin B12 by propionic acid bacteria. Industr. Engin. Chem. 44, 2651–2655 (1952).

    CAS  Google Scholar 

  • Lichstein, H. C.: The biotin requirements of the genus Propionibacterium. Arch. of Biochem. a. Biophysics 58, 423–430 (1955).

    CAS  Google Scholar 

  • Margolena, L. A., u. P. Arne Hansen: Propionibacterium rubrum from dairy cheese. Zbl. Bakter. II 99, 107–115 (1938).

    Google Scholar 

  • Maurer, K.: Beobachtungen über die Zuckerspaltung durch das Bacterium propionicum. Biochem. Z. 191, 83–87 (1927).

    CAS  Google Scholar 

  • Moat, A. G., and E. A. Delwiche: Utilization of coenzyme A by Propionibacterium freudenreichii. J. Bacter. 60, 757–762 (1950).

    CAS  Google Scholar 

  • Neuberg, C., u. G. Gorr: Über die saccharogene Bildung von Milchsäure durch verschiedene Bakterien, die Methylglyoxal dismutieren, und über eine einfache Art der Isolierung von Laktat. Biochem. Z. 173, 476–481 (1926).

    CAS  Google Scholar 

  • Neuberg, C., u. F. Windisch: Über die Essiggärung und die chemischen Leistungen der Essigbakterien. Biochem. Z. 166, 454–481 (1925).

    CAS  Google Scholar 

  • Niel, C.B. van: The propionic acid bacteria. Thesis. Haarlem, Netherlands: J. W. Boissevain & Co. 1928.

    Google Scholar 

  • Niel, C.B. van: Introductory remarks on the comparative biochemistry of microorganisms. J. Cellul. a. Comp. Physiol. 41, Suppl. 1, 11–38 (1953).

    Google Scholar 

  • Niel, C.B. van: Orla-Jensen: Studien über die Lochbildung in den Emmenthaler Käsen. Zbl. Bakter. II 4, 217–222 (1898).

    Google Scholar 

  • Peel, J. L.: Pyruvate breakdown by cell-free extracts of a rumen organism. Third Internat. Congress of Biochemistry. Abstr. of Rep. 1955, 94–95.

    Google Scholar 

  • Pett, L. B., and A. M. Wynne: Studies on bacterial phosphatases. II. The phosphatases of Clostridium aceto-butylicum Weizmann and Propionibacterium jensenii (van Niel). Biochemic. J. 27, 1660–1671 (1933a).

    CAS  Google Scholar 

  • Niel, C.B. van: The metabolism of propionic acid bacteria. 1. The degradation of phosphoric acid esters by Propionibacterium jensenii (van Niel). Trans. Roy. Soc. Canada, Sect. V 27, 119–122 (1933b).

    Google Scholar 

  • Phares, E. F., S. F. Carson and E. A. Delwiche: Origin and fate of the C1 fragment produced from succinate by propionic acid bacteria. Amer. Chem. Soc, Abstr. 123rd meeting, 4C, 1953.

    Google Scholar 

  • Phelps, A. S., M. J. Johnson and W. H. Peterson: Carbon dioxide utilization during the dissimilation of glycerol by the propionic acid bacteria. Biochemic. J. 33, 726–728 (1939f a).

    CAS  Google Scholar 

  • Niel, C.B. van: The production of lactic acid by certain propionic acid bacteria. Biochemic. J. 33, 1606–1610 (1939b).

    Google Scholar 

  • Prévôt, A. R., et J. Taffanel: Recherches sur le type fermentaire de Plectridium tertium et de Plectridium putrificium. C. r. Soc. Biol. Paris 138, 401–402 (1944).

    Google Scholar 

  • Quastel, J. H., and D. M. Webley: Vitamin B1 and bacterial oxidations. I. Dependence of acetic acid oxidation on vitamin B1. Biochemic. J. 35, 192–206 (1941).

    CAS  Google Scholar 

  • Rappoport, D. A., and H.A. Barker: Fermentation of arabinose-1-C14 by propionic acid bacteria. Arch. of Biochem. a. Biophysics 49, 249–251 (1954).

    CAS  Google Scholar 

  • Reynolds, H., and C. H. Werkman: Fermentation of artichokes. Proc. Iowa Acad. Sci. 41, 75–78 (1934).

    CAS  Google Scholar 

  • Rollman, N. O., and G. Sjöström: Investigations of the behavior of some propionic acid bacteria strains in relation to sodium chloride, sodium nitrate and heating. Sv. Mejeritidn. 38, 199–201, 209–212 (1946r).

    CAS  Google Scholar 

  • Shaw, R. H., and J. M. Sherman: The production of volatile fatty acids and carbon dioxide by propionic acid bacteria with special reference to their action in cheese. J. Dairy Sci. 6, 303–309 (1921).

    Google Scholar 

  • Sherman, J. M.: The cause of eyes and characteristic flavor in Emmental or Swiss cheese. J. Bacter. 6, 379–393 (1921).

    CAS  Google Scholar 

  • Sherman, J. M., and R. H. Shaw: Associative bacterial action in the propionic acid fermentation. J. Gen. Physiol. 3, 657–658 (1921).

    PubMed  CAS  Google Scholar 

  • Sherman, J. M., and R. H. Shaw: The propionic acid fermentation of lactose. J. of Biol. Chem. 56, 695–700 (1923).

    CAS  Google Scholar 

  • Silverman, M., and C. H. Werkman: Function of vitamin B1 in anaerobic bacterial metabolism. Iowa State Coll. J. Sci. 13, 107–113 (1938a).

    Google Scholar 

  • Silverman, M., and C. H. Werkman: Vitamin B1 in bacterial metabolism. Proc. Soc. Exper. Biol. a. Med. 38, 823–827 (1938b).

    CAS  Google Scholar 

  • Silverman, M., and C. H. Werkman: Bacterial synthesis of cocarboxylase. Enzymologia (Den Haag) 5, 385–387 (1939da).

    CAS  Google Scholar 

  • Silverman, M., and C. H. Werkman: Thiamin effects in bacterial metabolism. Iowa State Coll. J. Sci. 13, 365–368 (1939b).

    CAS  Google Scholar 

  • Silverman, M., and C. H. Werkman: Adaptation of the propionic acid bacteria to vitamin B1 synthesis including a method of assay. J. Bacter. 38, 25–32 (1939 c).

    CAS  Google Scholar 

  • Silverman, M., and C. H. Werkman: Bacterial synthesis of cocarboxylase. Proc. Soc. Exper. Biol. a. Med. 40, 369–372 (1939d).

    CAS  Google Scholar 

  • Snell, E. E., F. M. Strong and W. H. Peterson: Pantothenic and nicotinic acids as growth factors for lactic acid bacteria. J. Amer. Chem. Soc. 60, 2825 (1938).

    CAS  Google Scholar 

  • Silverman, M., and C. H. Werkman: Growth factors for bacteria. VIII. Pantothenic and nicotinic acids as essential growth factors for lactic and propionic acid bacteria. J. Bacter. 38, 293–308 (1949).

    Google Scholar 

  • Stone, R. W., C. Erb and C. H. Werkman: Respiratory behavior of the propionic acid bacteria. Proc. Soc. Exper. Biol. a. Med. 33, 483–484 (1936a).

    Google Scholar 

  • Stone, R. W., and C. H. Werkman: Role of phosphoglyceric acid in the dissimilation of glucose by the propionic acid bacteria. Iowa State Coll J. Sci. 10, 341–343 (1936).

    CAS  Google Scholar 

  • Stone, R. W., and C. H. Werkman: The occurrence of phosphoglyceric acid in the bacterial dissimilation of glucose. Biochemic. J. 31, 1516–1523 (1937).

    CAS  Google Scholar 

  • Stone, R. W., H. G. Wood, C. Erb and C. H. Werkman: Oxidation-reduction potential studies on propionic acid bacteria. J. Bacter. 29, 86 (1935a).

    Google Scholar 

  • Stone, R. W., H. G. Wood and C. H. Werkman: Activation of the lower fatty acids by propionic acid bacteria. J. Bacter. 30, 652–653 (1935b).

    CAS  Google Scholar 

  • Stone, R. W., H. G. Wood and C. H. Werkman: Activation of the lower fatty acids by propionic acid bacteria. Biochemic. J. 30, 624–628 (1936b).

    CAS  Google Scholar 

  • Stone, R. W., H. G. Wood and C. H. Werkman: Phosphorylation and first stages in glucose breakdown by propionic acid bacteria. J. Bacter. 33, 101 (1937).

    CAS  Google Scholar 

  • Tasman, A., and A. C. Brandwijk: Experiments on metabolism with diphtheria bacillus. J. Inf. Dis. 63, 10–20 (1938).

    CAS  Google Scholar 

  • Tatum, E. L., W. H. Peterson and E. B. Fred: Essential growth factors for propionic acid bacteria. I. Sources and fractionation. J. Bacter. 32, 157–166 (1936).

    CAS  Google Scholar 

  • Tatum, E. L., H. G. Wood and W.H. Peterson: Growth factors for bacteria. V. Vitamin B1, a growth stimulant for propionic acid bacteria. Biochemic. J. 30, 1898–1904 (1936a).

    CAS  Google Scholar 

  • Stone, R. W., H. G. Wood and C. H. Werkman: Essential growth factors for propionic acid bacteria. II. Nature of the Netjberg precipitate fraction of potato: replacement by ammonium sulfate or by certain amino acids. J. Bacter. 32, 167–174 (1936b).

    Google Scholar 

  • Thompson, R. C.: The vitamin Br requirements of the Propionibacteria. J. Bacter. 46, 99–104 (1943).

    CAS  Google Scholar 

  • Tutsler, R. P.: The influence of hydrogen-ion concentration upon the growth of Propionibacterium. J. Bacter. 39, 95–96 (1940).

    Google Scholar 

  • Tomka, G.: Acetoin-diacetyl production by propionic acid bacteria. Tejgazdasag 2, 89–91 (1942).

    CAS  Google Scholar 

  • Stone, R. W., H. G. Wood and C. H. Werkman: Acetoin and diacetyl production of the rod-shaped propionic acid bacteria. Twelfth Internat. Dairy Congress 2, II, 619–622 (1949).

    Google Scholar 

  • Utter, M. F., G. Kalnitsky and C. H. Werkman: Enzymatic nature of cell-free extracts from bacteria. Arch. of Biochem. 9, 407–417 (1946).

    CAS  Google Scholar 

  • Virtanen, A. I.: Über die Propionsäuregärung. I. Soc. Sci. fenn., Comment, physico-math. 1, No 36, 23 pp. (1923).

    Google Scholar 

  • Virtanen, A. I.: Über die Propionsäuregärung. II. Soc. Sci. fenn., Comment, physico-math. 2, No 20, 13 pp. (1925 a).

    Google Scholar 

  • Virtanen, A. I.: Die Cozymasen bei verschiedenen Gärungen. Ber. dtsch. chem. Ges. B 58, 2441–2445 (1925 b).

    Google Scholar 

  • Virtanen, A. I.: Der Katalasegehalt der aeroben und anaeroben Bakterien. Acta chem. fenn. B 4, 14 (1931).

    Google Scholar 

  • Virtanen, A. I., u. H. Karström: Über die Propionsäuregärung. III. Acta chem. fenn. B 4, 17–19 (1931).

    CAS  Google Scholar 

  • Virtanen, A. I., u. J. Tarnanen: Die enzymatische Spaltung und Synthese der Asparaginsäure. Biochem Z.. 250, 193–211 (1932).

    CAS  Google Scholar 

  • Volk, W. A.: The effect of fluoride on the permeability and phosphatase activity of Propionibacterium pentosaceum. J. of Biol. Chem. 208, 777–784 (1954).

    CAS  Google Scholar 

  • Volk, W. A., and D. Pennington: The fermentation of inositol by Propionibacterium pentosaceum. J. Bacter. 64, 347, 352 (1952).

    CAS  Google Scholar 

  • Werkman, C. H.: Bacterial dissimilation of carbohydrates. Bacter. Rev. 3, 187–227 (1939).

    CAS  Google Scholar 

  • Werkman, C. H., and R.W. Brown: The propionic acid bacteria. II. Classification. J. Bacter. 26, 393–417 (1933).

    CAS  Google Scholar 

  • Werkman, C. H., R. M. Hixon, E. I. Fulmer and C. H. Rayburn: The production of propionic acid from pentoses by Propionibacterium pentosaceum. Proc. Iowa Acad. Sci. 36, 111–112 (1929).

    CAS  Google Scholar 

  • Werkman, C. H., and S. E. Kendall: Physiology and classification of the propionic acid bacteria. J. Bacter. 19, 18 (1930).

    Google Scholar 

  • Werkman, C. H., and S. E. Kendall: The propionic acid bacteria. I. Classification and nomenclature. Iowa State Coll. J. Sci. 6, 17–32 (1931).

    CAS  Google Scholar 

  • Werkman, C. H., R. W. Stone and H. G. Wood: The dissimilation of phosphate esters by the propionic acid bacteria. Enzymologia (Den Haag) 4, 24–30 (1937a).

    CAS  Google Scholar 

  • Werkman, C. H., and S. E. Kendall: Bacterial assimilation. J. Bacter. 33, 100–101 (1937b).

    CAS  Google Scholar 

  • Werkman, C. H., and H. G. Wood: Heterotrophic assimilation of carbon dioxide. Adv. Enzymol. 2, 135–182 (1942).

    CAS  Google Scholar 

  • Whttely, H. R.: Cofactor requirements for the decarboxylation of succinate. J. Amer. Chem. Soc. 75, 1518–1519 (1953 a).

    Google Scholar 

  • Werkman, C. H., and S. E. Kendall: The mechanism of propionic acid formation by succinate decarboxylation. I. The activation of succinate. Proc. Nat. Acad. Sci. U.S.A. 39, 772–779 (1953b).

    Google Scholar 

  • Werkman, C. H., and S. E. Kendall: The mechanism of propionic acid formation. II. The formation and decarboxylation of succinyl-CoA. Proc. Nat. Acad. Sci. U.S.A. 39, 779–785 (1953c).

    Google Scholar 

  • Whitely, H. R., and H.C. Douglas: The fermentation of purines by Micrococcus lactilyticus. J. Bacter. 61, 605–616 (1951).

    Google Scholar 

  • Whitely, H. R., and E. J. Ordal: The reduction of methylene blue by hydrogenase. J. Bacter. 70, 608–613 (1955).

    Google Scholar 

  • Whittier, E. O., and J. M. Sherman: Propionic acid and ketones from whey. Industr. Engin. Chem. 15, 729–731 (1923).

    CAS  Google Scholar 

  • Whittier, E. O., J. M. Sherman and W. R. Albus: The rates of fermentation of sugars by the propionic organism. Industr. Engin. Chem. 16, 122 (1924).

    CAS  Google Scholar 

  • Wiggert, W. P., and C. H. Werkman: Fluoride sensitivity of Propionibacterium pentosaceum as a function of growth conditions. Biochemic. J. 33, 1061–1069 (1939).

    CAS  Google Scholar 

  • Wilson, P. W., E.B. Fred u. W.H. Peterson: Bildung und Identifizierung der von verschiedenen Stämmen von Propionsäurebakterien gebildeten Säuren. Biochem. Z. 229, 271–280 (1930e).

    CAS  Google Scholar 

  • Wolffe, H. H. de: Biochemische Eigenschappen van der Diph-therieen van de Pseudodiphtherie-bacteria. Diss. Utrecht 1927.

    Google Scholar 

  • Wood, H. G., A. A. Anderson and C. H. Werkman: Growth factors for the propionic and lactic acid bacteria. J. Bacter. 34, 132–133 (1937a).

    Google Scholar 

  • Wood, H. G., A. A. Anderson and C. H. Werkman: Growth factors for propionic and lactic acid bacteria. Proc. Soc. Exper. Biol. a. Med. 36, 217–219 (1937 b).

    Google Scholar 

  • Wood, H. G., A. A. Anderson and C. H. Werkman: Nutrition of the propionic acid bacteria. J. Bacter. 36, 201–204 (1938a).

    CAS  Google Scholar 

  • Wood, H. G., C. Erb and C. H. Werkman: Aerobic dissimilation of lactic acid by the propionic acid bacteria. J. Bacter. 31, 5–6 (1936).

    CAS  Google Scholar 

  • Wood, H. G., C. Erb and C. H. Werkman: Dissimilation of pyruvic acid by the propionic acid bacteria. Iowa State Coll. J. Sci. 11, 287–292 (1937).

    CAS  Google Scholar 

  • Wood, H. G., and F. W. Leaver: Fermentation of glucose-3,4-C14 and glucose-1-C14 by Propionibacterium arabinosum. Federat. Proc. 11, 313–314 (1952).

    Google Scholar 

  • Wood, H. G., C. Erb and C. H. Werkman: Carbon dioxide turnover in the fermentation of 3,4,5, and 6 carbon compounds by the propionic acid bacteria. Biochim. et Biophysica Acta 12, 207–222 (1953).

    CAS  Google Scholar 

  • Wood, H. G., F. W. Leaver and R. L. Stjernholm: The metabolism of Propionibacterium arabinosum. Bacter. Proc. 1954, 97.

    Google Scholar 

  • Wood, H. G., R. L. Stjernholm and F. W. Leaver: The metabolism of glucose-C14 by propionic acid bacteria. Third Internat. Congress of Biochemistry. Abstr. of Rep. 1955 a, 96.

    Google Scholar 

  • Wood, H. G., R. L. Stjernholm and F. W. Leaver: The metabolism of labeled glucose by the propionic acid bacteria. J. Bacter. 70, 510–520 (1955b).

    CAS  Google Scholar 

  • Wood, H. G., R. W. Stone and C. H. Werkman: Dissimilation of glucose by propionic acid bacteria. J. Bacter. 29, 84–85 (1935).

    CAS  Google Scholar 

  • Wood, H. G., R. W. Stone and C. H. Werkman: The intermediate metabolism of the propionic acid bacteria. Biochem. J. 31, 349–359 (1937 c).

    PubMed  CAS  Google Scholar 

  • Wood, H. G., R. W. Stone and C. H. Werkman: The final oxidation-reduction phases of the propionic dissimilation. J. Bacter. 33, 102 (1937d).

    CAS  Google Scholar 

  • Wood, H. G., E. L. Tatum and W. H. Peterson: Growth factors for bacteria. IV. An acidic ether-soluble factor essential for growth of propionic acid bacteria. J. Bacter. 33, 227–242 (1937e).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: Pyruvic acid in the dissimilation of glucose by the propionic acid bacteria. Biochemic. J. 28,745–747 (1934a).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The utilization of agricultural by products in the production of propionic acid by fermentation. J. Agricult. Res. 49, 1017–1024 (1934b).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The propionic acid bacteria. On the mechanism of glucose dissimilation. J. of Biol. Chem. 105, 63–72 (1934c).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: Intermediate products of the propionic acid fermentation. Proc. Soc. Exper. Biol. a. Med. 31, 938–940 (1934d).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The utilization of carbon dioxide by the propionic acid bacteria in the dissimilation of glycerol. J. Bacter. 30, 332 (1935 a).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The isolation and possible intermediary role of formaldehyde in the propionic acid fermentation. J. Bacter. 30, 652 (1935 b).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The utilization of carbon dioxide in the dissimilation of glycerol by the propionic acid bacteria. Biochemic. J. 30, 48–53 (1936 a).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: Mechanism of glucose dissimilation by the propionic acid bacteria. Biochemic. J. 30, 618–623 (1936b).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The utilization of carbon dioxide by the propionic acid bacteria. Biochemic. J. 32, 1262–1271 (1938).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The fixation of carbon dioxide by cell suspensions of Propionibacterium pentosaceum. Biochemic. J. 34, 7–14 (1940a).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The relationship of bacterial utilization of carbon dioxide to succinic acid formation. Biochemic. J. 34, 129–138 (1940b).

    CAS  Google Scholar 

  • Wood, H. G., C. H. Werkman, A. Hemingway and A. O. Nier: Heavy carbon as a tracer in bacterial fixation of carbon dioxide. J. of Biol. Chem. 135, 789–790 (1940).

    CAS  Google Scholar 

  • Wood, H. G., C. H. Werkman, A. Hemingway and A. O. Nier: Note on the degradation of propionic acid synthesized by Propionibacterium. Iowa State Coll. J. Sci. 15, 213–214 (1941a).

    CAS  Google Scholar 

  • Wood, H. G., C. H. Werkman, A. Hemingway and A. O. Nier: Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation. J. of Biol. Chem. 139, 365–376 (1941b).

    CAS  Google Scholar 

  • Wood, H. G., C. H. Werkman, A. Hemingway and A. O. Nier: The position of carbon dioxide in succinic acid synthesized by heterotrophic bacteria. J. of Biol. Chem. 139, 377–381 (1941 c).

    CAS  Google Scholar 

  • Wood, H. G., C. H. Werkman, A. Hemingway and A. O. Nier: Position of the carbon dioxide—carbon in propionic acid synthesized by Propionibacterium. Proc. Soc. Exper. Biol. a. Med. 46, 313–316 (1941 d).

    CAS  Google Scholar 

  • Wood, H. G., C. H. Werkman, A. Hemingway, A. O. Nier and C. G. Stuckwisch: Reliability of reactions used to locate assimilated carbon in propionic acid. J. Amer. Chem. Soc. 63, 2140–2142 (1941).

    CAS  Google Scholar 

  • Wood, H. G., W. P. Wiggert and C. H. Werkman: The fermentation of phosphate esters by the propionic acid bacteria. Enzymologia (Den Haag) 2, 373–376 (1938b).

    Google Scholar 

  • Arroyo, R.: U.S. Patents 2, 113,471 and 2,113,472. 1938.

    Google Scholar 

  • Arzbuger, C.F.: U.S. Patent 2, 139,108. 1938.

    Google Scholar 

  • Beijerinck, M. W.: Über die Butylalkol-Gährung und das Butylferment. Verh. Kon. Akad. Wetensch. Ansterdam, 2de Sect. 11, No 10, 1–51 (1893).

    Google Scholar 

  • Bernhauer, K., u. K. Kürschner: Butyl and acetone fermentation. I. Intermediate products in the butanol-acetone fermentation. Biochem. Z. 280, 379–387 (1935).

    CAS  Google Scholar 

  • Brown, R. W., G. H. Stahly and C. H. Werkman: Behavior of butyric acid-butyl alcohol bacteria toward acetylmethyl-carbinol and asparagine. Iowa State Coll. J. Sci. 12, 245–251 (1938).

    CAS  Google Scholar 

  • Brown, R.W., H. G. Wood and C. H. Werkman: Growth factors for the butyl alcohol bacteria. J. Bacter. 35, 205 (1938).

    Google Scholar 

  • Carnaritts, E.H., and W. N. McCutchan: U.S. Patent 2,139,111. 1938.

    Google Scholar 

  • Davies, R.: Studies on the acetone-butyl alcohol fermentation. II. Intermediates in the fermentation of glucose by Cl. acetobutylicum. III. Potassium as an essential factor in the fermentation of maize meal by Cl. acetobutylicum. Biochemic. J. 36, 582–599 (1942).

    CAS  Google Scholar 

  • Davies, R.: The acetone-butanol fermentation. IV. Acetoacetic acid decarboxylase of Clostridium acetobutylicum. Biochemic. J. 37, 230–238 (1943).

    CAS  Google Scholar 

  • Donker, H. J. L.: Bijdrage tot de kennis der boterzuur butylalcoholen acetongistengen. Thesis, Technical University, Delft, Holland 1926.

    Google Scholar 

  • Fitz, A.: Über die Gärung des Glycerins. Ber. dtsch. chem. Ges. 9, 1348–1352 (1876).

    Google Scholar 

  • Hildebrandt, F. M., and N.M. Erb: U.S. Patent 2,246. 1939.

    Google Scholar 

  • Johnson, M. J., W. H. Peterson and E. B. Fred: Oxidation and reduction relations between substrate and products in the acetone-butyl alcohol fermentation. J. of Biol. Chem. 91, 569–591 (1931).

    CAS  Google Scholar 

  • Johnson, M. J., W. H. Peterson and E. B. Fred: Intermediary compounds in the acetone-butyl alcohol fermentation. J. of Biol. Chem. 101, 145–157 (1933).

    CAS  Google Scholar 

  • Kluyver, A. J.: The chemical activities of microorganisms. London: University London Press, Ltd. 1931.

    Google Scholar 

  • Kluyver, A. J.: In: The Microbe’s Contribution to Biology (A. J. Kluyver and C. B. van Niel). Cambridge, Boston: Harvard University Press 1956.

    Google Scholar 

  • Koepsell, H. J., and M. J. Johnson: Dissimilation of pyruvic acid by cell-free preparations of Clostridium butylicum. J. of Biol. Chem. 145, 379–386 (1942).

    CAS  Google Scholar 

  • Lampen, J. O., and W. H. Peterson: Growth factor requirements of Clostridia. Arch. of Biochem. 2, 443–449 (1943).

    CAS  Google Scholar 

  • Langlykke, A. F., W.H. Peterson and E.B. Fred: Reductive processes of Clostridium butylicum and the mechanism of the formation of iso-propyl alcohol. J. Bacter. 34, 443–453 (1937).

    CAS  Google Scholar 

  • Lek, J. B. van der: Onderzoekingen over de butylalkoholgisting. Thesis, Technical University, Delft, Holland 1930.

    Google Scholar 

  • Levi-ton, A.: Microbiological synthesis of riboflavin—theory concerning its inhibition. J. Amer. Chem. Soc. 68, 835–840 (1946).

    CAS  Google Scholar 

  • McCoy, E. F.: U.S. Patent 2,110,109. 1938.

    Google Scholar 

  • Müller, J.: U.S. Patent 2,123,078. 1938.

    Google Scholar 

  • Nakahama, T., and Y. Harada: Acetone-butyl alcohol fermentation with cane sugar as carbon source material. I. The isolation of a useful strain of bacteria, observation of its characteristics and fermentation experiments by it. J. Agricult. Chem. Soc. Japan 23, 176–180 (1949).

    Google Scholar 

  • Neuberg, C., u. B. Arinstein: Vom Wesen der Buttersäure- und Butyl-alkohol-Gärung. Biochem. Z. 117, 269–314 (1921).

    CAS  Google Scholar 

  • Osburn, O. L., R. W. Brown and C. H. Werkman: The butyl alcohol-isopropyl alcohol fermentation. J. of Biol. Chem. 121, 685–695 (1937).

    CAS  Google Scholar 

  • Osburn, O. L., R. W. Brown and C. H. Werkman: Dissimilation of intermediary compounds in the butyl alcohol-isopropyl fermentation. Iowa State Coll. J. Sci. 12, 275–284 (1938d).

    CAS  Google Scholar 

  • Owens, W.L.: U.S. Patent 2,164,255. 1939.

    Google Scholar 

  • Oxford, A. E., J.O. Lampen and W. H. Peterson: Growth factor and other nutritional requirements of the acetone-butanol organism, Clostridium acetohutylicum. Biochemic. J. 34, 1588–1597 (1940).

    CAS  Google Scholar 

  • Peldan, H.: The mechanism of butyric acid fermentation. Suomen Kemistilehti A 11, 91–98 (1938).

    Google Scholar 

  • Peterson, W. H., and E.B. Fred: Butyl-acetone fermentation of corn meal. Industr. Engin. Chem. 24, 237–242 (1932).

    CAS  Google Scholar 

  • Pett, L. B., and A. M. Wynne: The formation of methylglyoxal by Clostridium acetohutylicum. J. of Biol. Chem. 97, 177–182 (1932).

    CAS  Google Scholar 

  • Reilly, J., W. J. Hickinbottom, F. R. Henley and A. E. Thaysen: The products of the “acetone: n-butyl alcohol” fermentation of carbohydrate material with special reference to some of the intermediate substances produced. Biochemic. J. 14, 229 (1920).

    CAS  Google Scholar 

  • Reyes-Teodoro, R., and M. N. Mickelson: Growth-factor requirements of three saccharolytic BuOH-acetone bacteria. Arch. of Biochem. 4, 291–292 (1944).

    Google Scholar 

  • Rubbo, S.D., M. Maxwell, R. A. Fairbridge and J.M. Gillespie: Austral. J. Exper. Biol. a. M.d. Sci. 19, 185–198 (1941).

    CAS  Google Scholar 

  • Simon, E.: Mechanism of the butanol-acetone fermentation. Nature (Lond.) 152, 626–627 (1943).

    CAS  Google Scholar 

  • Slade, H. D., H. G. Wood, A. O. Nier, Allan Hemingway and C. H. Werkman: Assimilation of heavy carbon dioxide by heterotrophic bacteria. J. of Biol. Chem. 143, 133–145 (1942).

    CAS  Google Scholar 

  • Speakman, H. B.: Biochemistry of the acetone and butyl alcohol fermentation of starch by Bacillus granulohacter pectinovorum. J. of Biol. Chem. 41, 319–343 (1920).

    CAS  Google Scholar 

  • Stadtman, E. R., and H.A. Barker: Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. J. of Biol. Chem. 181, 221–235 (1949).

    CAS  Google Scholar 

  • Tatum, E. L., W.H. Peterson and E.B. Fred: An unknown factor stimulating the formation of butyl alcohol by certain butyric acid bacteria. J. Bacter. 27, 207–217 (1934).

    CAS  Google Scholar 

  • Tatum, E. L., W.H. Peterson and E.B. FredIdentification of asparagine as the substance stimulating the production of butyl alcohol by certain bacteria. J. Bacter. 29, 563–572 (1935).

    CAS  Google Scholar 

  • Weizmann, C., and B. Rosenfeld: Activation of the butanol-acetone fermentation of carbohydrates by Clostridium acetohutylicum. Biochemic. J. 31, 619–639 (1937).

    CAS  Google Scholar 

  • Weyer, E. R., and L. F. Rettger: A comparative study of six different strains of the organism commonly concerned in large scale production of butyl alcohol and acetone by the biological process. J. Bacter. 14, 399–424 (1927).

    CAS  Google Scholar 

  • Wood, H. G., R. W. Brown and C. H. Werkman: Mechanism of the butyl alcohol fermentation with heavy carbon acetic and butyric acids and acetone. Arch. of Biochem. 6, 243–260 (1945).

    CAS  Google Scholar 

  • Woodruffe, J. C., H. R. Stiles and L. D. A. Legg: U.S. Patent 2,089,522. 1937.

    Google Scholar 

  • Aubel, E., et J. Salabarton: Mécanisme de la production d’hydrogène aux dépens du glucose par le bacille Coli. C. R. Acad. Sci. (Paris) 180, 1183–1186 (1924–1925).

    Google Scholar 

  • Braak, H. R.: Onderzoekingen over vergisting von glycerine. Thesis, Technical University, Delft, Holland 1928.

    Google Scholar 

  • Donker, H. J. L.: Bijdrage tot de kennis der boterzuur butylalcoholen acetongistengen. Thesis, Technical University, Delft, Holland 1926.

    Google Scholar 

  • Endo, S.: Über die Zwischenreaktionen der Gärung von Bacterium coli. Biochem. Z. 296, 56–70 (1938).

    CAS  Google Scholar 

  • Entner, H., and M. Doudoroff: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. biol. Chem. 196, 853–862 (1952).

    PubMed  CAS  Google Scholar 

  • Grey, E. C.: The decomposition of formates by Bacillus coli communis. Proc. roy. Soc. B 87, 461–484 (1914).

    CAS  Google Scholar 

  • Grey, E. C.: The enzymes concerned in the decomposition of glucose and mannitol by Bacillus coli communis. Proc. roy. Soc. B 78, 472–484 (1918).

    Google Scholar 

  • Grey, E. C.: The enzymes of B. coli communis which are concerned in the decomposition of glucose and mannitol. The fermentation of glucose in the presence of formic acid. Proc. roy. Soc. B 91, 294–305 (1920).

    CAS  Google Scholar 

  • Gunsalus, I.C.: Group transfer and acyl-generating functions of lipoic acid derivatives. In: The Mechanism of enzyme action. Edit, by W. D. McElroy and B. Glass, p. 545–580. Baltimore: The John Hopkins Press 1954.

    Google Scholar 

  • Harden, A., and W. Penfold: The chemical action on glucose of a variety of Bacillus coli communis (Escherich) obtained by cultivation in presence of a chloroacetate. Proc. roy. Soc. B 85, 415–417 (1912).

    Google Scholar 

  • Juni, E.: Mechanisms of formation of acetoin by bacteria. J. biol. Chem. 195, 715–726 (1952).

    PubMed  CAS  Google Scholar 

  • Kluyver, A. J.: The chemical activities of microorganisms. London: University Press, Ltd. 1931.

    Google Scholar 

  • Korkes, S., A. del Campilo, I. C. Gunsalus and S. Ochoa: Enzymatic synthesis of citric acid. IV. Pyruvate as acetyl donor. J. biol. Chem. 193, 721–735 (1951).

    PubMed  CAS  Google Scholar 

  • Korkes, S., A. del Campilo and S. Ochoa: Pvruvate oxidation svstem of heart muscle. J. biol. Chem. 195, 541–547 (1952).

    PubMed  CAS  Google Scholar 

  • Lewis, K. F., H. S. Blumenthal, C. E. Wenner and S. Weinhouse: Estimation of glucose catabolism pathways. Fed. Proc. 13, 252 (1954).

    Google Scholar 

  • Martius, C., u. F. Lynen: Probleme des Citronensäure-Zyklus. Advanc. Enzymol. 10, 167–222 (1950).

    Google Scholar 

  • Mickelson, M., and C. H. Werkman: Influence of pH on the dissimilation of glucose by Aerobacter indologenes. J. Bact. 36, 67–76 (1938).

    PubMed  CAS  Google Scholar 

  • Mickelson, M., and C. H. Werkman: Formation of trimethyleneglycol from glycerol by Aerobacter. Enzymologia 8, 252–256 (1940).

    CAS  Google Scholar 

  • Quastel, J. H., and M. D. Whetham: Dahydrogenations produced by resting bacteria. III. Biochem. J. 19, 652–659 (1925).

    PubMed  CAS  Google Scholar 

  • Reynolds, H., W. M. Hoehn and C. H. Werkman: Occurrence of acrolein as an intermediate during the fermentation of glycerol by the coli-aerogenes bacteria. Iowa State Coll. J. Sci. 13, 275–277 (1939).

    CAS  Google Scholar 

  • Reynolds, H., and C.H. Werkman: The intermediate dissimilation of glucose by Aerobacter indologenes. J. Bact. 33, 603–614 (1937).

    PubMed  CAS  Google Scholar 

  • Scheffer, M. A.: Da Suikervergisting door Bacterien der Coli-group. Thesis, Technical University, Delft, Holland 1928.

    Google Scholar 

  • Silverman, M., and C.H. Werkman: The formation of acetylmethylcarbinol from pyruvic acid by a bacterial enzyme preparation. J. biol. Chem. 138, 35–48 (1941).

    CAS  Google Scholar 

  • Slade, H. D., and C.H. Werkman: Assimilation of acetic and succinic acids cDntaining heavy carbon by Aerobacter indologenes. Arch. Biochem. 2, 97–111 (1943).

    CAS  Google Scholar 

  • Stahly, G. L., and C.H. Werkman: The origin and relationship of acetylmethylcarbinol and 2,3-butylene glycol in bacterial fermentation. Biochem. J. 36, 575–581 (1942).

    PubMed  CAS  Google Scholar 

  • Stephenson, M., and L. H. Stickland: Hydrogenase: a bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochem. J. 25, 205–214 (1931).

    PubMed  CAS  Google Scholar 

  • Stephenson, M., and L. H. Stickland: Hydrogenlyases. Bacterial enzymes liberating molecular hydrogen. Biochem. J. 26, 712–724 (1932).

    PubMed  CAS  Google Scholar 

  • Stephenson, M., and L. H. Stickland: Hydrogenlyases. III. Further experiments on the formation of formic hydrogenlyase by Bact. coli. Biochem. J. 27, 1517–1528,1528–1532 (1933).

    PubMed  CAS  Google Scholar 

  • Still, J. L.: Alcohol enzyme of Bact. coli. Biochem. J. 34, 1177–1182 (1940).

    PubMed  CAS  Google Scholar 

  • Stone, R. W., and C. H. Werkman: The role of phosphoglyceric acid in the dissimilation of glucose by bacteria of the Escherichia-Aerobacter group. Iowa State Coll. J. Sci. 11, 1–3 (1936).

    CAS  Google Scholar 

  • Stone, R. W., and C. H. Werkman: The occurrence of phosphoglyceric acid in the bacterial dissimilation of glucose. Biochem. J. 31, 1516–1523 (1937).

    PubMed  CAS  Google Scholar 

  • Tanko, B., u. L. Munk: Beiträge zum Carboligaseproblem. Hoppe-Seylers Z. physiol. Chem. 262, 144–157 (1940).

    Google Scholar 

  • Thlmann, K. V.: The Life of Bacteria. New York: The Macmillan Company 1955.

    Google Scholar 

  • Tikka, J.: Über den Mechanismus der Glucosevergärung durch B. coli. Biochem. Z. 279, 264r–288 (1935).

    CAS  Google Scholar 

  • Utter, M. F., F. Llpmann and C. H. Werkman: Reversibility of the phosphoroclastic split of pyruvate. J. biol. Chem. 158, 521–531 (1945).

    CAS  Google Scholar 

  • Utter, M. F., and C. H. Werkman: Occurrence of the aldolase and isomerase equilibria in bacterial metabolism. J. Bact. 42, 665–676 (1941).

    PubMed  CAS  Google Scholar 

  • Utter, M. F., and C. H. Werkman: Dissimilation of phosphoglyceric acid by Escherichia coli. Biochem. J. 36, 485–493 (1942).

    PubMed  CAS  Google Scholar 

  • Utter, M. F., and C. H. Werkman: Role of phosphate in the anaerobic dissimilation of pyruvic acid. Arch. Biochem. 2, 491 (1943).

    CAS  Google Scholar 

  • Utter, M. F., and C. H. Werkman: Formation and reactions of acetyl phosphate in Escherichia coli. Arch. Biochem. 5, 413–422 (1944).

    CAS  Google Scholar 

  • Utter, M. F., C. H. Werkman and F. Ltpmann: Reversibility of the phosphoroclastic split of pyruvate. J. biol. Chem. 154, 723–724 (1944).

    CAS  Google Scholar 

  • Waring, W. S., and C. H. Werkman: Iron deficiency in bacterial metabolism. Arch. Biochem. 4, 75–87 (1944).

    CAS  Google Scholar 

  • Watt, D., and L. O. Krampitz: α-Acetolactic acid, an intermediate in acetylmethylcarbinol formation. Fed. Proc. 6, 301 (1947).

    PubMed  CAS  Google Scholar 

  • Werkman, C. H., and G. F. Gillen: Bacteria producing trimethylene glycol. J. Bact. 23, 167–182 (1932).

    PubMed  CAS  Google Scholar 

  • Werkman, C. H., E. A. Zoellner, H. Gilman and H. Reynolds: Phosphoglyceric acid in the dissimilation of glucose by Citrobacter freundii. J. Bact. 31, 5 (1936).

    CAS  Google Scholar 

  • Wiggert, W. P., and C. H. Werkman: Phosphorylation by the living bacterial cells. Biochem. J. 32, 101–107 (1938).

    PubMed  CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The utilization of CO2 in the dissimilation of glycerol by the propionic acid bacteria. Biochem. J. 30, 48–53 (1936).

    PubMed  CAS  Google Scholar 

  • Appleby, C. A., and R. K. Morton: Crystalline cytochrome b2 and lactic dehydrogenase of yeast. Nature (Lond.) 173, 749–752 (1954).

    CAS  Google Scholar 

  • Axelrod, B., and R. Jang: Purification and properties of phosphoriboisomerase. J. of Biol. Chem. 209, 847–855 (1954).

    CAS  Google Scholar 

  • Bergmann, E. D., U. Z. Littauer and B. E. Volcani: Breakdown of pentose phosphates in Escherichia coli. Biochim. et Biophysica Acta 13, 288–289 (1954).

    CAS  Google Scholar 

  • Bolcato, V., M. E. Scevola and M. A. Tisselli: Triose phosphates and pyruvic acid intermediates in fermentations of pentoses by living cells of Clostridium acetobutylicum. Experientia (Basel) 8, 25–26 (1952).

    CAS  Google Scholar 

  • Brodie, A. F., and F. Lipmann: The enzymatic formation and hydrolysis of D-glucono-gamma-lactone. Bacter. Proc. 1954,107.

    Google Scholar 

  • Brown, D. H.: The phosphorylation of d(+)-glucosamine by crystalline yeast hexokinase. Biochim. et Biophysica Acta 7, 487–493 (1951).

    CAS  Google Scholar 

  • Buchner, E.: Alkoholische Gärung ohne Hefezellen. Ber. dtsch. chem. Ges. 30, 117–124 (1897).

    CAS  Google Scholar 

  • Campbell, J. J. R., and F. C. Norris: The intermediate metabolism of Pseudomonas aeruginosa. Canad. J. Res., Sect. C 28, 203 (1950).

    Google Scholar 

  • Caputto, R., L. F. Leloir, C. E. Cardini and A. C. Paladine: The coenzyme of the galactose phosphate-glucose phosphate transformation. J. of Biol. Chem. 184, 333–350 (1950).

    CAS  Google Scholar 

  • Caputto, R., L. F. Leloir, R. E. Trucco, C. E. Cardini and A. C. Paladini: The enzymatic transformation of galactose into glucose derivatives. J. of Biol. Chem. 179, 479–498 (1949).

    Google Scholar 

  • Cardini, C. E.: The hexokinases of Escherichia coli. Enzymologia (Den Haag) 14, 362–368 (1951).

    CAS  Google Scholar 

  • Cardini, C.E., A. C. Paladine, R. Caputto and L. F. Leloir: Uridine diphosphate glucose: the coenzyme of the galactose-glucose phosphate isomerization. Nature (Lond.) 165, 191–192 (1950).

    CAS  Google Scholar 

  • Claridge, C. A., and C. H. Werkman: Formation of 2-ketogluconate from glucose by a cell-free preparation of Pseudomonas aeruginosa. Arch. of Biochem. a. Biophysics 47, 99–105 (1953).

    CAS  Google Scholar 

  • Claridge, C. A., and C. H. Werkman: Evidence for alternate pathways for the oxidation of glucose by Pseudomonas aeruginosa. J. Bacter. 68, 77–79 (1954a).

    CAS  Google Scholar 

  • Claridge, C. A., and C. H. Werkman: Intermediates of the aerobic dissimilation of 2-ketogluconate by Pseudomonas aeruginosa. Arch. of Biochem. a. Biophysics 51, 395–401 (1954b).

    CAS  Google Scholar 

  • Cohen, S.S.: Gluconokinase and the oxidative path of glucose-6-phosphate utilization. J. of Biol. Chem. 189, 617–628 (1951).

    CAS  Google Scholar 

  • Cohen, S.S.: Studies on D-ribulose and its enzymatic conversion to D-arabinose. J. of Biol. Chem. 201, 71–84 (1953).

    CAS  Google Scholar 

  • Cohen, S. S., and R. Raff: Adaptive enzymes in the estimation of gluconate, D-arabinose and D-ribose. J. of Biol. Chem. 188, 501–508 (1951).

    CAS  Google Scholar 

  • Cohen, S.S., D. B. M. Scott and M. Lanning: Pentose production and utilization by enzyme systems of Escherichia coli. Federat. Proc. 10, 173 (1951).

    Google Scholar 

  • Colowick, S. P., N.O. Kaplan, E. F. Nufeld and M. M. Ciotti: Pyridine nucleotide transhydrogenase. I. Indirect evidence for the reaction and purification of the enzyme. J. of Biol. Chem. 195, 95–105 (1952).

    CAS  Google Scholar 

  • Dedonder, R., et C. Noblesse: Déshydrogénases du glucose-6-phosphate et de l’acide 6-phosphogluconique chez B. subtilis et B. megatherium. Ann. Inst. Pasteur 85, 71–81 (1953).

    CAS  Google Scholar 

  • DeLey, J.: Recent aspects of intermediate carbohydrate metabolism. Meded. vlaam. chem. Verenig. 14, 1–19 (1952).

    CAS  Google Scholar 

  • DeLey, J.: The phosphorylation of some carbohydrates, connected with the direct oxidation, by Aerobacter cloacae. Enzymologia (Den Haag) 16, 99–104 (1953).

    CAS  Google Scholar 

  • De Moss, R. D.: Routes of ethanol formation in bacteria. J. Cellul. a. Comp. Physiol. 41, Suppl. 1, 207–224 (1953).

    CAS  Google Scholar 

  • De Moss, R. D.: Oxidation of 6-phosphogluconate by Leuconostoc mesenteroides. Bacter. Proc. 109 (1954).

    Google Scholar 

  • DeMoss, R. D., R. C. Bard and I. C. Gunsalus: The mechanism of the heterolactic fermentation: A new route of ethanol formation. J. Bacter. 62, 499–511 (1951).

    CAS  Google Scholar 

  • DeMoss, R. D., and M. Gibbs: Mechanism of ethanol formation by Pseudomonas lindneri. Abstr. Soc. Amer. Bacteriologists, p. 146, Boston 1952.

    Google Scholar 

  • DeMoss, R. D., I. C. Gunsalus and R. C. Bard: A glucose-6-phosphate dehydrogenase in Leuconostoc mesenteroides. J. Bacter. 66, 10–16 (1953).

    CAS  Google Scholar 

  • deVincentiis, M.: Glycolytic activity of the retina during dark adaptation. Ann. Ottalm. 73, 685–689 (1947).

    CAS  Google Scholar 

  • Dickens, F.: Anaerobic glycolysis, respiration, and the Pasteur effect. In Enzymes, edit. by J. B. Sumner and K. Myrbäck, vol.2, part 1. New York: Academic Press 1951.

    Google Scholar 

  • Dolin, M. I.: Diacetyl oxidation by Streptococcus jaecalis, a lipoic acid dependent reaction. J. Bacter. 69, 51–58 (1955).

    CAS  Google Scholar 

  • Doudoroff, M.: Studies on the phosphorolysis of sucrose. J. of Biol. Chem. 151, 351–361 (1943).

    CAS  Google Scholar 

  • Doudoroff, M., J.M. Wiame and H. Wolochow: Phosphorolysis of sucrose by Pseudomonas putrefaciens. J. Bacter. 57, 423–427 (1949).

    CAS  Google Scholar 

  • Eichel, B., and W. W. Wainio: d-Glucose dehydrogenase and its carrier systems. J. of Biol. Chem. 175, 155–168 (1948).

    CAS  Google Scholar 

  • Embden, G., H. J. Deuticke u. G. Kraft: Über die intermediären Vorgänge bei der Glykolyse in der Muskulatur. Klin. Wschr. 1933, 213–215.

    Google Scholar 

  • Entner, N., and M. Doudoroff: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. of Biol. Chem. 196, 853–862 (1952).

    CAS  Google Scholar 

  • Fosdick, L. S., and G. W. Rapp: The degradation of glucose by Staphylococcus albus. Arch. of Biochem. 1, 379–389 (1943).

    CAS  Google Scholar 

  • Gary, N. D., and R. C. Bard: Effect of nutrition on the growth and metabolism of Bacillus subtilis. J. Bacter. 64, 501–512 (1952).

    CAS  Google Scholar 

  • Gibbs, M., and R. D. DeMoss: Ethanol formation in Pseudomonas lindneri. Arch. of Biochem. a. Biophysics 34, 478–479 (1951a).

    CAS  Google Scholar 

  • Gibbs, M., and R. D. DeMoss: A new mechanism of ethanol formation in the heterolactic fermentation. Federat. Proc. 10, 189 (1951b).

    Google Scholar 

  • Gibbs, M., and R. D. DeMoss: Anaerobic dissimilation of C14-labeled glucose and fructose by Pseudomonas êindneri. J. of Biol. Chem. 207, 689–694 (1954).

    CAS  Google Scholar 

  • Gibbs, M., R. Dumrose, F. A. Bennett and M. R. Bubeck: On the mechanism of bacterial fermentation of glucose to lactic acid studied with C14-glucose. J. of Biol. Chem. 184, 545–549 (1950).

    CAS  Google Scholar 

  • Gibbs, M., L. M. Paege and J. M. Earl: Anaerobic dissimilation of C14-labeled D-xylose and D-arabinose by Escherichia coli. Bacter. Proc. 1954, 111.

    Google Scholar 

  • Gilvarg, C.: Utilization of glucose-1-carbon14 by yeast. J. of Biol. Chem. 199, 57–64 (1952).

    CAS  Google Scholar 

  • Green, D. E., D. Herbert and V. Subrahamanyan: Carboxylase. J. of Biol. Chem. 138, 327–339 (1941).

    CAS  Google Scholar 

  • Greenstein, J. P., and A. Meister: Tumor enzymology. In Enzymes, edit. by J. B. Sumner and K. Myrbäck, vol.2, part 2, p. 1131–1179. New York: Academic Press 1952.

    Google Scholar 

  • Gunsalus, I. C.: Oxidative and transfer reactions of lipoic acid. Federat. Proc. 13, 715–721 (1954).

    CAS  Google Scholar 

  • Gunsalus, I. C., and M. Gibbs: The heterolactic fermentation. II. Position of C14 in the products of glucose dissimilation by Leuconostoc mesenteroides. J. of Biol. Chem. 194, 871–875 (1952).

    CAS  Google Scholar 

  • Gunsalus, I. C., B. L. Horecker and W. A. Wood: Pathways of carbohydrate metabolism in microorganisms. Bacter. Rev. 19, No 2, 79–128 (1955).

    CAS  Google Scholar 

  • Hager, L. P., D. M. Geller and F. Lipmann: Flavoprotein-catalyzed pyruvate oxidation in Lactobacillus delbrueckii. Federat. Proc. 13, 734–738 (1954).

    CAS  Google Scholar 

  • Harvey, S. C.: The carbohydrate metabolism of Trypanosoma hippicum. J. of Biol. Chem. 179, 435–453 (1949).

    CAS  Google Scholar 

  • Herman, H., and F. Hickman: X. Exploratory studies on corneal metabolism. Bull. Johns Hopkins Hosp. 82, 225–250 (1948).

    Google Scholar 

  • Hochester, R. M., and R.W. Watson: Xylose isomerase. J. Amer. Chem. Soc. 75, 3284–3285 (1953).

    Google Scholar 

  • Hochester, R. M., and R.W. Watson: Enzymatic isomerization of D-xylose to D-xylulose. Arch. of Biochem. a. Biophysics 48, 120–129 (1954).

    Google Scholar 

  • Hockenhull, D. J.D., K. H. Fantes, M. Herbert and B. Whitehead: Glucose utilization by Streptomyces griseus. J. Gen. Microbiol. 10, 353–370 (1954).

    PubMed  CAS  Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose phosphate from pentose phosphate. J. of Biol. Chem. 205, 661–682 (1953).

    CAS  Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis and H. Klenow: Yeast transaldolase. Federat. Proc. 13, 232 (1954).

    Google Scholar 

  • Hunter, G. J. E.: The oxidation of glycerol by mycobacteria. Biochemic. J. 55, 320–328 (1953).

    CAS  Google Scholar 

  • Kaufman, S., S. Korkes and A. Campillo: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. V. Further study of the “malic” enzyme of Lactobacillus arabinosus. J. of Biol. Chem. 192, 301–312 (1951).

    CAS  Google Scholar 

  • Khesghi, S., H.R. Roberts and W. Bucek: The production of 5-ketogluconic acid by Acetobacter suboxydans. Appl. Microbiol. 2, 183–190 (1954).

    CAS  Google Scholar 

  • Klein, H. P., and M. Doudoroff: The mutation of Pseudomonas putrefaciens to glucose utilization and its enzymatic basis. J. Bacter. 59, 739–750 (1950).

    CAS  Google Scholar 

  • Koshland, D.E., and F. H. Westheimer: Mechanism of alcoholic fermentation. The fermentation of glucose-1-C14. J. Amer. Chem. Soc. 72, 3383–3388 (1950).

    CAS  Google Scholar 

  • Kosterlitz, H. W.: The fermentation of galactose and galactose-1-phosphate. Biochemic. J. 37, 322–326 (1943a).

    CAS  Google Scholar 

  • Kosterlitz, H. W.: The apparent dissociation constants of galactose-1-phosphoric acid. Biochemic. J. 37, 321–322 (1943b).

    CAS  Google Scholar 

  • Kovachevich, R., and W. A. Wood: Carbohydrate metabolism of Pseudomonas jluorescens. III. Purification and properties of a 6-phosphogluconate dehydrase. J. of Biol. Chem. 213, 745–756 (1955a).

    CAS  Google Scholar 

  • Kovachevich, R., and W. A. Wood: Carbohydrate metabolism by Pseudomonas jluorescens. IV. Purification and properties of 2-keto-3-deoxy-6-phosphogluconate aldolase. J. of Biol. Chem. 213, 757–767 (1955b).

    CAS  Google Scholar 

  • Krampitz, L. O., and C. H. Werkman: The enzymic decarboxylation of oxaloacetate. Biochemic. J. 35, 595–602 (1941).

    CAS  Google Scholar 

  • Kubowitz, F., u. W. Lüttgens: Zusammensetzung, Spaltung und Resynthese der Carboxylase. Biochem. Z. 307, 170–172 (1941).

    CAS  Google Scholar 

  • Kulhanek, M.: Biochemical dehydrogenations of aldonic acids. I. Biochemical dehydrogenation of hexonic acids by Pseudomonas aeruginosa. Chem. Listy 47, 1071–1074 (1953).

    CAS  Google Scholar 

  • Kulka, D., and T. K. Walker: The ketogenic activities of Acetobacter species in a glucose medium. Arch. of Biochem. a. Biophysics 50, 169–179 (1954).

    CAS  Google Scholar 

  • Kunitz, M., and M. R. McDonald: Crystalline hexokinase (heterophosphatase). Method of isolation and properties. J. Gen. Physiol. 29, 393–412 (1946).

    CAS  Google Scholar 

  • Lampen, J. O.: Pentose and deoxypentose metabolism of bacteria. J. Cellul. a. Comp. Physiol. 41, Suppl. 1, 183–205 (1953 a).

    CAS  Google Scholar 

  • Lampen, J. O.: Formation of ribose phosphate from xylose by extracts of Lactobacillus pentosus. J. of Biol. Chem. 204, 999–1010 (1953b).

    CAS  Google Scholar 

  • Lampen, J. O.: Isomerization of L-arabinose by Lactobacillus pentosus. Abstr. Proc. Amer. Chem. Soc. 1954, 440–450.

    Google Scholar 

  • Lanning, M. C., and S. S. Cohen: The mechanism of ribose formation in Escherichia coli. J. of Biol. Chem. 207, 193–199 (1954).

    CAS  Google Scholar 

  • Leuthardt, F., E. Testa u. H. P. Wolf: The metabolism of the liver. III. The enzymic degradation of fructose-1-phosphate. Helvet. chim. Acta 36, 227–251 (1953).

    CAS  Google Scholar 

  • Lewis, K. F., H. J. Blumenthal, C. E. Wenner and S. Wteinhouse: Estimation of glucose catabolism pathways. Federat. Proc. 13, 252 (1954).

    Google Scholar 

  • Liebster, J., M. Kulhanek and M. Tadra: II. Biochemical dehydrogenation of D-arabonic and a-D-glucoheptonic acids. Chem. Listy 47, 1075–1080 (1953).

    CAS  Google Scholar 

  • Lipmann, F.: A phos-phorylated oxidation product of pyruvic acid. J. of Biol. Chem. 134, 463–464 (1940).

    CAS  Google Scholar 

  • Lutwak-Mann, C. L.: Metabolic processes in the gastric mucosa. Biochemic. J. 41, 19–28 (1947).

    CAS  Google Scholar 

  • Lwoff, A., H. Ionesco et A. Gutmann: Metabolism of starch in a flagellate without chlorophyll and incapable of utilizing glucose. C. r. Acad. Sci. Paris 228, 342 (1949).

    PubMed  CAS  Google Scholar 

  • McGee, J., and M. Doudoroff: A new phosphorylated intermediate in glucose oxidation. J. of Biol. Chem. 210, 617–626 (1954a).

    Google Scholar 

  • McGee, J., and M. Doudoroff: A new phosphorylated keto-acid intermediate in the oxidation of glucose. Bacter. Proc. 1954b, 108.

    Google Scholar 

  • McKee, R. W.: Metabolism of malarial parasites. Biochem. a. Physiol. Protozoa 1, 266–322 (1951).

    Google Scholar 

  • Meyerhof, O.: Über die Intermediärvorgänge der enzymatischen Kohlenhydratspaltung. Erg. Physiol, usw. 39, 10–75 (1937).

    CAS  Google Scholar 

  • Mitstjhashi, S., and J. O. Lampen: Conversion of D-xylose to D-xylulose in extracts of Lactobacillus pentosus. J. of Biol. Chem. 204, 1011–1018 (1953).

    Google Scholar 

  • Mortenson, L. E., and P.W. Wilson: Initial steps in breakdown of glucose by the azotobacter. Bacter. Proc. 1954, 108.

    Google Scholar 

  • Moyed, H. S., and D. J. O’Kane: The L-lactic dehydrogenase of Proteus vulgaris. Bacter. Proc. 1954, 96.

    Google Scholar 

  • Mueller, C. B., and A. B. Hastings: Glycolysis and phosphate fractions of red blood cells. J. of Biol. Chem. 189, 881–888 (1951).

    CAS  Google Scholar 

  • Narrod, S.A., and W.A. Wood: Gluconate and 2-ketogluconate phosphorylation by extracts of Pseudomonas fluorescens. Bacter. Proc. 1954, 108.

    Google Scholar 

  • Neish, A. C.: Studies on the anaerobic dissimilation of glucose by Bacillus subtilis (Ford’s type). Canad. J. Bot. 31, 265–276 (1953).

    CAS  Google Scholar 

  • Neish, A.C., and F.J. Simpson: The anaerobic dissimilation of D-glucose-1-C14, D-arabinose-1-C14, and L-arabinose-1-C14 by Aerobacter aerogenes. Canad. J. Biochem. a. Physiol. 32, 147–163 (1954).

    CAS  Google Scholar 

  • Neuberg, C., u. J. Hirsch: Über ein Kohlenstoffketten knüpfendes Ferment (Carboligase). Biochem. Z. 115, 282–310 (1921).

    CAS  Google Scholar 

  • Neuberg, C., u. L. Lievermann: Zur Kenntnis der Carboligase. II. Biochem. Z. 121, 311–325 (1921).

    CAS  Google Scholar 

  • Neuberg, C., u. H. Ohle: Zur Kenntnis der Carboligase. III. Der Bau der biosynthetisch verknüpften mehrgliedrigen Kohlenstoffketten. Biochem. Z. 127, 327–339 (1922 a).

    CAS  Google Scholar 

  • Neuberg, C., u. H. Ohle: Zur Kenntnis der Carboligase. IV. Weitere Feststellungen über die biosynthetische Kohlenstoffkettenverknüpfung beim Gärungsvorgange. Biochem. Z. 128, 610–618 (1922b).

    CAS  Google Scholar 

  • Neuberg, C., u. E. Reinfurth: Eine neue Form der Umwandlung des Acet-aldehyds durch gärende Hefe. VI. Mitteilung über Carboligase. Biochem. Z. 143, 553–565 (1923).

    CAS  Google Scholar 

  • Novikoff, A. B., P. van Potter and G. A. LePage: Phosphorylating glycolysis in the early chick embryo. J. of Biol. Chem. 173, 239–252 (1948).

    CAS  Google Scholar 

  • O’Kane, D. J., and W. W. Umbreit: Transformations of phosphorus during glucose fermentation by living cells of Streptococcus jaecalis. J. of Biol. Chem. 142, 25–30 (1942).

    Google Scholar 

  • Paege, L. M., M. Gibbs and B.C. Bard: Metabolism of C14-glucose by Clostridium perfringens. Bacter. Proc. 1954, 110.

    Google Scholar 

  • Pine, L., V. Haas and H. A. Barker: II. Metabolism of glucose by Butyribacterium rettgeri. J. Bacter. 68, 227–230 (1954).

    CAS  Google Scholar 

  • Quastel, J. H., and M. D. Whetham: The equilibria existing between succinic, fumaric and malic acids in the presence of resting bacteria. Biochemic. J. 18, 519–534 (1924).

    CAS  Google Scholar 

  • Racker, E.: Alternate pathways of glucose and fructose metabolism. Adv. Enzymol. 15, 141–182 (1954).

    CAS  Google Scholar 

  • Racker, E., G. de la Haba and I. G. Leder: Thiamine pyrophosphate, a coenzyme of transketolase. J. Amer. Chem. Soc. 75, 1010–1011 (1953).

    CAS  Google Scholar 

  • Rao, M. R. R., and I. C. Gunsalus: Unpublished data, quoted by I. C. Gunsaltjs, B. L.Horecker and W. A. Wood. In Bacter. Rev. 19, 107 (1955).

    Google Scholar 

  • Roessler, W. G., T. H. Sanders, J. Dulberg and C. R. Brewer: Anaerobic glycolysis by enzyme preparations of Brucella suis. J. of Biol. Chem. 194, 207–214 (1952).

    CAS  Google Scholar 

  • Rutter, W. J., and R. G. Hansen: Lactose metabolism. I. Carbohydrate metabolism of Lactobacillus bulgaricus strain Gere A. J. of Biol. Chem. 202, 311–321 (1953).

    CAS  Google Scholar 

  • Sato, R., M. Ebata and T. Kojima: Adaptive utilization of sedoheptulose by bacteria. J. of Biochem. (Tokyo) 1954, 307–316.

    Google Scholar 

  • Schweet, R. S., M. Fuld, K. Cheslock and M. H. Paul: Initial stages of pyruvate oxidation. In: Phosphorus metabolism, edit. by W. D. McElroy and B. Glass, vol. I, p. 246–259. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Singer, T. P., and J. Pensky: Mechanism of acetoin synthesis by α-carboxylase. Biochim. et Biophysica Acta 9, 316–327 (1952).

    CAS  Google Scholar 

  • Slein, M. W.: Phosphomannose isomerase. J. of Biol. Chem. 186, 753–761 (1950).

    CAS  Google Scholar 

  • Slein, M. W.: Phosphohexose isomerases. Federat. Proc. 13, 299 (1954).

    Google Scholar 

  • Slein, M. W., G. T. Cori and C. F. Cori: A comparative study of hexokinase from yeast and animal tissues. J. of Biol. Chem. 1950, 763–780.

    Google Scholar 

  • Sokatch, J. T., and I.C. Gunsalus: The enzymes of an adaptive gluconate fermentation pathway in Streptococcus jaecalis. Bacter. Proc. 1954, 109–110.

    Google Scholar 

  • Sowden, J. C., S. Frankel, B. H. Moore and J. E. McClary: Utilization of 1-C14-d-glucose by Torula utilis yeast. J. of Biol. Chem. 206, 547–552 (1954).

    CAS  Google Scholar 

  • Still, J. L.: Triose phosphate dehydrogenase of Bacterium coli. Biochemic. J. 34, 1374–1382 (1940).

    CAS  Google Scholar 

  • Stone, R. W., and C. H. Werkman: Role of phos-phoglyeerie acid in the dissimilation of glucose by the propionic acid bacteria. Iowa State Coll. J. Sci. 10, 341–343 (1936a).

    CAS  Google Scholar 

  • Stone, R. W., and C. H. Werkman: The role of phosphoglyceric acid in the dissimilation of glucose by bacteria of the Escherichia-Aerobacter group. Iowa State Coll. J. Sci. 11, 1–3 (1936b).

    CAS  Google Scholar 

  • Stone, R. W., and C. H. Werkman: The occurrence of phosphoglyceric acid in the bacterial dissimilation of glucose. Biochemic. J. 31, 1516–1523 (1937).

    CAS  Google Scholar 

  • Strecker, H. J., and S. Korkes: Glucose dehvdro-genase. J. of Biol. Chem. 196, 769–784 (1952).

    CAS  Google Scholar 

  • Stumpf, P. K.: Phosphorylated carbohydrate compounds in developing chick embryo. Federat. Proc. 6, 296 (1947).

    CAS  Google Scholar 

  • Stumpf, P. K.: Glycolysis. In: D. M. Greenberg, Chemical pathways of metabolism, vol. I, chapter 3, p. 67–108. New York: Academic Press 1954.

    Google Scholar 

  • Totton, E. L., and H. A. Lardy: Phosphoric esters of biological importance. IV. The synthesis and biological activity of D-tagatose-6-phosphate. J. of Biol. Chem. 181, 701–706 (1949).

    CAS  Google Scholar 

  • Utter, M. F., and C. H. Werkman: Occurrence of the aldolase equilibrium in bacterial metabolism. J. Bacter. 41, 5 (1940).

    Google Scholar 

  • Utter, M. F., and C. H. Werkman: Occurrence of the aldolase and isomerase equilibria in bacterial metabolism. J. Bacter. 42, 665–676 (1941).

    CAS  Google Scholar 

  • Virtanen, A. I., u. J. Tikka: Neue Phosphorsäure-ester bei der Milchsäuregärung. Biochem. Z. 228, 407–408 (1930).

    CAS  Google Scholar 

  • Wagner, R., and A. Yourke: Enzyme studies on white blood cells. III. Phosphorylating glycogenolysis and phosphorylated intermediates. Arch. of Biochem. a. Biophysics 39, 174–187 (1952).

    CAS  Google Scholar 

  • Warren, C.O., G.E. Franklin and C. Hesselbach: The effect of various ions on the anaerobic glycolysis of rat liver in vitro. Amer. J. Physiol. 147, 509–516 (1946).

    PubMed  CAS  Google Scholar 

  • Weimberg, R., and M. Doudoroff: Studies with three bacterial sucrose phos-phorylases. J. Bacter. 68, 381–388 (1954).

    CAS  Google Scholar 

  • Werkman, C. H.: In C. H. Werkman and P.W. Wilson, Bacterial Physiology, chapt. IX. New York: Academic Press 1951.

    Google Scholar 

  • Werkman, C. H., E. A. Zoellner, Henry Gilman and H. Reynolds: Phosphoglyceric acid in the dissimilation of glucose by Citrobacter jreundii. J. Bacter. 31, 5 (1936).

    CAS  Google Scholar 

  • Wiggert, W. P., and C.H. Werkman: Phosphorylation by the living bacterial cell. Biochemic. J. 32, 101–107 (1938).

    CAS  Google Scholar 

  • Wood, H. O.: Fermentation of 3,4-C14 and 1-C14 labeled glucose by Clostridium thermoaceticum. J. of Biol. Chem. 199, 579–583 (1952).

    CAS  Google Scholar 

  • Wood, H. G., and F. W. Leaver: Fermentation of glucose-3,4-C14 and glucose-1-C14 by Propionibacterium arabinosum. Federat. Proc. 11, 313 (1952).

    Google Scholar 

  • Wood, W. A., and R. F. Schwerdt: Alternate pathways of hexose oxidation in Pseudomonas fluorescens. J. Cellul. a. Comp. Physiol. 41, Suppl. 1, 165–182 (1953a).

    CAS  Google Scholar 

  • Wood, W. A., and R. F. Schwerdt: Carbohydrate oxidation by Pseudomonas fluorescens. J. of Biol. Chem. 201, 501–511 (1953 b).

    CAS  Google Scholar 

  • Wood, W. A., and R. F. Schwerdt: Carbohydrate oxidation by Pseudomonas fluorescens. II. Mechanism of hexose phosphate oxidation. J. of Biol. Chem. 206, 625–635 (1954).

    CAS  Google Scholar 

  • Wu, J. J., and I. Chang: The glycolytic activity of the hearts of the vertebrates. Quart. J. Exper. Physiol. 34, 91–95 (1948).

    CAS  Google Scholar 

  • Aisenberg, A. C.: Sugar phosphate levels in the mitochondrial Pasteur effect. J. biol. Chem. 234, 441–444 (1959).

    PubMed  CAS  Google Scholar 

  • Aisenberg, A. C., and V. R. Potter: Studies on the Pasteur effect. II. Specific mechanisms. J. biol. Chem. 224, 1115–1127 (1957).

    PubMed  CAS  Google Scholar 

  • Aisenberg, A. C., B. Reinafarje and V. R. Potter: Studies on the Pasteur effect. I. General observations. J. biol. Chem. 224, 1099–1113 (1957).

    PubMed  CAS  Google Scholar 

  • Amoore, J. E.: The permeability of isolated rat-liver mitochondria at 0° to the metabolites pyruvate, succinate, citrate, phosphate, adenosine 5-phosphate and adenosine triphosphate. Biochem. J. 70, 718–726 (1958).

    PubMed  CAS  Google Scholar 

  • Arnon, D. I., M. B. Allen and F. R. Whatley: Photosynthesis by isolated chloroplasts. Nature (Lond.) 174, 394–396 (1954).

    CAS  Google Scholar 

  • Arnon, D. I., M. B. Allen and F. R. Whatley: Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions. Biochim. biophys. Acta 20, 449–461 (1956).

    PubMed  CAS  Google Scholar 

  • Barron, E. S. G.: Thiol groups of biological importance. Advances Enzymol. 11, 201–266 (1951).

    Google Scholar 

  • Bartley, W., and R. E. Davies: Active transport of ions by subcellular particles. Biochem. J. 57, 37–49 (1954).

    PubMed  CAS  Google Scholar 

  • Bassham, J. A., and M. Calvin: The path of carbon in photosynthesis. Englewood Cliffs, N. J.: Prentice-Hall, Inc. 1957.

    Google Scholar 

  • Belitzer, V. A.: La régulation de la respiration musculaire par les transformations du Phosphagene. Enzymologia 6, 1–8 (1939).

    Google Scholar 

  • Bertalanffy, L. v.: Theoretische Biologie, Bd. 2: Stoffwechsel und Wachstum, 2. Aufl. Bern: A. Francke 1951.

    Google Scholar 

  • Bertalanffy, L. v.: Biophysik des Fließgleichgewichtes. Braunschweig: F. Vieweg & Sohn 1953.

    Google Scholar 

  • Black, S., and N. G. Wright: ß-Aspartokinase and ß-aspartylphosphate. J. biol. Chem. 213, 27–38 (1955).

    PubMed  CAS  Google Scholar 

  • Black, S., and N. G. Wright: Aspartic ß-semialdehyde dehydrogenase and aspartic ß-semialdehyde. J. biol. Chem. 213, 39–50 (1955 a).

    PubMed  CAS  Google Scholar 

  • Black, S., and N. G. Wright: Homoserine dehydrogenase. J. biol. Chem. 213, 51–60 (1955 b).

    PubMed  CAS  Google Scholar 

  • Boyer, P. D.: Sulfhydryl and disulfide groups of enzymes. In: The enzymes (P. D. Boyer, H. Lardy and K. Myrbäck, eds.), 2nd edit., Vol. I, pp. 511–588. New York: Academic Press Inc. 1959.

    Google Scholar 

  • Boyer, P.D., H. Lardy and K. Myrbäck: The enzymes, 2nd edit.; 4 Volumes. Vol.1. New York: Academic Press Inc. 1959.

    Google Scholar 

  • Bray, H. G., and K. White: Kinetics and thermodynamics in biochemistry. London: J. A. Churchill Ltd. 1957.

    Google Scholar 

  • Brachet, J.: Biochemical cytology. New York: Academic Press Inc. 1957.

    Google Scholar 

  • Bücher, Th.: Über ein phosphatübertragendes Gärungsferment. Biochim. biophys. Acta 1, 292–314 (1947).

    Google Scholar 

  • Bücher, Th., u. M. Klingenberg: Wege des Wasserstoffs in der lebendigen Organisation. Angew. Chem. 70, 552–570 (1958).

    Google Scholar 

  • Burton, A. C.: The basis of the principle of the master reaction in biology. J. cell. comp. Physiol. 9, 1–14 (1936).

    Google Scholar 

  • Burton, A. C.: The proporties of the steady state compared to those of equilibrium as shown in characteristic biological behavior. J. cell, comp. Physiol. 14, 327–349 (1939).

    CAS  Google Scholar 

  • Caldwell, P. C.: Intracellular pH. Int. Rev. Cytol. 5, 229–277 (1956).

    CAS  Google Scholar 

  • Calvin, M.: Der Photosynthese-Cyclus. Angew. Chem. 68, 253–264 (1956).

    Google Scholar 

  • Chance, B.: Enzyme mechanisms in living cells. In: The mechanism of enzyme action (W. D. McElroy and B. Glass, eds.), pp. 399–460. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Chance, B.: Enzyme mechanisms in living cells. Enzymes in action in living cells: The steady state of reduced pyridine nucleotides. Harvey Lect. 49, 145–175 (1955).

    Google Scholar 

  • Chance, B., and G.R. Williams: The respiratory chain and oxidative phosphorylation. Advanc. Enzymol. 17,65–134 (1956).

    CAS  Google Scholar 

  • Chen, S. L.: Carbohydrate assimilation in actively growing yeast, Saccharomyces cerevisiae. I. Metabolic pathways for 14C-glucose utilization by yeast during aerobic fermentation. Biochim. biophys. Acta 32, 470–479 (1959).

    PubMed  CAS  Google Scholar 

  • Colowick, S. P., H. M. Kalckar and C. F. Cori: Glucose phosphorylation and oxidation in cell-free tissue extracts. J. biol. Chem. 137, 343–356 (1941).

    CAS  Google Scholar 

  • Conway, E. J., and M. Downey: pH values of the yeast cell. Biochem. J. 47, 355–360 (1950).

    PubMed  CAS  Google Scholar 

  • Crane, R. K., and A. Sols: The association of hexokinase with particulate fractions of brain and other tissue homogenates. J. biol. Chem. 203, 273–292 (1953).

    PubMed  CAS  Google Scholar 

  • Crane, R. K., and A. Sols: The non-competitive inhibition of brain hexokinase by glucose-6-phosphate and related compounds. J. biol. Chem. 210, 597–606 (1954).

    PubMed  CAS  Google Scholar 

  • Davies, R., and E.F. Gale: Adaptation in micro-organisms. London: Cambridge University Press 1953.

    Google Scholar 

  • Dixon, M.: Manometric methods as applied to the measurement of cell respiration and other processes, 3rd edit. London: Cambridge University Press 1951.

    Google Scholar 

  • Dixon, M., and E.C. Webb: Enzymes. London: Longmans, Green & Co. 1958.

    Google Scholar 

  • Engelhardt, W. A.: Ortho- und Pyrophosphat im aeroben und anaeroben Stoffwechsel der Blutzellen. Biochem. Z. 227, 16–38 (1930).

    CAS  Google Scholar 

  • Engelhardt, W. A.: Die Beziehungen zwischen Atmung und Pyrophosphatumsatz in Vogelerythrocyten. Biochem. Z. 251, 343–368 (1932).

    CAS  Google Scholar 

  • Ephrussi, B., et P. P. Slonimski: La synthèse adaptative des cytochromes chez la levure de boulangerie. Biochim. biophys. Acta 6, 256–267 (1950).

    PubMed  CAS  Google Scholar 

  • Fischer, E. H., and E. G. Krebs: Conversion of Phosphorylase b to Phosphorylase a in muscle extracts. J. biol. Chem. 216, 121–132 (1955).

    PubMed  CAS  Google Scholar 

  • Friedkin, M., and A. L. Lehninger: Esterification of inorganic phosphate coupled to electron transport between di-hydrodiphosphopyridine nucleotide and oxygen. J. biol. Chem. 178, 611–623 (1949).

    PubMed  CAS  Google Scholar 

  • Frunder, H.: Die Wasserstoffionenkonzentration im Gewebe lebender Tiere nach Messungen mit der Glaselektrode. Jena: Gustav Fischer 1951.

    Google Scholar 

  • Gale, E. F.: Factors influencing the enzymic activities of bacteria. Bact. Rev. 7,139–173 (1943).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and H. M. R. Epps: The effect of the pH of the medium during growth on the enzymic activities of bacteria (E. coli and Micrococcus lysodeikticus) and the biological significance of the changes produced. Biochem. J. 36, 600–618 (1942).

    PubMed  CAS  Google Scholar 

  • Glock, G. E., and P. McLean: Levels of oxidized and reduced diphosphopyridine nucleotide and tri-phosphopyridine nucleotide in animal tissues. Biochem. J. 61, 388–390 (1955).

    PubMed  CAS  Google Scholar 

  • Gorini, L.: Regulation en retour (feedback control) de la synthèse de l’arginine chez Escherichia coli. Bull. Soc. Chim. biol. (Paris) 40, 1939–1952 (1958).

    CAS  Google Scholar 

  • Gorini, L., and W. K. Maas: Feedback control of the formation of biosynthetic enzymes. In: Symposium on the chemical basis of development (W. D. McElroy and B. Glass, eds.), pp. 469–478. Baltimore: Johns Hopkins Press 1958.

    Google Scholar 

  • Green, D. E.: Organization in relation to enzymic function. In: Mitochondria and other cytoplasmic inclusions. Symposia of the Society for Experimental Biology, Vol. X, pp. 30–49. London: Cambridge University Press 1957.

    Google Scholar 

  • Green, N. M., and H. Netjrath: Proteolytic enzymes. In: The proteins (H. Netjrath and K. Bailey, eds.), Vol. IIb, pp. 1057–1198. New York: Academic Press Inc. 1954.

    Google Scholar 

  • Hageman, R. H., and D. I. Arnon: Changes of glyceraldehyde phosphate dehydrogenase during the life cycle of a green plant. Arch. Biochem. 57, 421–436 (1955).

    PubMed  CAS  Google Scholar 

  • Haupt, I., u. H. Giersberg: Untersuchungen über die Heterogenität und Organspezifität von Enzymen, speziell der Milchsäuredehydrogenase, innerhalb der Wirbeltierreihe. Naturwiss. 45, 268–269 (1958).

    CAS  Google Scholar 

  • Hearon, J. Z., S. A. Bernhard, S. L. Friess, D. J. Botts and M. F. Morales: Enzyme kinetics. In: The enzymes (P. D. Boyer, H. Lardy and K. Myrbäck, eds.), 2nd edit. Vol. I, pp. 49–142. New York: Academic Press Inc. 1959.

    Google Scholar 

  • Hers, H. G.: Rôle du magnésium et du potassium dans la reaction fructokinasique. Biochim. biophys. Acta 8, 424–430 (1952).

    PubMed  CAS  Google Scholar 

  • Hers, H. G.: Le métabolisme du fructose. Bruxelles: Editions Arscia 1957.

    Google Scholar 

  • Hevesy, G., K. Linderstrom-Lang and N. Nielsen: Phosphorus exchange in yeast. Nature (Lond.) 140, 725 (1937).

    CAS  Google Scholar 

  • Hinshelwood, C.: The chemical kinetics of the bacterial cell. Oxford: Clarendon Press 1946.

    Google Scholar 

  • Hoffmann-Ostenhof, O.: Enzymologie. Wien: Springer 1954.

    Google Scholar 

  • Hogeboom, G. H., and W. C. Schneider: The cytoplasm. In: The nucleic acids (E. Chargaff and J. N. Davidson, eds.), Vol. II, pp. 199–246. New York: Academic Press Inc. 1955.

    Google Scholar 

  • Holzer, H.: Vom Energiehaushalt der Zelle. Umschau 16, 510–512 (1950).

    Google Scholar 

  • Holzer, H.: Über Fermentketten und ihre Bedeutung für die Regulation des Kohlenhydratstoffwechsels in lebenden Zellen. In: Biologie und Wirkung der Fermente. 4. Colloquium der Ges. für Physiologische Chemie, S. 89–114. Berlin-Göttingen-Heidelberg: Springer 1953.

    Google Scholar 

  • Holzer, H.: Kinetik und Thermodynamik enzymatischer Reaktionen in lebenden Zellen und Geweben. In: Ergebnisse der Medizinischen Grundlagenforschung (herausgeg. von K. F. Bauer), Bd. I, S. 189–212. Stuttgart: Georg Thieme 1956.

    Google Scholar 

  • Holzer, H.: Carbohydrate metabolism. Ann. Rev. Biochem. 28, 171–222 (1959).

    PubMed  CAS  Google Scholar 

  • Holzer, H., D. Busch u. H. Kroger: Enzymatisch-optische Bestimmung von TPNH und TPN neben DPNH und DPN. Hoppe-Seylers Z. physiol. Chem. 313, 184–193 (1958).

    PubMed  CAS  Google Scholar 

  • Holzer, H., u. R. Freytag-Hilf: Zusammenwirken der Gärungsenzyme beim anaeroben und aeroben Glucose-Umsatz in Hefezellen. Hoppe-Seylers Z. physiol. Chem. 316, 7–30 (1959).

    PubMed  CAS  Google Scholar 

  • Holzer, H., u. H. W. Goedde: Zwei Wege von Pyruvat zu Acetyl-Coenzym A in Hefe. Biochem. Z. 329, 175–191 (1957).

    PubMed  CAS  Google Scholar 

  • Holzer, H., J. Haan u. S. Schneider: Zum Mechanismus des anaeroben Glucose- und Fructoseabbaues im Mäuse-Ascites-Carcinom. Biochem. Z. 326, 451–463 (1955).

    PubMed  CAS  Google Scholar 

  • Holzer, H., u. E. Holzer: Bestimmung stationärer Triosephosphat-Konzentrationen in lebender Hefe. Ein Beitrag zum Mechanismus des Pasteur-Effektes. Hoppe-Seylers Z. physiol. Chem. 292, 232–239 (1953).

    PubMed  CAS  Google Scholar 

  • Holzer, H., E. Holzer u. G. Schultz: Zusammenhang zwischen Wachstum und aerober Gärung. Biochem. Z. 326, 385–404 (1955).

    PubMed  CAS  Google Scholar 

  • Holzer, H., u. S. Schneider: Anreicherung und Trennung einer DPN-spezifischen und einer TPN-spezifischen Glutaminsäure-Dehydro-genase aus Hefe. Biochem. Z. 329, 361–369 (1957).

    PubMed  CAS  Google Scholar 

  • Holzer, H., G. Schultz u. F. Lynen: Bestimmung des Quotienten DPNH/DPN in lebenden Hefezellen durch Analyse stationärer Alkohol- und Acetaldehydkonzentrationen. Biochem. Z. 328, 252–263 (1956).

    PubMed  CAS  Google Scholar 

  • Holzer, H., G. Schultz, C. Villar-Palasi u. J. Jüntgen-Sell: Isolierung der Hefecarboxylase und Untersuchungen über die Aktivität des Enzyms in lebenden Zellen. Biochem. Z. 327, 331–344 (1956).

    PubMed  CAS  Google Scholar 

  • Holzer, H., u. I. Witt: Regulation des Pentosephosphat-Cyklus durch TPNH-Oxydation. Angew. Chem. 70, 439 (1958).

    Google Scholar 

  • Holzer, H., u. I. Witt: Bisher unveröffentlichte Versuche 1959.

    Google Scholar 

  • Holzer, H., I. Witt u. R. Freytag-Hilf: Zum Mechanismus des Pasteur-Effektes: Bestimmung von ATP, ADP, Orthophosphat und verschiedenen Zwischenprodukten des Kohlenhydratstoffwechsels in lebenden Hefezellen beim Übergang von anaeroben zu aeroben Bedingungen. Biochem. Z. 329, 467–475 (1958).

    PubMed  CAS  Google Scholar 

  • Huckabee, W. E.: Relationships of pyruvate and lactate during anaerobic metabolism. I.—III. J. clin. Invest. 37, 244–271 (1958).

    CAS  Google Scholar 

  • Johnson, M. J.: The role of aerobic phosphorylation in the Pasteureffect. Science 94, 200–202 (1941).

    PubMed  CAS  Google Scholar 

  • Krebs, E. G., and E. H. Fischer: Phosphorylase activity of skeletal muscle extracts. J. biol. Chem. 216, 113–120 (1955).

    PubMed  CAS  Google Scholar 

  • Krebs, E. Q., A. B. Kent, D. J. Graves and E. H. Fischer: The activation and inactivation of muscle Phosphorylase. In: Proceedings of the Intern. Symp. on Enzyme Chemistry, Tokyo and Kyoto 1957, pp. 41–43. Tokyo: Maruzen 1958.

    Google Scholar 

  • Krebs, H. A.: The tricarboxylic acid cycle. In: Chemical pathways of metabolism (D.M. Greenberg, ed.), Vol. I, pp. 109–171. New York: Academic Press Inc. 1954.

    Google Scholar 

  • Krebs, H. A. Die Steuerung der Stoffwechselvorgänge. Dtsch. med. Wschr. 81, 4–8 (1956).

    PubMed  CAS  Google Scholar 

  • Krebs, H. A.: The effects of extraneous agents on cell metabolism. In: Ciba Foundation Symposium on Ionizing Radiations and Cell Metabolism (G. E. W. Wolstenholme and C. M. O’Connor, eds.), pp. 92–105. London: J.A.Churchill Ltd. 1956 a.

    Google Scholar 

  • Krebs, H. A.: Die Steuerung von Stoffwechselvorgängen. Endeavour 16, 125–132 (1957).

    CAS  Google Scholar 

  • Krebs, H. A.: Diskussionsbemerkung beim Ciba Foundation Symposium on the Regulation of Cell Metabolism, S. 362. Siehe Wolstenholme and O’Connor 1959.

    Google Scholar 

  • Krebs, H.A., and H. L. Kornberg: Energy transformations in living matter. Ergebn. Physiol. 49, 212–298 (1957).

    PubMed  CAS  Google Scholar 

  • Laidler, K. J.: The chemical kinetics of enzyme action. Oxford: Clarendon Press 1958.

    Google Scholar 

  • Lang, K., u. G. Siebert: Die chemischen Leistungen der morphologischen Zellelemente. In: Physiologische Chemie (herausgeg. von B. Flaschenträger u. E. Lehnartz), Bd. II, lb (Der Stoffwechsel), S. 1064–1156. Berlin-Göttingen-Heidelberg: Springer 1954.

    Google Scholar 

  • Lardy, H. A.: Energetic coupling and the regulation of metabolic rates. In: Proc. of the third Intern. Congr. of Biochemistry, Brussels 1955, pp. 287–294. New York: Academic Press Inc. 1956.

    Google Scholar 

  • Lardy, H.A., and R.E. Parks jr.: Influence of ATP concentration on rates of some phosphorylation reactions. In: Enzymes: Units of biological structure and function (O. H. Gaebler, ed.), pp. 584–587. New York: Academic Press Inc. 1956.

    Google Scholar 

  • Laties, G. G.: Respiration and cellular work and the regulation of the respiration rate in plants. Surv. Biol. Progr. 3, 215–299 (1957).

    CAS  Google Scholar 

  • Lennerstrand, Å.: Über die Wirkung von Phosphat auf Oxydation und Phosphorylierung in durch Fluorid vergiftetem Apo-Zymasesystem. Biochem. Z. 289, 104–135 (1937).

    Google Scholar 

  • Lennerstrand, Å.: Über die Kopplung der Atmung und der Phosphorylierung der Adenylsäure im Hämolysat der roten Pferdeblutkörperchen. Naturwiss. 25, 347–348 (1937 a).

    CAS  Google Scholar 

  • Liébecq, C., et M. Jacquemotte-Louis: Nucleotides de l’adénine. IV. Instabilité des complexes magnésiens de l’adénosine triphosphate. Bull. Soc. Chim. biol. (Paris) 40, 67–85 (1958).

    Google Scholar 

  • Lindberg, O., and L. Ernster: Chemistry and physiology of mitochondria and microsomes. Protoplasmatologie, Bd. III, 4. Wien: Springer 1954.

    Google Scholar 

  • Linnane, A. W., and J. L. Still: The isolation of respiring mitochondria from baker’s yeast. Arch. Biochem. 59,383–392 (1955).

    PubMed  CAS  Google Scholar 

  • Lipmann, F.: Metabolic generation and utilization of phosphate bond energy. Advanc. Enzymol. 1, 99–162 (1941).

    CAS  Google Scholar 

  • Lipmann, F. Dis-kussionsbemerkung beim Ciba Foundation Symposium on Regulation of Cell Metabolism, S. 362. Siehe Wolstenholme and O’Connor 1959.

    Google Scholar 

  • Lynen, F.: Über den aeroben Phosphatbedarf der Hefe. Ein Beitrag zur Kenntnis der Pasteurschen Reaktion. Justus Liebigs Ann. Chem. 546, 120–141 (1941).

    CAS  Google Scholar 

  • Diskussion zum Vortrag von H. A. Lardy: Energetic coupling and the regulation of metabolic rates. In: Proc. of the third Intern. Congr. of Biochemistry, Brussels 1955, pp. 294–298. New York: Academic Press Inc. 1956.

    Google Scholar 

  • H. A. Lardy: Phosphatkreislauf und Pasteur-Effekt. In: Neuere Ergebnisse aus Chemie und Stoffwechsel der Kohlenhydrate. 8. Colloquium der Ges. für Physiologische Chemie, S. 155–190. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • H. A. Lardy: Phosphatkreislauf und Pasteur-Effekt. In: Proc. of the Intern. Symp. on Enzyme Chemistry, Tokyo and Kyoto 1957, pp. 25–34. Tokyo: Maruzen 1958a.

    Google Scholar 

  • Lynen, F., u. R. Koenigsberger: Zum Mechanismus der Pasteurschen Reaktion: Der Phosphat-Kreislauf in der Hefe und seine Beeinflussung durch 2,4-Dinitrophenol. Justus Liebigs Ann. Chem. 573, 60–84 (1951).

    CAS  Google Scholar 

  • Magasanik, B.: Nutrition of bacteria and fungi. Ann. Rev. Microbiol. 11, 221–252 (1957).

    CAS  Google Scholar 

  • Magasanik, B.: The metabolic regulation of purine interconversions and of histidine biosynthesis. In: Symposium on the chemical basis of development (W. D. McElroy and B. Glass, eds.), pp.485–494. Baltimore: Johns Hopkins Press 1958.

    Google Scholar 

  • Meyerhof, O.: Über die Kinetik der umkehrbaren Reaktion zwischen Hexosediphosphorsäure und Dioxyaceton-phosphorsäure. Biochem. Z. 277, 77–96 (1935).

    CAS  Google Scholar 

  • Michaelis, L., u. M. L. Menten: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913).

    CAS  Google Scholar 

  • Monod, J.: Remarks on the mechanism of enzyme induction; In: Enzymes: Units of biological structure and function (O. H. Gaebler, ed.), pp. 7–28. New York: Academic Press Inc. 1956.

    Google Scholar 

  • Negelein, E., u. H. J. Wulff: Diphosphopyridinproteid, Alkohol, Acetaldehyd. Biochem. Z. 293, 351–389 (1937).

    CAS  Google Scholar 

  • Neilands, J. B., and P. K. Stumpf: Outlines of enzyme chemistry, 2nd edit. New York: John Wiley & Sons, Inc. 1958.

    Google Scholar 

  • Netter, H.: Theoretische Biochemic. Berlin-Göttingen-Heidelberg: Springer 1959.

    Google Scholar 

  • Neuberg, C.: Vom Zuckerumsatz der pflanzlichen Zelle. In: Handbuch der Biochemic des Menschen und der Tiere (herausgeg. von C. Oppenheimer), Bd. II, S. 442–484. Jena: Gustav Fischer 1925.

    Google Scholar 

  • Nossal, P. M.: Distribution of enzymes in cell-free yeast extracts. Biochem. J. 57, 62–69 (1954).

    PubMed  CAS  Google Scholar 

  • Pardee, A. B.: The control of enzyme activity. In: The enzymes (P. D. Boyer, H. Lardy and K. Myrbäck, eds.), 2nd edit., Vol. I, pp. 681–716. New York: Academic Press Inc. 1959.

    Google Scholar 

  • Parr, C. W.: Inhibition of phosphoglucose isomerase. Nature (Lond.) 178, 1401 (1956).

    CAS  Google Scholar 

  • Pfleiderer, G., u. D. Jeckel: Individuelle Milchsäuredehydrogenasen bei verschiedenen Säugetieren. Biochem. Z. 329, 370–380 (1957).

    PubMed  CAS  Google Scholar 

  • Pollock, M. R.: Induced formation of enzymes. In: The enzymes (P. D. Boyer, H. Lardy and K. Myrbäck, eds.), 2nd edit., Vol. I, pp. 619–680. New York: Academic Press Inc. 1959.

    Google Scholar 

  • Potter, V.R.: Biological energy transformations and the cancer problem. Advanc. Enzymol. 4, 201–256 (1944).

    CAS  Google Scholar 

  • Precht, H., J. Christophersen u. H. Hensel: Temperatur und Leben. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Purvis, J. L.: Pathway of oxidation of isocitrate by mitochondria. Biochim. biophys. Acta 30, 440–441 (1958).

    PubMed  CAS  Google Scholar 

  • Raaflaub, J., u. I. Leupin: Über die Anwendung von Metallpuffern bei Fermentreaktionen. Die pMg-Aktivitätskurve der Hexokinase aus Hefe. Helv. chim. Acta 39, 832–837 (1956).

    CAS  Google Scholar 

  • Racker, E.: Alcohol dehydrogenase from baker’s yeast. In: Methods in enzymology (S. P. Colowick and N. O. Kaplan, eds.), Vol. I, pp. 500–503. New York: Academic Press Inc. 1955.

    Google Scholar 

  • Racker, E., and R. Wu: Limiting factors in glycolysis of ascites tumour cells and the Pasteur effect. In: Ciba foundation symposium on the regulation of cell metabolism, pp. 205–229. Siehe Wolstenholme and O’Connor 1959.

    Google Scholar 

  • Rapkine, L.: Sulphydryl groups and enzymic oxido-reduction. Biochem. J. 32, 1729–1739 (1938).

    PubMed  CAS  Google Scholar 

  • Rothstein, A., and R. Meier: The relationship of the cell surface to metabolism. IV. The role of cell surface phosphatases of yeast. J. cell. comp. Physiol. 34, 97–114 (1949).

    CAS  Google Scholar 

  • Sacks, J.: Mechanism of phosphate transfer across cell membranes. Cold Spr. Harb. Symp. quant. Biol. 13, 180–184 (1948).

    CAS  Google Scholar 

  • Schneider, W. C.: Structural factors in metabolic regulations. In: Proc. of the third Intern. Congr. of Biochemistry, Brussels 1955, pp. 305–315. New York: Academic Press Inc. 1956.

    Google Scholar 

  • Slein, M. W., G. T. Cori and C. F. Cori: A comparative study of hexokinase from yeast and animal tissues. J. biol. Chem. 186, 763–780 (1950).

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y.: Enzymatic adaptation in bacteria. Ann. Rev. Microbiol. 5, 35–56 (1951).

    CAS  Google Scholar 

  • Trebst, V. A., H. Y. Tsujimoto and D. I. Arnon: Separation of light and dark phases in the photosynthesis of isolated chloroplasts. Nature (Lond.) 182, 351–355 (1958).

    CAS  Google Scholar 

  • Trevelyan, W. E., and J. S. Harrison: Studies on yeast metabolism. III. The intracellular level of pyruvate during yeast fermentation. Biochem. J. 57, 556–561 (1954).

    PubMed  CAS  Google Scholar 

  • Umbarger, H. E.: Some observations on the biosynthetic pathway of isoleucine. In: Amino acid metabolism (W. D. McElroy and B. Glass, eds.), pp.442–451. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Umbarger, H. E.: Evidence for a negative feedback mechanism in the biosynthesis of isoleucine. Science 123, 848 (1956).

    PubMed  CAS  Google Scholar 

  • Umbreit, W. W., R. H. Burris and J. F. Stauffer: Manometric techniques. Minneapolis: Burgess Publishing Co. 1957.

    Google Scholar 

  • Velick, S. F.: The alcohol and glyceraldehyde-3-phosphate dehydrogenases of yeast and mammals. In: The mechanism of enzyme action (W. D. McElroy and B. Glass, eds.), pp.491–519. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Wagner, R. P., and H.K. Mitchell: Genetics and metabolism. New York: John Wiley & Sons, Inc. 1955.

    Google Scholar 

  • Wallenfels, K., u. H. Sund: Über den Mechanismus der Wasserstoff Übertragung mit Pyridinnucleotiden. I. Freie SH-Gruppen und Aktivität bei Alkoholdehydrogenase aus Hefe. Biochem. Z. 329, 17–30 (1957).

    PubMed  CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Isolierung und Kristallisation des Proteins des oxydierenden Gärungsferments. Biochem. Z. 303, 40–68 (1939).

    CAS  Google Scholar 

  • Warburg, O., u. G. Krippahl: Sauerstoff-Halb wert-drucke der Photosynthese und Atmung. Z. Naturforsch. 13b, 66–68 (1958).

    Google Scholar 

  • Watanabe, Y., and K. Shemura: Biosynthesis of threonine from homoserine. J. Biochem. (Tokyo) 42, 181–192 (1955).

    CAS  Google Scholar 

  • Weil-Malherbe, H., and A.D. Bone: Studies on hexokinase. I. The hexokinase activity of rat-brain extracts. Biochem. J. 49, 339–347 (1951).

    PubMed  CAS  Google Scholar 

  • Wieland, Th., u. G. Pfleiderer: Nachweis der Heterogenität von Milchsäuredehydrogenasen verschiedenen Ursprungs durch Trägerelektrophorese. Biochem. Z. 329, 112–116 (1957).

    PubMed  CAS  Google Scholar 

  • Wieland, Th., G. Pfleiderer u. F. Ortanderl: Über die Verschiedenheit der Milchsäuredehydrogenasen. III. Vergleiche der Milchsäuredehydrogenasen aus verschiedenen Rattenorganen. Biochem. Z. 331,103–109 (1959).

    Google Scholar 

  • Wolstenholme, G.E.W., and C.M. O’Connor (Editors): Ciba foundation symposium on the regulation of cell metabolism. London: J. A. Churchill Ltd. 1959.

    Google Scholar 

  • Wood, H. G.: Significance of alternate pathways in the metabolism of glucose. Physiol. Rev. 35, 841–859 (1955).

    PubMed  CAS  Google Scholar 

  • Wormser, E. H., and A. B. Pardee: Regulation of threonine biosynthesis in Escherichia coli. Arch. Biochem. 78, 416–432 (1958).

    PubMed  CAS  Google Scholar 

  • Yates, R. A., and A. B. Pardee: Control of pyrimidine biosynthesis in Escherichia coli by a feed-back mechanism. J. biol. Chem. 221, 757–770 (1956).

    PubMed  CAS  Google Scholar 

  • Yates, R. A., and A. B. Pardee: Control by uracil of formation of enzymes required for orotate synthesis. J. biol. Chem. 227, 677–692 (1957).

    PubMed  CAS  Google Scholar 

  • Zamenhof, S., and E. Chargaff: Studies on the desoxypentose nuclease of yeast and its specific cellular regulation. J. biol. Chem. 180, 727–740 (1949).

    PubMed  CAS  Google Scholar 

  • Zeller, H.: Wirkung von Ammonsalzen auf die Hefegärung. IV. Biochem. Z. 175, 135–161 (1926).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1960 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albaum, H.G. et al. (1960). Wege des Abbaues von Kohlenhydraten bei Sauerstoffatmung und Gärungen. In: Wolf, J. (eds) Plant Respiration Inclusive Fermentations and Acid Metabolism / Pflanzenatmung Einschliesslich Gärungen und Säurestoffwechsel. Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94800-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94800-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94801-5

  • Online ISBN: 978-3-642-94800-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics